JP2001226196A - Terbium aluminum garnet single crystal and its producing method - Google Patents

Terbium aluminum garnet single crystal and its producing method

Info

Publication number
JP2001226196A
JP2001226196A JP2000039607A JP2000039607A JP2001226196A JP 2001226196 A JP2001226196 A JP 2001226196A JP 2000039607 A JP2000039607 A JP 2000039607A JP 2000039607 A JP2000039607 A JP 2000039607A JP 2001226196 A JP2001226196 A JP 2001226196A
Authority
JP
Japan
Prior art keywords
crystal
single crystal
garnet single
terbium
aluminum garnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000039607A
Other languages
Japanese (ja)
Inventor
Hiroshi Machida
博 町田
Ivanovich Chani Valery
バレリー・イバノビッチ・チャニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP2000039607A priority Critical patent/JP2001226196A/en
Publication of JP2001226196A publication Critical patent/JP2001226196A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a terbium aluminum garnet single crystal which is a good crystal having a certain form and is grown in such a state that the degree of crystallization of a melt in a crucible is high. SOLUTION: The method for producing the terbium aluminum garnet single crystal is a crystal down method, which comprises providing a nozzle at the lower end of a crucible 3 and crystallizing a melt in the crucible 3 by pilling down the melt from the tip end of the nozzle. In this method, the whole melt 6 can be crystallized and the obtained crystal is uniform over the whole.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光アイソレータ用
ファラデー回転子として好適な、テルビウム・アルミニ
ウム・ガーネット単結晶およびその製造方法に関するも
のである。
The present invention relates to a terbium aluminum garnet single crystal suitable as a Faraday rotator for an optical isolator and a method for producing the same.

【0002】[0002]

【従来の技術】テルビウム・アルミニウム・ガーネット
(略称:TAG)単結晶の育成に関しては、過冷却状態
のルツボ内融液に基板結晶を着け、その表面に膜状に結
晶を成長させる溶液成長法(略称:LPE法)での作製
が知られているが、実用的なバルク状結晶は作製されて
いなかった。
2. Description of the Related Art With respect to the growth of terbium aluminum garnet (abbreviation: TAG) single crystal, a substrate crystal is attached to a melt in a crucible in a supercooled state, and a crystal is grown on the surface of the melt by a solution growth method ( Production by abbreviated name: LPE method) is known, but no practical bulk crystal has been produced.

【0003】図2は、Tb−Alでの状態
図である。図2のTb−Al での状態図か
らも、融液組成と同一の結晶組成を得ることの困難であ
ることが報告されている(参照;Cryst. Res. Techno
l., 34(1999)5-6, p 615-619)。
[0003] FIG.2O3-Al2O3State in
FIG. Tb in FIG.2O3-Al 2O3The state diagram in
It is also difficult to obtain the same crystal composition as the melt composition.
(See; Cryst. Res. Techno
l., 34 (1999) 5-6, p 615-619).

【0004】[0004]

【発明が解決しようとする課題】即ち、テルビウム・ア
ルミニウム・ガーネット単結晶の製造方法として最も一
般的に用いられている回転引き上げ法(略称:CZ法)
では、結晶育成が進むに従って融液組成が変化し、結晶
の成長速度が小さくなることから、引き上げ速度を小さ
くすること及び融液の過冷却度を大きくすることが必要
である。
That is, the rotation pulling method (abbreviation: CZ method) most commonly used as a method for producing a terbium aluminum garnet single crystal.
In this case, the melt composition changes as the crystal growth proceeds, and the crystal growth rate decreases. Therefore, it is necessary to reduce the pulling rate and increase the degree of supercooling of the melt.

【0005】このことは、一定形状の良質結晶を安定に
育成することが困難な条件となる。通常、このような結
晶成長では、ルツボ内の融液の結晶化率が小さく、融液
の約30%以下が結晶化できるに留まる。
[0005] This is a condition under which it is difficult to stably grow a good quality crystal having a certain shape. Usually, in such crystal growth, the crystallization rate of the melt in the crucible is small, and only about 30% or less of the melt can be crystallized.

【0006】従って、本発明の目的は、一定形状の良質
結晶であって、かつルツボ内の融液の結晶化率が大きい
状態で成長したテルビウム・アルミニウム・ガーネット
単結晶およびその製造方法を提供することである。
Accordingly, an object of the present invention is to provide a terbium-aluminum-garnet single crystal which is a high-quality crystal having a uniform shape and which is grown with a high crystallization ratio of a melt in a crucible, and a method for producing the same. That is.

【0007】[0007]

【課題を解決するための手段】本発明では、引き下げ法
によりテルビウム・アルミニウム・ガーネット単結晶を
製造している。引き下げ法とは、ルツボ底の中央にノズ
ルを設け、その先端から流出する融液に種結晶を着け、
ノズル先端の外形にほぼ等しい断面形状を持つファイバ
ー状の単結晶を得る方法である。
According to the present invention, a terbium aluminum garnet single crystal is manufactured by a pulling-down method. With the lowering method, a nozzle is provided at the center of the bottom of the crucible, and a seed crystal is attached to the melt flowing out from the tip,
This is a method for obtaining a fiber-like single crystal having a cross-sectional shape substantially equal to the outer shape of the nozzle tip.

【0008】結晶が細いことから、熱歪みの小さい良質
結晶が得易いこと、冷却速度が大きいことから添加物の
実効偏析係数が1に近いこと等の特徴から、現在、Nd
ドープYAl12(略称:YAG)、Al
/YAG共晶体、シリコン等、多くの結晶作製に用いら
れている(参照;例1: 特願平10−98327号、
出願人、科学技術振興事業団、例2:J .of Crystal Gr
owth, 204(1999)155-162)。
At present, Nd has been characterized by the fact that it is easy to obtain good-quality crystals with small thermal strain due to the small size of the crystal and that the effective segregation coefficient of the additive is close to 1 due to the high cooling rate.
Doped Y 3 Al 5 O 12 (abbreviation: YAG), Al 2 O 3
/ YAG eutectic, used for the production of many crystals such as silicon (see; Example 1: Japanese Patent Application No. 10-98327,
Applicant, Japan Science and Technology Agency, Example 2: J.of Crystal Gr
owth, 204 (1999) 155-262).

【0009】引き下げ法において、TAG融液からTA
G単結晶を作製する場合、育成結晶の一部は、透明結晶
が得られるが、その他の部分は、結晶中にインクルージ
ョン等を含み、融液全体を単結晶育成することは困難で
あった。
In the lowering method, the TA
In the case of producing a G single crystal, a part of the grown crystal can obtain a transparent crystal, but the other part contains inclusions and the like in the crystal, and it is difficult to grow the entire melt as a single crystal.

【0010】融液各成分の実効偏析係数がほぼ1となる
引き下げ法を用いた場合でも、融液組成に一致した単結
晶作製が難しいことから、アルミニウムガーネット構造
においてTbが8配位の位置に安定に存在できないと考
えられる。そこで、結晶成長に伴って融液組成の変化し
ない融液を得る手段として、REAl12融液
(REは希土類元素である)を加えて育成することを行
った。
[0010] Even in the case of using the pulling-down method in which the effective segregation coefficient of each component of the melt is almost 1, it is difficult to produce a single crystal in accordance with the composition of the melt. It is thought that it cannot exist stably. Therefore, as means for obtaining a melt in which the melt composition does not change with the crystal growth, RE 3 Al 5 O 12 melt (RE is a rare earth element) was added and grown.

【0011】希土類元素REとしてLu、Yb、Tm、
Erのいずれか一つ以上を加えることで、アルミニウム
ガーネット結晶が安定成長することが分かった。なお、
各元素について添加量と結晶性の関係を調べ、各々に結
晶成長が安定し良質結晶が得られる適正値の存在するこ
とが分かった。Tb量に対するLuの適正添加量は4〜
15%、Ybについては7〜16%、Tmについては9
〜18%、そしてErについては10〜20%の範囲で
あることが、育成結晶の形状および結晶性の観察から判
断された。
Lu, Yb, Tm, as rare earth elements RE
It was found that by adding any one or more of Er, the aluminum garnet crystal grew stably. In addition,
The relationship between the added amount and the crystallinity of each element was examined, and it was found that there was an appropriate value for stabilizing crystal growth and obtaining a good quality crystal for each element. The proper addition amount of Lu to the Tb amount is 4 to
15%, 7-16% for Yb, 9 for Tm
It was determined from the observation of the shape and crystallinity of the grown crystal that it was in the range of 1818% and Er in the range of 10-20%.

【0012】アルミニウムガーネット構造を安定に保つ
のに、8配位原子のイオン半径の適正値が存在すると考
えられる。即ち、Tbイオン半径(R8:約100p
m)は、その適正値に比べ大きく、ガーネット構造が不
安定になると思われる。ガーネット構造において、イオ
ン半径の異なる8配位希土類元素の偏析係数は、そのイ
オン半径によって異なり、イオン半径に対する融液から
結晶中への各元素の偏析係数の関係は、上に凸の二次関
数に類似している(参照;Materials Science and Engi
neering,R20(1997)281-338)。
It is considered that there is an appropriate value of the ionic radius of the eight-coordinate atom in order to keep the aluminum garnet structure stable. That is, the Tb ion radius (R8: about 100 p
m) is larger than its proper value, and it is considered that the garnet structure becomes unstable. In the garnet structure, the segregation coefficient of an eight-coordinate rare earth element having a different ionic radius depends on the ionic radius, and the relationship between the ionic radius and the segregation coefficient of each element from the melt to the crystal is a quadratic function having an upward convexity. (See Materials Science and Engi
neering, R20 (1997) 281-338).

【0013】アルミニウムガーネット構造に対してTb
イオンと同等の偏析係数を持ち、イオン半径がTbイオ
ンより小さい希土類元素REを選定し、TbAl
12にREAl12を加えることで、アルミニウ
ムガーネット構造を安定に保つことが可能になると考え
られる。結果として、Lu、Yb、Tm、Erを選定
し、REAl12の組成で適量を加えることで、
融液組成と同等の組成を持つ単結晶が得られ、実効偏析
係数1が実現された。
Tb for aluminum garnet structure
A rare earth element RE having a segregation coefficient equivalent to that of an ion and having an ion radius smaller than that of a Tb ion is selected, and Tb 3 Al 5 O
By adding RE 3 Al 5 O 12 to 12, considered it is possible to keep the aluminum garnet structure stable. As a result, Lu, Yb, Tm, and Er are selected, and a proper amount is added by the composition of RE 3 Al 5 O 12 ,
A single crystal having a composition equivalent to the melt composition was obtained, and an effective segregation coefficient of 1 was realized.

【0014】なお、各元素について添加量が適量に対し
て少ない場合は、ガーネット構造とペロブスカイト構造
の複数の結晶相の存在が確認され、また添加量が多い場
合は、結晶組成および格子定数が一定で無く、結晶形状
制御が不安定になり、良質単結晶を得ることが困難であ
った。
When the added amount of each element is smaller than an appropriate amount, existence of a plurality of crystal phases having a garnet structure and a perovskite structure is confirmed. When the added amount is large, the crystal composition and the lattice constant are constant. However, the control of the crystal shape became unstable, and it was difficult to obtain a good quality single crystal.

【0015】即ち、本発明は、化学式を(Tb、RE
1−XAl12とし、前記化学式の中で、希
土類元素REをLu、Yb、Tm、Erのいずれか一つ
以上であり、xの範囲を0.8≦x≦0.96とするテル
ビウム・アルミニウム・ガーネット単結晶である。
That is, according to the present invention, the chemical formula is represented by (Tb X , RE
1-X ) 3 Al 5 O 12 , wherein in the above chemical formula, the rare earth element RE is at least one of Lu, Yb, Tm, and Er, and the range of x is 0.8 ≦ x ≦ 0.96. Terbium aluminum garnet single crystal.

【0016】また、本発明は、前記テルビウム・アルミ
ニウム・ガーネット単結晶において、希土類元素REを
Luとし、化学式の中で、xの範囲を0.85≦x≦0.
96とするテルビウム・アルミニウム・ガーネット単結
晶である。
The present invention also relates to the terbium aluminum garnet single crystal, wherein the rare earth element RE is Lu, and the range of x in the chemical formula is 0.85 ≦ x ≦ 0.8.
96 is a terbium aluminum garnet single crystal.

【0017】また、本発明は、前記テルビウム・アルミ
ニウム・ガーネット単結晶において、希土類元素REを
Ybとし、化学式の中で、xの範囲を0.85≦x≦0.
93とするテルビウム・アルミニウム・ガーネット単結
晶である。
The present invention also relates to the terbium aluminum garnet single crystal, wherein the rare earth element RE is Yb, and in the chemical formula, the range of x is 0.85 ≦ x ≦ 0.8.
93 is a terbium aluminum garnet single crystal.

【0018】また、本発明は、前記テルビウム・アルミ
ニウム・ガーネット単結晶において、希土類元素REを
Tmとし、化学式の中で、xの範囲を0.85≦x≦0.
91とするテルビウム・アルミニウム・ガーネット単結
晶である。
The present invention also relates to the terbium aluminum garnet single crystal, wherein the rare earth element RE is Tm, and the range of x in the chemical formula is 0.85 ≦ x ≦ 0.8.
91 is a terbium aluminum garnet single crystal.

【0019】また、本発明は、前記テルビウム・アルミ
ニウム・ガーネット単結晶において、希土類元素REを
Erとし、化学式の中で、xの範囲を0.8≦x≦0.9
とするテルビウム・アルミニウム・ガーネット単結晶で
ある。
The present invention also relates to the terbium aluminum garnet single crystal, wherein the rare earth element RE is Er, and in the chemical formula, the range of x is 0.8 ≦ x ≦ 0.9.
Terbium aluminum garnet single crystal.

【0020】また、本発明は、ルツボ下端にノズルを設
けルツボ内の融液をノズル先端から引き下げ結晶化させ
るテルビウム・アルミニウム・ガーネット単結晶の製造
方法である。
Further, the present invention is a method for producing a terbium-aluminum-garnet single crystal in which a nozzle is provided at a lower end of a crucible and a melt in the crucible is pulled down from the tip of the nozzle and crystallized.

【0021】また、本発明は、先に記載したいずれかに
記載のテルビウム・アルミニウム・ガーネット単結晶を
主成分とする単結晶を製造するテルビウム・アルミニウ
ム・ガーネット単結晶の製造方法である。
Further, the present invention is a method for producing a terbium-aluminum-garnet single crystal for producing a single crystal containing the above-mentioned terbium-aluminum-garnet single crystal as a main component.

【0022】[0022]

【実施例】本発明の実施例によるテルビウム・アルミニ
ウム・ガーネット単結晶およびその製造方法について、
以下に説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS A terbium aluminum garnet single crystal and a method for producing the same according to an embodiment of the present invention will be described.
This will be described below.

【0023】(実施例1)図1は、本発明の実施例によ
るテルビウム・アルミニウム・ガーネット単結晶の結晶
引き下げ法の説明図である。純度99.99%の酸化テ
ルビウム(化学式:Tb)原料と、純度99.99
9%の酸化アルミニウム(化学式:Al )と純度9
9.99%の酸化ルテチウム(化学式:Lu)原料
を用い、Lu 原料の添加量を0〜20%の範囲で
各々の原料調合物を調整した。
(Embodiment 1) FIG. 1 shows an embodiment of the present invention.
Terbium aluminum garnet single crystal
It is explanatory drawing of a reduction method. 99.99% pure oxide
Rubium (chemical formula: Tb4O7) Raw material and purity 99.99
9% aluminum oxide (chemical formula: Al2O 3) And purity 9
9.99% lutetium oxide (chemical formula: Lu2O3)material
Using Lu 2O3In the range of 0-20%
Each raw material formulation was prepared.

【0024】この調合物を湿式混合し乾燥したものを最
終原料とし、Irルツボに投入し、図1に示すような通
常の結晶引下げ炉を用いてファイバー状結晶を育成し
た。ルツボ形状は、直径約15mm、高さ約45mm
で、ルツボ底の形状は約45°傾斜しており、先端に5
00〜600μmのノズルが開いており、先端の平坦な
部分は約直径2mmである。
The resulting mixture was wet-mixed and dried to obtain a final raw material, which was then charged into an Ir crucible, and a fiber crystal was grown using an ordinary crystal pulling furnace as shown in FIG. Crucible shape is about 15mm in diameter and about 45mm in height
The shape of the crucible bottom is inclined about 45 °,
The nozzle of 00 to 600 μm is open, and the flat part at the tip is about 2 mm in diameter.

【0025】即ち、ノズル先端から流出する融液に種結
晶先端を着け、種結晶を0.5〜1.0mm/minの速
度で引き下げながらファイバー状の結晶を育成した。育
成はAr雰囲気で行い、ガス流量は0.002m/m
inとした。
That is, the tip of the seed crystal was attached to the melt flowing out from the tip of the nozzle, and the seed crystal was grown at a rate of 0.5 to 1.0 mm / min while growing a fiber crystal. The growth was performed in an Ar atmosphere, and the gas flow rate was 0.002 m 3 / m
in.

【0026】Lu添加量では、4〜15%の範囲
で良質の結晶を得ることができた。特に、7〜12%の
範囲では、結晶形状制御性および結晶性ともに良質で、
ルツボ内の融液全体を結晶化でき、全体が透明な結晶が
得られた。
With Lu 2 O 3 added, good quality crystals could be obtained in the range of 4 to 15%. In particular, in the range of 7 to 12%, both crystal shape controllability and crystallinity are good,
The entire melt in the crucible could be crystallized, and transparent crystals were obtained as a whole.

【0027】Lu添加量が4%未満の場合、結晶
外形の制御は安定するが、結晶は単一相でなく、不透明
となり、逆にLu添加量が15%を超える場合
は、結晶形状が一定で無く、直径変動が大きく、透明な
部分は観察されなかった。
When the added amount of Lu 2 O 3 is less than 4%, the control of the crystal shape is stable, but the crystal is not a single phase and becomes opaque, and conversely, when the added amount of Lu 2 O 3 exceeds 15%. The crystal shape was not constant, the diameter varied greatly, and no transparent portion was observed.

【0028】(実施例2)純度99.99%の酸化テル
ビウム(化学式:Tb)原料と、純度99.999
%の酸化アルミニウム(化学式:Al)と純度9
9.99%の酸化イットリビウム(化学式:Yb)
原料を用い、Yb原料の添加量を0〜25%の範
囲で各々の原料調合物を調整した。この調合物を湿式混
合し乾燥したものを最終原料とし、Irルツボに投入
し、実施例1と同様の手段および条件で結晶を育成し
た。
(Example 2) A terbium oxide (chemical formula: Tb 4 O 7 ) raw material having a purity of 99.99% and a purity of 99.999
% Aluminum oxide (chemical formula: Al 2 O 3 ) and purity 9
9.99% yttrium oxide (chemical formula: Yb 2 O 3 )
Using the raw materials, each raw material mixture was adjusted in the range of 0 to 25% of the Yb 2 O 3 raw material added. The resulting mixture was wet-mixed and dried to obtain a final raw material, which was then charged into an Ir crucible, and crystals were grown under the same means and under the same conditions as in Example 1.

【0029】Yb添加量では、7〜16%の範囲
で、ほぼ良質の結晶を得ることができた。特に、9〜1
4%の範囲では、結晶形状制御性および結晶性ともに良
質で、ルツボ内融液全体を結晶化でき、全体が透明な結
晶が得られた。
With the addition amount of Yb 2 O 3 , almost good quality crystals could be obtained in the range of 7 to 16%. In particular, 9-1
In the range of 4%, both the crystal shape controllability and the crystallinity were good, the entire melt in the crucible could be crystallized, and transparent crystals were obtained as a whole.

【0030】添加量と結晶育成状況の関係は、実施例1
のLuの場合と同様の傾向を示した。即ち、Yb
添加量が7%未満の場合、結晶外形の制御は安定
するが、結晶は単一相でなく、不透明となり、逆にYb
添加量が16%を超える場合は、結晶形状が一定
でなく、直径変動が大きく、透明な部分は観察されなか
った。
Example 1 shows the relationship between the amount of addition and the state of crystal growth.
The same tendency as in the case of Lu 2 O 3 was shown. That is, Yb
When the added amount of 2 O 3 is less than 7%, the control of the crystal outer shape is stable, but the crystal is not a single phase and becomes opaque, and conversely, Yb
When the added amount of 2 O 3 exceeds 16%, the crystal shape was not constant, the diameter varied greatly, and no transparent portion was observed.

【0031】(実施例3)直径純度99.99%の酸化
テルビウム(化学式:Tb)原料と、純度99.9
99%の酸化アルミニウム(化学式:Al)と純度
99.99%の酸化トリウム(化学式:Tm)原料
を用い、Tm原料の添加量を0〜25%の範囲で
各々の原料調合物を調整した。この調合物を湿式混合し
乾燥したものを最終原料とし、Irルツボに投入し、実
施例1と同様の手段および条件で結晶を育成した。
Example 3 Terbium oxide (Tb 4 O 7 ) raw material having a diameter purity of 99.99% and a purity of 99.9
Using 99% aluminum oxide (chemical formula: Al 2 O 3 ) and 99.99% pure thorium oxide (chemical formula: Tm 2 O 3 ) raw material, the addition amount of the Tm 2 O 3 raw material is in the range of 0 to 25%. Each raw material formulation was prepared. The resulting mixture was wet-mixed and dried to obtain a final raw material, which was then charged into an Ir crucible, and crystals were grown under the same means and under the same conditions as in Example 1.

【0032】Tm添加量では、9〜18%の範囲
で、ほぼ良質の結晶を得ることができた。特に、11〜
16%の範囲では、結晶形状制御性および結晶性ともに
良質で、ルツボ内融液全体を結晶化でき、全体が透明な
結晶が得られた。
With the added amount of Tm 2 O 3 , almost good quality crystals could be obtained in the range of 9 to 18%. In particular, 11-
In the range of 16%, both the crystal shape controllability and the crystallinity were good, the entire melt in the crucible could be crystallized, and crystals were entirely transparent.

【0033】Tm添加量と結晶育成状況の関係
は、実施例1のLuの場合と同様の傾向を示し
た。即ち、Tm添加量が9%未満の場合、結晶外
形の制御は安定するが、結晶は単一相でなく、不透明と
なり、逆にTm添加量が18%を超える場合は、
結晶形状が一定でなく、直径変動が大きく、透明な部分
は観察されなかった。
The relationship between the amount of Tm 2 O 3 added and the state of crystal growth showed the same tendency as in the case of Lu 2 O 3 in Example 1. That is, when the added amount of Tm 2 O 3 is less than 9%, the control of the crystal shape is stable, but the crystal is not a single phase and becomes opaque. Conversely, when the added amount of Tm 2 O 3 exceeds 18%, ,
The crystal shape was not constant, the diameter varied greatly, and no transparent portion was observed.

【0034】(実施例4)直径純度99.99%の酸化
テルビウム(化学式:Tb)原料と、純度99.9
99%の酸化アルミニウム(化学式:Al)と純度
99.99%の酸化エルビウム(化学式:Er)原
料を用い、Er原料の添加量を0〜25%の範囲
で各々の原料調合物を調整した。この調合物を湿式混合
し乾燥したものを最終原料とし、Irルツボに投入し、
実施例1と同様の手段および条件で結晶を育成した。
Example 4 Terbium oxide (chemical formula: Tb 4 O 7 ) raw material having a diameter purity of 99.99% and a purity of 99.9
Using 99% aluminum oxide (chemical formula: Al 2 O 3 ) and 99.99% pure erbium oxide (chemical formula: Er 2 O 3 ) raw material, the addition amount of the Er 2 O 3 raw material is in the range of 0 to 25%. Each raw material formulation was prepared. The resulting mixture was wet-mixed and dried to obtain a final raw material, which was then charged into an Ir crucible,
Crystals were grown by the same means and under the same conditions as in Example 1.

【0035】Er添加量では、10〜20%の範
囲で、ほぼ良質の結晶を得ることができた。特に、12
〜18%の範囲では、結晶形状制御性および結晶性とも
に良質で、ルツボ内融液全体を結晶化でき、全体が透明
な結晶が得られた。Er 添加量と結晶育成状況の
関係は、実施例1のLuの場合と同様の傾向を示
した。
Er2O3The amount of addition is in the range of 10 to 20%.
In the area, almost good quality crystals could be obtained. In particular, 12
In the range of 1818%, both crystal shape controllability and crystallinity
High quality, crystallizes the entire melt in the crucible and is entirely transparent
Crystal was obtained. Er2O 3Of the amount of addition and crystal growth
The relation is Lu of the first embodiment.2O3Shows the same tendency as
did.

【0036】即ち、Er添加量が10%未満の場
合、結晶外形の制御は安定するが、結晶は単一相でな
く、不透明となり、逆にEr添加量が20%を超
える場合は、結晶形状が一定でなく、直径変動が大きく
透明な部分は観察されなかった。
That is, when the added amount of Er 2 O 3 is less than 10%, the control of the crystal outer shape is stable, but the crystal is not a single phase and becomes opaque, and conversely, the added amount of Er 2 O 3 is 20%. If it exceeds, the crystal shape is not constant, the diameter variation is large, and no transparent part was observed.

【0037】以上、説明したように、本発明によれば、
通常の育成方法では作製困難であったテルビウム・アル
ミニウム・ガーネット構造を持つアルミニウムガーネッ
ト単結晶の作製が可能となった。更に、可視光波長域光
アイソレータの回転子として特性の優れるTAG系単結
晶が比較的容易に得られることから、可視光波長域用の
アイソレータが実用化ができることが示された等、多く
の重大な効果が認められた。
As described above, according to the present invention,
Aluminum garnet single crystals having a terbium-aluminum-garnet structure, which were difficult to produce by ordinary growing methods, can now be produced. Furthermore, since it is relatively easy to obtain a TAG-based single crystal having excellent characteristics as a rotator of a visible light wavelength range optical isolator, it has been shown that an isolator for the visible light wavelength range can be put into practical use, and many other important factors have been demonstrated. Effect was recognized.

【0038】[0038]

【発明の効果】以上、本発明によれば、一定形状の良質
結晶であり、かつルツボ内の融液の結晶化率が大きい状
態で成長したテルビウム・アルミニウム・ガーネット単
結晶およびその製造方法を提供することができる。
As described above, according to the present invention, there is provided a terbium-aluminum-garnet single crystal which is a high-quality crystal having a uniform shape and which is grown with a high crystallization ratio of a melt in a crucible, and a method for producing the same. can do.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例による結晶引き下げ法の説明
図。
FIG. 1 is an explanatory diagram of a crystal pulling down method according to an embodiment of the present invention.

【図2】Tb−Al状態図。FIG. 2 is a Tb 2 O 3 —Al 2 O 3 phase diagram.

【符号の説明】[Explanation of symbols]

1 石英管 2 保温筒 3 ルツボ(Ir) 4 ルツボ支持治具 5 誘導加熱用コイル 6 融液 7 育成結晶 8 矢印:結晶育成方向(引き下げ方向) DESCRIPTION OF SYMBOLS 1 Quartz tube 2 Insulation tube 3 Crucible (Ir) 4 Crucible support jig 5 Induction heating coil 6 Melt 7 Growing crystal 8 Arrow: Crystal growing direction (downward direction)

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 化学式を(Tb、RE1−X
12とし、前記化学式の中の希土類元素REが、
Lu,Yb,Tm,Erのいずれか一つ以上であり、x
の範囲を0.8≦x≦0.96とすることを特徴とするテ
ルビウム・アルミニウム・ガーネット単結晶。
[Claim 1] The chemical formula is represented by (Tb X , RE 1-X ) 3 A
l 5 O 12 and the rare earth element RE in the above chemical formula is
At least one of Lu, Yb, Tm and Er, and x
Terbium aluminum garnet single crystal, wherein the range of 0.8 ≦ x ≦ 0.96 is satisfied.
【請求項2】 前記テルビウム・アルミニウム・ガーネ
ット単結晶において、希土類元素REをLuとし、化学
式の中で、xの範囲を0.85≦x≦0.96とすること
を特徴とする請求項1記載のテルビウム・アルミニウム
・ガーネット単結晶。
2. The terbium aluminum garnet single crystal according to claim 1, wherein the rare earth element RE is Lu, and in the chemical formula, the range of x is 0.85 ≦ x ≦ 0.96. The described terbium aluminum garnet single crystal.
【請求項3】 前記テルビウム・アルミニウム・ガーネ
ット単結晶において、希土類元素REをYbとし、化学
式の中で、xの範囲を0.85≦x≦0.93とすること
を特徴とする請求項1記載のテルビウム・アルミニウム
・ガーネット単結晶。
3. The terbium aluminum garnet single crystal according to claim 1, wherein the rare earth element RE is Yb, and in the chemical formula, the range of x is 0.85 ≦ x ≦ 0.93. The described terbium aluminum garnet single crystal.
【請求項4】 前記テルビウム・アルミニウム・ガーネ
ット単結晶において、希土類元素REをTmとし、化学
式の中で、xの範囲を0.85≦x≦0.91とすること
を特徴とする請求項1記載のテルビウム・アルミニウム
・ガーネット単結晶。
4. The terbium aluminum garnet single crystal according to claim 1, wherein the rare earth element RE is Tm, and in the chemical formula, the range of x is 0.85 ≦ x ≦ 0.91. The described terbium aluminum garnet single crystal.
【請求項5】 前記テルビウム・アルミニウム・ガーネ
ット単結晶において、希土類元素REをErとし、化学
式の中で、xの範囲を0.8≦x≦0.9とすることを特
徴とする請求項1記載のテルビウム・アルミニウム・ガ
ーネット単結晶。
5. The terbium aluminum garnet single crystal according to claim 1, wherein the rare earth element RE is Er, and in the chemical formula, the range of x is 0.8 ≦ x ≦ 0.9. The described terbium aluminum garnet single crystal.
【請求項6】 ルツボ下端にノズルを設けルツボ内の融
液をノズル先端から引き下げ結晶化させることを特徴と
するテルビウム・アルミニウム・ガーネット単結晶の製
造方法。
6. A method for producing a terbium-aluminum-garnet single crystal, wherein a nozzle is provided at a lower end of a crucible and a melt in the crucible is pulled down from a nozzle tip and crystallized.
【請求項7】 請求項1ないし5のいずれかに記載のテ
ルビウム・アルミニウム・ガーネット単結晶を主成分と
する単結晶を製造することを特徴とする請求項6に記載
のテルビウム・アルミニウム・ガーネット単結晶の製造
方法。
7. A terbium-aluminum-garnet single crystal according to claim 6, wherein a single crystal mainly comprising the terbium-aluminum-garnet single crystal according to any one of claims 1 to 5 is produced. Method for producing crystals.
JP2000039607A 2000-02-17 2000-02-17 Terbium aluminum garnet single crystal and its producing method Pending JP2001226196A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000039607A JP2001226196A (en) 2000-02-17 2000-02-17 Terbium aluminum garnet single crystal and its producing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000039607A JP2001226196A (en) 2000-02-17 2000-02-17 Terbium aluminum garnet single crystal and its producing method

Publications (1)

Publication Number Publication Date
JP2001226196A true JP2001226196A (en) 2001-08-21

Family

ID=18563149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000039607A Pending JP2001226196A (en) 2000-02-17 2000-02-17 Terbium aluminum garnet single crystal and its producing method

Country Status (1)

Country Link
JP (1) JP2001226196A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025354A1 (en) * 2002-09-09 2004-03-25 Murata Manufacturing Co., Ltd. Optical isolator, and laser oscillator using this
WO2006013673A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Paramagnetic garnet single crystal for magnetooptic device and magnetooptic device
JP2006131483A (en) * 2004-11-09 2006-05-25 Tohoku Univ Unidirectionally solidifying and growing apparatus and method for manufacturing single crystal
US7071687B2 (en) 2002-09-20 2006-07-04 Murata Manufacturing Co., Ltd. Photomagnetic field sensor
WO2010143593A1 (en) 2009-06-09 2010-12-16 信越化学工業株式会社 Oxide and magneto-optical device
WO2011049102A1 (en) * 2009-10-21 2011-04-28 株式会社フジクラ Single crystal, process for producing same, optical isolator, and optical processor using same
WO2011132668A1 (en) * 2010-04-20 2011-10-27 株式会社フジクラ Garnet-type single crystal, optical isolator, and optical processor
WO2012046755A1 (en) 2010-10-06 2012-04-12 信越化学工業株式会社 Magneto-optical material, faraday rotator, and optical isolator
EP2500763A1 (en) 2011-03-16 2012-09-19 Shin-Etsu Chemical Co., Ltd. Faraday rotator
CN101649486B (en) * 2008-08-11 2013-03-20 元亮科技有限公司 Device and method for growing terbium gallium garnet (TGG) crystal by pulling method
JP2019184782A (en) * 2018-04-09 2019-10-24 信越化学工業株式会社 Faraday rotator, optical isolator, and method for producing faraday rotator
RU2811419C2 (en) * 2018-12-18 2024-01-11 Айпиджи Фотоникс Корпорэйшн Nonlinear optical element with quasicontinuous circuit and method of its manufacture

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004025354A1 (en) * 2002-09-09 2004-03-25 Murata Manufacturing Co., Ltd. Optical isolator, and laser oscillator using this
US7071687B2 (en) 2002-09-20 2006-07-04 Murata Manufacturing Co., Ltd. Photomagnetic field sensor
WO2006013673A1 (en) * 2004-08-03 2006-02-09 Murata Manufacturing Co., Ltd. Paramagnetic garnet single crystal for magnetooptic device and magnetooptic device
JP2006131483A (en) * 2004-11-09 2006-05-25 Tohoku Univ Unidirectionally solidifying and growing apparatus and method for manufacturing single crystal
CN101649486B (en) * 2008-08-11 2013-03-20 元亮科技有限公司 Device and method for growing terbium gallium garnet (TGG) crystal by pulling method
WO2010143593A1 (en) 2009-06-09 2010-12-16 信越化学工業株式会社 Oxide and magneto-optical device
JP5681113B2 (en) * 2009-10-21 2015-03-04 株式会社フジクラ Single crystal, manufacturing method thereof, optical isolator, and optical processing device using the same
WO2011049102A1 (en) * 2009-10-21 2011-04-28 株式会社フジクラ Single crystal, process for producing same, optical isolator, and optical processor using same
CN102575382A (en) * 2009-10-21 2012-07-11 株式会社藤仓 Single crystal, process for producing same, optical isolator, and optical processor using same
EP2492379A1 (en) * 2009-10-21 2012-08-29 Fujikura Co., Ltd. Single crystal, process for producing same, optical isolator, and optical processor using same
CN102575382B (en) * 2009-10-21 2015-07-01 株式会社藤仓 Single crystal, process for producing same, optical isolator, and optical processor using same
US9051662B2 (en) 2009-10-21 2015-06-09 Fujikura Ltd. Single crystal, production process of same, optical isolator, and optical processor using same
EP2492379A4 (en) * 2009-10-21 2013-08-28 Fujikura Ltd Single crystal, process for producing same, optical isolator, and optical processor using same
JP2014097926A (en) * 2009-10-21 2014-05-29 Fujikura Ltd Single crystal, method of producing the single crystal, optical isolator and optical processing apparatus using the optical isolator
US9030739B2 (en) 2010-04-20 2015-05-12 Fujikura Ltd. Garnet single crystal, optical isolator and optical processor
JP5611329B2 (en) * 2010-04-20 2014-10-22 株式会社フジクラ Garnet-type single crystal, optical isolator and optical processing device
WO2011132668A1 (en) * 2010-04-20 2011-10-27 株式会社フジクラ Garnet-type single crystal, optical isolator, and optical processor
WO2012046755A1 (en) 2010-10-06 2012-04-12 信越化学工業株式会社 Magneto-optical material, faraday rotator, and optical isolator
EP2500763A1 (en) 2011-03-16 2012-09-19 Shin-Etsu Chemical Co., Ltd. Faraday rotator
JP2019184782A (en) * 2018-04-09 2019-10-24 信越化学工業株式会社 Faraday rotator, optical isolator, and method for producing faraday rotator
JP7063694B2 (en) 2018-04-09 2022-05-09 信越化学工業株式会社 Faraday rotator manufacturing method
RU2811419C2 (en) * 2018-12-18 2024-01-11 Айпиджи Фотоникс Корпорэйшн Nonlinear optical element with quasicontinuous circuit and method of its manufacture

Similar Documents

Publication Publication Date Title
KR101070412B1 (en) Method of manufacturing silicon carbide single crystal
JP5304793B2 (en) Method for producing silicon carbide single crystal
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JP2004002173A (en) Silicon carbide single crystal and its manufacturing method
US20050183657A1 (en) Silicon carbide single crystal and a method for its production
KR101152857B1 (en) Method for growing silicon carbide single crystal
JP2001226196A (en) Terbium aluminum garnet single crystal and its producing method
JP6547360B2 (en) Method of growing CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal and method of manufacturing SGGG single crystal substrate
SU1609462A3 (en) Laser substance
EP1498518B1 (en) Method for the production of silicon carbide single crystal
Savytskii et al. Growth and properties of YAlO3: Nd single crystals
US4046954A (en) Monocrystalline silicates
Klemenz High-quality langasite films grown by liquid phase epitaxy
JPH11268998A (en) Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same
US5900054A (en) Method of manufacturing oxide single crystal
JP2733899B2 (en) Method for growing rare earth gallium perovskite single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
CA1047897A (en) Monocrystalline silicates and method of growth
US20230002930A1 (en) Growth method of high-temperature phase lanthanum borosilicate crystal and use
JP2005089223A (en) Single crystal and its manufacturing method
JP2825060B2 (en) Beta-barium borate single crystal processing surface modification method
JPH101397A (en) Garnet crystal for substrate of magneto-optical element and its production
JP2741747B2 (en) Oxide single crystal and method for producing the same
CN117166057A (en) Method for improving growth rate of silicon carbide single crystal
JP2008201618A (en) Method for production of rare earth vanadate single crystal