JPS6046078B2 - Single crystal growth method of solid solution composition of inorganic composite oxide - Google Patents

Single crystal growth method of solid solution composition of inorganic composite oxide

Info

Publication number
JPS6046078B2
JPS6046078B2 JP21362482A JP21362482A JPS6046078B2 JP S6046078 B2 JPS6046078 B2 JP S6046078B2 JP 21362482 A JP21362482 A JP 21362482A JP 21362482 A JP21362482 A JP 21362482A JP S6046078 B2 JPS6046078 B2 JP S6046078B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
temperature
composition
sintered body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP21362482A
Other languages
Japanese (ja)
Other versions
JPS59107996A (en
Inventor
正至 月岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Original Assignee
KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO filed Critical KAGAKU GIJUTSUCHO MUKIZAISHITSU KENKYUSHOCHO
Priority to JP21362482A priority Critical patent/JPS6046078B2/en
Publication of JPS59107996A publication Critical patent/JPS59107996A/en
Publication of JPS6046078B2 publication Critical patent/JPS6046078B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/002Crucibles or containers for supporting the melt

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 本発明は無機複合酸化物の固溶体組成物の単結晶育成法
に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for growing a single crystal of a solid solution composition of an inorganic composite oxide.

無機複合酸化物の固溶体組成物の単結晶は圧電素子、電
気光学結晶として注目されている。従来の無機複合酸化
物の単結晶の育成法としては、(1)無機複合酸化物の
融液に種結晶をつけて引き上げる方法。
Single crystals of solid solution compositions of inorganic composite oxides are attracting attention as piezoelectric elements and electro-optic crystals. Conventional methods for growing a single crystal of an inorganic composite oxide include (1) a method of attaching a seed crystal to a melt of an inorganic composite oxide and pulling it up;

但し、引き上げられた単結晶の組成と残された残留融液
の組成とが異る場合(インコングルエントメルトから単
結晶を引き上ける場合)所謂トツプシーデイング法。
However, if the composition of the pulled single crystal differs from the composition of the remaining residual melt (when pulling a single crystal from an incongruent melt), the so-called top seeding method is used.

(2)融液中に種結晶を入れて融液を冷却して種結晶を
大きくする方法、所謂カイロポーラス法。
(2) A method of enlarging the seed crystal by placing a seed crystal in the melt and cooling the melt, the so-called chiroporous method.

(3)下部がろ4伏の壁面を持つた筒中に融液を生成し
、これを温度勾配をつけた炉中に下降させる方法、所謂
ブリツヂマン法。(4)あるいは(3)と同形のルツボ
を使用して筒の外側を頂部と底部の温度差をつけたまま
全体の温度を下ける方法、所謂炉温降下法。
(3) A method in which melt is generated in a cylinder with a four-walled wall at the bottom and is lowered into a furnace with a temperature gradient, the so-called Bridzman method. (4) Or a method using a crucible of the same shape as (3) to lower the overall temperature while maintaining a temperature difference between the top and bottom of the outside of the cylinder, the so-called furnace temperature reduction method.

(5)2本焼結体の端部を接触させ、一方の焼結体を目
的組成とし、他方焼結体の端部に種結晶を付し、接触部
に融体を作り(この部分を加熱)、結晶を育成する方法
、所謂フローティングゾーン法。
(5) Bring the ends of two sintered bodies into contact, set one sintered body to the desired composition, attach a seed crystal to the end of the other sintered body, and create a molten body in the contact area (this part heating), a method of growing crystals, the so-called floating zone method.

I等の方法が知られている。Methods such as I are known.

前記(1)の方法は結晶内にセルクローズが生じ、大型
結晶の良質な単結晶が得難い。
In the method (1) above, cell closure occurs within the crystal, making it difficult to obtain a large, high-quality single crystal.

前記(2)の方法は可成り大きくて良質な単結晶は得ら
れるが、炉温を徐々に降下される必要があるワと共に特
に育成に長時間を要する欠点がある。
Although method (2) above can produce a fairly large and high-quality single crystal, it has the disadvantage that the furnace temperature must be gradually lowered and that it requires a particularly long time to grow.

前記(3)、(4)の方法はろ4伏の傾斜壁面に成長方
向の異なる種子が沢山でき、一つの種子を大きな単結晶
に成長させることが困難である。前記(5)の方法は急
冷を伴うため良質な単結晶は得難い。
In methods (3) and (4) above, many seeds with different growth directions are formed on the sloped wall of the filter, making it difficult to grow one seed into a large single crystal. Since the method (5) involves rapid cooling, it is difficult to obtain a high quality single crystal.

本発明はこれら従来法のブリツヂマン法及び炉温降下法
における欠点を改善し、大きな単結晶を容易に育成する
方法を提供するにある。
The present invention aims to improve the shortcomings of these conventional methods, the Bridgeman method and the furnace temperature reduction method, and to provide a method for easily growing large single crystals.

本発明者はブリツヂマン法及び炉温降下法による単結晶
の液内成長に際する残留融液の性質について研究した結
果、例えば第1図のKTaO3−KNbO3系の無機複
合酸化物相図に示すように、Aの組成の融液からは、A
の組成よりもTaが多くNbの少ないBの組成の結晶が
できる。
As a result of research on the properties of the residual melt during the sub-liquid growth of single crystals by the Bridgmann method and the furnace temperature reduction method, the present inventors found that, for example, as shown in the phase diagram of KTaO3-KNbO3-based inorganic composite oxide in Figure 1. From the melt having the composition A, A
A crystal with a composition of B with more Ta and less Nb than the composition of is formed.

その結果、残留融液はNbイオンが多くなる。しかし結
晶育成の結果はき出されたNbイオンは残留融液中に均
一に拡散されるわけではなく、軽いNbイオンは下に沈
まずに融液の上部にのぼつていくので、結晶の近傍に低
融点の融液がたまることはなく、結晶にセルグロースが
生ずることがない。しかし、結晶の育成が進むと融液の
組成がTaイオンの割合が少ないものとなるので得られ
る単結晶の組成が変化してくる。従つて、ルツボ下部に
目的単結晶組成の焼結体を、その上に固溶体組成物中の
比重の大きい無機酸化物を目的単結晶組成より多く含有
させた組成の焼結体を重ねて設けることにより融液の組
成を一定に保持し得られることが分つた。また、前記し
たように従来のブリツヂマン法及び炉温降下法は、使用
するルツボの下部がろ斗状であるため、傾斜面に結晶が
育成され、沢山の成長方向の異なるものができ、一つの
種子を大きな.単結晶に成長させることができ難い。
As a result, the residual melt contains more Nb ions. However, the Nb ions expelled as a result of crystal growth are not uniformly diffused into the remaining melt, and the lighter Nb ions rise to the top of the melt without sinking to the bottom. There is no accumulation of melt at the melting point, and cell growth does not occur in the crystal. However, as the growth of the crystal progresses, the composition of the melt becomes one in which the proportion of Ta ions becomes smaller, and the composition of the obtained single crystal changes. Therefore, a sintered body having the desired single crystal composition should be placed in the lower part of the crucible, and a sintered body having a composition containing a higher specific gravity inorganic oxide in the solid solution composition than the desired single crystal composition should be stacked thereon. It was found that the composition of the melt could be kept constant by using the method. In addition, as mentioned above, in the conventional Bridgman method and furnace temperature reduction method, the lower part of the crucible used is funnel-shaped, so crystals are grown on the inclined surface, resulting in crystals with many different growth directions. Seeds are large. It is difficult to grow it into a single crystal.

本発明においてはそのルツボ形状を平底筒状になすこと
によつて、長方形状の結晶の育成の場合にはたとえ複数
の核が生じても、生成方向が同じとなるので最終的には
得られる結晶は一つの結晶となり大きな.結晶が得られ
る。またルツボの筒径が大きくなると(〜207T1m
φ以上),ルツボの底面上に面方向に成長方向の異なる
核ができることがある。この点を改善するために、ルツ
ボの底下面の中心に窒素,空気等の気体を吹きつけると
底面における温・度の中心を低く、周囲が高い温度勾配
をもたらし、これによつて中心に最初にできた核だけを
成長させ得られることが分つた。この方法は長方形状の
単結晶だけでなく、すべての形状の単結晶育成に有効で
ある。これらの知見に基いて本発明を完成した。本発明
の要旨は、無機複合酸化物の固溶体組成物の焼結体をル
ツボ内に収容し、加熱融解して単結晶を育成する方法に
おいて、ルツボとして平底ルツボを使用し、ルツボ下部
に目的単結晶組成の焼結体を、その上に固溶体組成物成
分中の比重の大きい無機酸化物の目的単結晶組成より多
く含有させた粗成の焼結体を重ねて設け、且つ該ルツボ
)内の焼結体の下部温度を低く、上部温度を高くした温
度勾配をつけて加熱融解させて結晶を育成することを特
徴とする無機複合酸化物の固溶体組成物の単結晶育成法
にある。
In the present invention, by forming the crucible into a flat-bottomed cylindrical shape, even if multiple nuclei are produced in the case of growing rectangular crystals, the direction of production is the same, so that the final product can be obtained. The crystal becomes one large crystal. Crystals are obtained. Also, when the diameter of the crucible becomes larger (~207T1m
φ or more), nuclei with different growth directions may be formed on the bottom surface of the crucible. In order to improve this point, blowing a gas such as nitrogen or air into the center of the bottom of the crucible lowers the center of the temperature/degrees at the bottom and creates a high temperature gradient in the periphery. It turns out that it is possible to grow only the nucleus formed in the . This method is effective not only for growing rectangular single crystals but also for growing single crystals of all shapes. The present invention was completed based on these findings. The gist of the present invention is to provide a method for growing a single crystal by storing a sintered body of a solid solution composition of an inorganic composite oxide in a crucible and heating and melting the crucible. A sintered body having a crystalline composition is superimposed thereon, and a crude sintered body containing an inorganic oxide having a high specific gravity in a solid solution composition component in an amount higher than the target single crystal composition is superimposed thereon, and A method for growing a single crystal of a solid solution composition of an inorganic composite oxide, which is characterized by growing a crystal by heating and melting a sintered body with a temperature gradient in which the lower part temperature is lower and the upper part temperature is higher.

本発明における無機複合酸化物としては、例えばKTa
l−XNbxO3,LiTal−XN■03等が挙げら
れ、これらの固溶体の単結晶を育成し得られる。
Examples of the inorganic composite oxide in the present invention include KTa
Examples include l-XNbxO3 and LiTal-XNbx03, which can be obtained by growing single crystals of solid solutions of these.

しかし、前記の無機複合酸化物に限定されるものてはな
い。また、ルツボ内に入れる焼結体の組成の段差は・少
くとも2段は必要であるが、それ以上にすることは任意
である。
However, it is not limited to the above-mentioned inorganic composite oxide. Furthermore, the composition of the sintered body placed in the crucible needs to have at least two steps, but it is optional to make it more than that.

なお、固溶体組成物の原料を焼結体として使用するのは
、ルツボ内に収容し易く、かつ収納量を多くすると共に
、その組成の保持を容易にするためである。
Note that the reason why the raw material of the solid solution composition is used as a sintered body is to make it easy to store in the crucible, increase the amount of storage, and to easily maintain the composition.

本発明の方法において、ルツボの焼結体の下部温度を低
く、上部温度を高くした温度勾配をつける方法としては
、ルツボ外周をそのような温度勾配になるように加熱し
てもよく、また、そのような温度勾配に保つた炉中にル
ツボを下降させることによつて行うことができる。
In the method of the present invention, as a method for creating a temperature gradient in which the lower temperature of the sintered body of the crucible is lower and the upper temperature is higher, the outer periphery of the crucible may be heated to create such a temperature gradient; This can be done by lowering the crucible into a furnace maintained at such a temperature gradient.

本発明の方法によると、ルツボ中に入れる焼結体の組成
の段差と、ルツボ内の焼結体を加熱融解する温度の上部
温度と下部温度との温度勾配とが相俟つて、融液の組成
が結晶育成が進んでも常に一つの組成に保存し得られる
ため、得られる単結晶の組成を一定に保ち得られる。
According to the method of the present invention, the difference in the composition of the sintered body placed in the crucible and the temperature gradient between the upper and lower temperatures at which the sintered body in the crucible is heated and melted combine to cause the melt to melt. Since the composition can be maintained at one composition even as crystal growth progresses, the composition of the resulting single crystal can be kept constant.

また、本発明の方法によると、ルツボの底が平底である
ため、長方形状の結晶の育成の場合はたとえ複数の核が
生じても、生成方向が同じなので最終的に一つの単結晶
になる。また、大きなルツボ(〜20r1rmφ以上)
を使用する場合、ルツボの底の下面の中心に気流を吹き
つけることによつて核を一つにしぼり、それを一つの大
きな単結晶に育成出来る優れた効果を有する。
In addition, according to the method of the present invention, since the bottom of the crucible is flat, even if multiple nuclei are generated when growing rectangular crystals, the direction of growth is the same, so they will ultimately become one single crystal. . Also, large crucibles (~20r1rmφ or more)
When using a crucible, it has the excellent effect of squeezing the nucleus into one and growing it into one large single crystal by blowing an air stream to the center of the lower surface of the bottom of the crucible.

実施例1 KTa0.5NYX).503単結晶育成この単結晶育
成には炉温降下法を適用した。
Example 1 KTa0.5NYX). 503 Single Crystal Growth A furnace temperature reduction method was applied to this single crystal growth.

15φ×1407r0nの筒状平底の白金ルツボを使用
した。
A cylindrical flat-bottomed platinum crucible measuring 15φ×1407rOn was used.

原料としてK2CO3,Ta2O5,N■05を使用し
、CA)K2CO3(60%)、Ta2O5(8%)、
Nb2O5(32%)(B)K2CO3(60%)、T
a2O5(9.2%)、Nb2O5(30.8%)(C
)K2CO3(60%)、Ta2O5(10%)、Nb
2O5(30%)(但し%はモル%) の3種類の組成に調合した。
Using K2CO3, Ta2O5, N■05 as raw materials, CA) K2CO3 (60%), Ta2O5 (8%),
Nb2O5 (32%) (B) K2CO3 (60%), T
a2O5 (9.2%), Nb2O5 (30.8%) (C
) K2CO3 (60%), Ta2O5 (10%), Nb
Three types of compositions were prepared: 2O5 (30%) (% is mol%).

これらの原料粉末をそれぞれ900′Cて仮焼し、CA
),(B),(C)を等量ずつこの順序で三段に重ねて
、ルツボーぱいになるように成型して1050でCで焼
結した。
These raw material powders were calcined at 900'C and CA
), (B), and (C) were stacked in equal amounts in three layers in this order, molded to form a crucible, and sintered with C at 1050°C.

得られた焼結体を囚が底部になるようにルツボに入れ、
ルツボの温度を上部1350℃,下部温度1300′C
として24時間保つた後、1゜C/Hrで下部温度が1
100℃になるまて降温した。
Place the obtained sintered body in a crucible with the sintered body at the bottom.
The temperature of the crucible was set to 1350°C at the top and 1300'C at the bottom.
After keeping it for 24 hours as
The temperature was lowered to 100°C.

1100℃から自然放冷して室温まて下けた。The mixture was allowed to cool naturally from 1100°C to lower to room temperature.

得られた結晶は14φ×100(Tmln)の無色透明
なKTaO3(50%)−KNlO3(50%)の組成
からなる単結晶であつた。実施例2径の大きいKTaO
.5NbO.5O3単結晶育成この場合も炉温降下法を
適用した。
The obtained crystal was a colorless and transparent single crystal having a composition of KTaO3 (50%)-KNlO3 (50%) and having a size of 14φ×100 (Tmln). Example 2 KTaO with large diameter
.. 5NbO. Growth of 5O3 single crystal The furnace temperature reduction method was also applied in this case.

30φ×150w$tの筒状平底の白金ルツボを使用し
た。
A cylindrical flat-bottomed platinum crucible measuring 30φ×150w$t was used.

原料としてK2CO3,Ta2O5,N■03を使用し
、CA)K2CO3(60%)、Ta2O5(8%)、
Nb2O5(32%)(B)K2CO3(60%)、T
a2O5(9.2%)、Nb2O3(30.8%)(C
)K2CO3(60%)、Ta2O5(10%)、Nb
2O3(30%)の3種類の組成に調合した。
Using K2CO3, Ta2O5, N■03 as raw materials, CA) K2CO3 (60%), Ta2O5 (8%),
Nb2O5 (32%) (B) K2CO3 (60%), T
a2O5 (9.2%), Nb2O3 (30.8%) (C
) K2CO3 (60%), Ta2O5 (10%), Nb
Three compositions of 2O3 (30%) were prepared.

これらの原料粉末をそれぞれ約900℃で仮焼し、CA
),(B),(C)をこの順序で等量ずつ三段に重ねて
ルツボーぱいになるように成型して1050ずCで焼結
した。
Each of these raw material powders is calcined at approximately 900°C and CA
), (B), and (C) were stacked in three layers in equal amounts in this order, molded to fill a crucible, and sintered at 1050°C.

得られた焼結体を(4)が底部になるように入れ、ルツ
ボの温度を底下面の中心に吹きつける気流を吹き付けな
がら、ルツボの上部温度を1350゜C,下部温度を1
300℃て24時間保つた。その後、1CC/Hrて下
部温度が1100℃になるまで降温し、1100゜Cか
ら自然放冷して室温まで下げた。得られた結晶は27φ
×90w!nの無色透明なKTaO.5NbO.5O3
の単結晶であつた。
Place the obtained sintered body so that (4) is at the bottom, and while blowing an air stream to the center of the bottom surface of the crucible, increase the temperature of the upper part of the crucible to 1350°C and the temperature of the lower part to 1350°C.
It was kept at 300°C for 24 hours. Thereafter, the temperature was lowered at a rate of 1 CC/Hr until the lower temperature reached 1100°C, and from 1100°C, the temperature was allowed to cool naturally to room temperature. The obtained crystal has a diameter of 27φ
×90w! colorless and transparent KTaO. 5NbO. 5O3
It was a single crystal.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はKTaO3−KNbO3系の相図を示す。 The figure shows the phase diagram of the KTaO3-KNbO3 system.

Claims (1)

【特許請求の範囲】 1 無機複合酸化物の固溶体組成物の焼結体をルツボ内
に収容し、加熱融解して単結晶を育成する方法において
、ルツボとして平底筒状ルツボを使用し、ルツボ下部に
目的単結晶組成の焼結体を、その上に固溶体組成物成分
中の比重の大きい無機酸化物を目的単結晶組成より多く
含有させた組成の焼結体を重ねて設け、且つ該ルツボ内
の焼結体の下部温度を低く、上部温度を高くした温度勾
配をつけて加熱融解させて結晶を育成することを特徴と
する無機複合酸化物の固溶体組成物の単結晶育成法。 2 ルツボの外周をルツボの下部温度を低く、上部温度
を高くした温度勾配をつけて加熱する特許請求の範囲第
1項記載の単結晶育成法。 3 下部温度を低く、上部温度を高くした温度勾配をつ
けた炉中にルツボを下降させる特許請求の範囲第1項記
載の単結晶育成法。 4 ルツボの底外面の中心に気流を吹きつける特許請求
の範囲第1項記載の単結晶育成法。
[Claims] 1. A method of growing a single crystal by storing a sintered body of a solid solution composition of an inorganic composite oxide in a crucible and heating and melting the crucible, in which a flat-bottomed cylindrical crucible is used as the crucible, and a lower part of the crucible is A sintered body having a target single-crystal composition is superimposed thereon, and a sintered body having a composition containing a higher specific gravity inorganic oxide in the solid solution composition component than the target single-crystal composition is stacked on top of the sintered body, and 1. A method for growing a single crystal of a solid solution composition of an inorganic composite oxide, which comprises growing a crystal by heating and melting a sintered body with a temperature gradient in which the bottom temperature is low and the top temperature is high. 2. The method for growing a single crystal according to claim 1, wherein the outer periphery of the crucible is heated with a temperature gradient in which the temperature at the bottom of the crucible is low and the temperature at the top is high. 3. The method for growing a single crystal according to claim 1, wherein the crucible is lowered into a furnace with a temperature gradient in which the lower temperature is lower and the upper temperature is higher. 4. The single crystal growth method according to claim 1, wherein an airflow is blown onto the center of the bottom outer surface of the crucible.
JP21362482A 1982-12-06 1982-12-06 Single crystal growth method of solid solution composition of inorganic composite oxide Expired JPS6046078B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21362482A JPS6046078B2 (en) 1982-12-06 1982-12-06 Single crystal growth method of solid solution composition of inorganic composite oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21362482A JPS6046078B2 (en) 1982-12-06 1982-12-06 Single crystal growth method of solid solution composition of inorganic composite oxide

Publications (2)

Publication Number Publication Date
JPS59107996A JPS59107996A (en) 1984-06-22
JPS6046078B2 true JPS6046078B2 (en) 1985-10-14

Family

ID=16642241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21362482A Expired JPS6046078B2 (en) 1982-12-06 1982-12-06 Single crystal growth method of solid solution composition of inorganic composite oxide

Country Status (1)

Country Link
JP (1) JPS6046078B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6158897A (en) * 1984-08-30 1986-03-26 Natl Inst For Res In Inorg Mater Radiation resistant material
WO2006054610A1 (en) * 2004-11-16 2006-05-26 Nippon Telegraph And Telephone Corporation Apparatus for crystal production
JP4579122B2 (en) * 2005-10-06 2010-11-10 日本電信電話株式会社 Method for producing oxide single crystal and apparatus for producing the same

Also Published As

Publication number Publication date
JPS59107996A (en) 1984-06-22

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
JP2002293693A (en) Terbium-aluminum-garnet single crystal and method of manufacturing for the same
JP6053018B2 (en) Crystal growth method
CN100570018C (en) Process for producing crystal and device
CN101307496A (en) Gadolinium illinium scandium gallium garnet crystal GYSGG and its smelt method crystal growth method
CN103993348B (en) The growing method of rare earth orthoferrite monocrystalline and application
JPS6046078B2 (en) Single crystal growth method of solid solution composition of inorganic composite oxide
Kletowski et al. Single crystal growth of (rare earth) Me3 compounds where Me≡ Sn, In and Pb
US4613495A (en) Growth of single crystal Cadmium-Indium-Telluride
JPS59107997A (en) Single crystal growth method of inorganic compound oxide
JPH06279174A (en) Production of oxide single crystal
JP7349100B2 (en) Seed crystal for FeGa single crystal growth and method for producing FeGa single crystal
JPS61106496A (en) Production of incongruent melting compound single crystal
JPH0475880B2 (en)
JPH01167295A (en) Crucible for growing single crystal of compound semiconductor
JPH02271989A (en) Production of single crystal of bismuth germanate
JPS6158898A (en) Manufacture of bismuth germanate crystal
JP2012036015A (en) Crystal growth method
JPH04187585A (en) Device of growing crystal
KR950007601B1 (en) Method for preparing crystallized linbo3 powder
JPH05238893A (en) Substrate for oxide superconducting thin film and its production
JP2022020187A (en) METHOD FOR PRODUCING FeGa ALLOY SINGLE CRYSTAL
JPH0489398A (en) Production of lithium niobate single crystal
JP2002167299A (en) Method of growing single crystal
JPH04295096A (en) Method for growing yba2cu3ox single crystal