JPH0475880B2 - - Google Patents

Info

Publication number
JPH0475880B2
JPH0475880B2 JP61213468A JP21346886A JPH0475880B2 JP H0475880 B2 JPH0475880 B2 JP H0475880B2 JP 61213468 A JP61213468 A JP 61213468A JP 21346886 A JP21346886 A JP 21346886A JP H0475880 B2 JPH0475880 B2 JP H0475880B2
Authority
JP
Japan
Prior art keywords
crucible
double
melt
divided
double crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61213468A
Other languages
Japanese (ja)
Other versions
JPS6369791A (en
Inventor
Hideo Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYUSHU DENSHI KINZOKU KK
OOSAKA CHITANIUMU SEIZO KK
Original Assignee
KYUSHU DENSHI KINZOKU KK
OOSAKA CHITANIUMU SEIZO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYUSHU DENSHI KINZOKU KK, OOSAKA CHITANIUMU SEIZO KK filed Critical KYUSHU DENSHI KINZOKU KK
Priority to JP21346886A priority Critical patent/JPS6369791A/en
Publication of JPS6369791A publication Critical patent/JPS6369791A/en
Publication of JPH0475880B2 publication Critical patent/JPH0475880B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 本発明は、溶融液を収容するための内側るつぼ
と、該内側るつぼを保持するための外側るつぼか
らなる二重るつぼの改良に関する。 従来の技術 二重るつぼは半導体等の原料溶融液を収容する
容器として広く利用されている。例えばシリコン
単結晶の製造方法であるチヨクラルスキー法(以
下CZ法と略称)においては、内側るつぼとして
石英るつぼ、外側るつぼとして黒鉛るつぼを使用
した二重るつぼが用いられる。 第2図は前記CZ法に用いられる二重るつぼの
構成の一例及び、該二重るつぼと保温筒との相対
位置を示す説明図で、ニ図は結晶成長開始時にお
ける前記相対位置を、ロ図は結晶成長終了直前に
おける前記相対位置を示す縦断正面図である。 同図において、二重るつぼ1は内側の石英るつ
ぼ3と外側のるつぼ4からなり、るつぼ軸5によ
り回転可能に、かつ上下動可能に支持される。前
記二重るつぼ1の外周には、該るつぼ1内の原料
を加熱溶融するためのヒーター9及び保温筒10
が設けられ、上部に開口部11を有する水冷室
(以下水冷チヤンバー12という)内に容れられ
る。上記の二重るつぼを用いてシリコン単結晶を
製造するには、二重るつぼ1の上方の引上げ軸1
4に保持されたシリコン単結晶種子を原料溶融液
2に浸し、なじませた後ゆつくり引き上げ、該溶
融液2を固化させながらシリコン単結晶13を成
長させる。結晶の成長に伴い原料溶融液2は徐々
に減少し、液面が低下するので、るつぼ軸5の移
動により二重るつぼ1を徐々に上昇させて溶融液
2面の高さを一定に保つ。第2図ロは結晶の成長
終了直前における状態を示す。上記操作によりシ
リコン単結晶13の直径を高精度で制御すること
ができる。 発明が解決しようとする問題点 しかしながら、上記従来の二重るつぼを用いて
シリコン単結晶を製造するさい、結晶の成長開始
時にはるつぼ1と保温筒10との相対位置は第2
図イに示した位置にあるが、前記のように結晶の
成長に伴つて二重るつぼ1を徐々に上昇させるの
で、結晶の成長終了直前においては前記相対位置
は第2図ロに示した位置になる。従つて結晶成長
の後半では前記二重るつぼ1の上縁部は保温筒1
0から突出した状態になり、該るつぼ1の上縁部
は急速に冷却され、るつぼ1全体の温度が急激に
低下する。その結果、るつぼ1内の溶融液2の縁
部からシリコンの凝固物15が生成し始め、正常
な結晶成長が阻害されるという問題があつた。 問題点を解決するための手段 本発明は、上記従来の問題を解決する手段を提
供するものであつて、本発明の第1の発明が要旨
とするところは、溶融液を収容するための内側る
つぼと、該内側るつぼを保持するための外側るつ
ぼからなる二重るつぼにおいて、前記外側るつぼ
を上下方向複数個に分割可能に設け、かつ外側る
つぼの上部に、下方部におけるよりも熱伝導率の
小さい材質を用いてなる二重るつぼにある。 又本発明の第2の発明が要旨とするところは、
溶融液を収容するための内側るつぼと、該内側る
つぼを保持するための外側るつぼからなる二重る
つぼにおいて、前記外側るつぼを上下方向複数個
に分割し、かつ該分割された各部の接合部の少な
くとも一箇所に熱伝導率の小さいスペーサーを設
けてなる二重るつぼにある。 以下に本発明を図に基づいて説明する。 第1図は本発明の二重るつぼの構成の一例及び
該二重るつぼと保温筒との相対位置を示す説明図
である。同図において、二重るつぼ1は原料溶融
液2を収容する内側の石英るつぼ3と、該石英る
つぼ3を保持する外側の黒鉛製のるつぼ4からな
り、るつぼ軸5により回転可能にかつ上下動可能
に支持される。該黒鉛製のるつぼ4は筒体である
上部6と椀体である下部7に分割され、更に上部
6と下部7の接合部に熱伝導率の小さいリング状
のスペーサー8が設けられる。 前記二重るつぼ1の外周には、該二重るつぼ1
内の原料を加熱溶融するためのヒーター9及び保
温筒10が設けられ、上部に開口部11を有する
水冷チヤンバー12に容れられる。尚、第1図は
結晶の成長終了直前の状態すなわちシリコン単結
晶13を引上げ軸14で保持しつつ引き上げる工
程の末期における状態を示す。 作 用 上記のように構成された二重るつぼを用いて
CZ法によりシリコン単結晶を製造する場合、前
記第1図のように結晶引上げ末期の状態になつて
も、従来の二重るつぼを用いた場合にみられた石
英るつぼの縁部からのシリコン凝固物は生成しな
い。これは保温筒10から突出したるつぼ4の上
部6からの熱輻射により熱が奪われ前記上部6の
温度は降下するが、熱伝導率の小さいスペーサー
8が設けられているため、るつぼ4の下部7の温
度降下は小さく、溶融液の温度が低下しないこと
によるものである。 実施例 以下、実施例に基づいて説明する。 第1図に示した構成を有する本発明の二重るつ
ぼを用いてCZ法によりシリコン単結晶の製造を
行ない、結晶成長速度を従来の二重るつぼを用い
た場合と比較した。石英るつぼは内径16inch、外
側の黒鉛製のるつぼの上下分割位置は、該るつぼ
内面の底部から100mm上で、分割した接合部には
石英製のスペーサーが設けてある。製造される単
結晶の直径は6inchである。 第1表に結晶成長の後半における結晶成長速度
を示す。従来の二重るつぼを用いた場合はるつぼ
内の溶融液の縁部におけるシリコン凝固物の生成
を防ぐため結晶成長速度を低減させることが必要
であるのに対し、本発明の二重るつぼを用いた場
合はそのような減速操作が不要で、結晶成長速度
すなわち生産速度を大幅に向上させることができ
る。
FIELD OF INDUSTRIAL APPLICATION The present invention relates to an improvement in a double crucible consisting of an inner crucible for containing a melt and an outer crucible for holding the inner crucible. BACKGROUND OF THE INVENTION Double crucibles are widely used as containers for containing melted raw materials such as semiconductors. For example, in the Czyochralski method (hereinafter abbreviated as the CZ method), which is a method for producing silicon single crystals, a double crucible is used in which a quartz crucible is used as an inner crucible and a graphite crucible is used as an outer crucible. Figure 2 is an explanatory diagram showing an example of the configuration of the double crucible used in the CZ method and the relative position of the double crucible and the heat insulating cylinder. Figure 2 shows the relative position at the start of crystal growth. The figure is a longitudinal sectional front view showing the relative positions immediately before the end of crystal growth. In the figure, a double crucible 1 consists of an inner quartz crucible 3 and an outer crucible 4, and is rotatably and vertically supported by a crucible shaft 5. On the outer periphery of the double crucible 1, a heater 9 and a heat insulating cylinder 10 are provided for heating and melting the raw materials in the crucible 1.
is provided and housed in a water cooling chamber (hereinafter referred to as water cooling chamber 12) having an opening 11 at the top. To produce a silicon single crystal using the double crucible described above, the pulling shaft 1 above the double crucible 1 must be
The silicon single crystal seed held in 4 is immersed in the raw material melt 2, and after being blended, it is slowly pulled up and the silicon single crystal 13 is grown while the melt 2 is solidified. As the crystals grow, the raw material melt 2 gradually decreases and the liquid level drops, so the double crucible 1 is gradually raised by moving the crucible shaft 5 to keep the height of the melt 2 level constant. FIG. 2B shows the state immediately before the end of crystal growth. By the above operation, the diameter of the silicon single crystal 13 can be controlled with high precision. Problems to be Solved by the Invention However, when manufacturing a silicon single crystal using the conventional double crucible described above, the relative position of the crucible 1 and the heat insulating cylinder 10 is at the second position when the crystal starts to grow.
However, since the double crucible 1 is gradually raised as the crystal grows as described above, the relative position is the position shown in Figure 2 B just before the end of crystal growth. become. Therefore, in the latter half of crystal growth, the upper edge of the double crucible 1 is
0, the upper edge of the crucible 1 is rapidly cooled, and the temperature of the entire crucible 1 is rapidly reduced. As a result, a problem occurred in that silicon solidified matter 15 began to form from the edge of the melt 2 in the crucible 1, and normal crystal growth was inhibited. Means for Solving the Problems The present invention provides means for solving the above-mentioned conventional problems, and the gist of the first invention of the present invention is to provide an inner In a double crucible consisting of a crucible and an outer crucible for holding the inner crucible, the outer crucible is provided so as to be able to be divided into a plurality of parts in the vertical direction, and the upper part of the outer crucible has a material having a higher thermal conductivity than the lower part. It is in a double crucible made of small materials. Moreover, the gist of the second invention of the present invention is that
In a double crucible consisting of an inner crucible for accommodating the melt and an outer crucible for holding the inner crucible, the outer crucible is divided into a plurality of parts in the vertical direction, and the joints of the divided parts are It is a double crucible that is provided with a spacer with low thermal conductivity in at least one location. The present invention will be explained below based on the drawings. FIG. 1 is an explanatory diagram showing an example of the structure of the double crucible of the present invention and the relative position of the double crucible and the heat-insulating cylinder. In the figure, a double crucible 1 consists of an inner quartz crucible 3 that accommodates a raw material melt 2 and an outer graphite crucible 4 that holds the quartz crucible 3, and is rotatable and vertically movable by a crucible shaft 5. Possibly supported. The crucible 4 made of graphite is divided into an upper part 6 which is a cylinder and a lower part 7 which is a bowl, and a ring-shaped spacer 8 having low thermal conductivity is provided at the joint between the upper part 6 and the lower part 7. On the outer periphery of the double crucible 1, the double crucible 1
A heater 9 and a heat retaining cylinder 10 are provided for heating and melting the raw materials inside, and the chamber is housed in a water-cooling chamber 12 having an opening 11 at the top. Incidentally, FIG. 1 shows the state immediately before the end of crystal growth, that is, the state at the end of the process of pulling the silicon single crystal 13 while being held by the pulling shaft 14. Effect Using the double crucible configured as above,
When producing silicon single crystals by the CZ method, even at the final stage of crystal pulling as shown in Figure 1 above, silicon solidification from the edge of the quartz crucible occurs when a conventional double crucible is used. It doesn't produce things. This is because heat is removed by thermal radiation from the upper part 6 of the crucible 4 protruding from the heat insulating tube 10, and the temperature of the upper part 6 decreases, but since the spacer 8 with low thermal conductivity is provided, the lower part of the crucible 4 The temperature drop in No. 7 is small and is due to the fact that the temperature of the melt does not drop. Examples The following description will be based on examples. Silicon single crystals were produced by the CZ method using the double crucible of the present invention having the configuration shown in FIG. 1, and the crystal growth rate was compared with that when a conventional double crucible was used. The quartz crucible had an inner diameter of 16 inches, and the upper and lower parts of the outer graphite crucible were separated 100 mm above the bottom of the inner surface of the crucible, and a quartz spacer was provided at the joint of the parts. The diameter of the single crystal produced is 6inch. Table 1 shows the crystal growth rate in the latter half of crystal growth. When using a conventional double crucible, it is necessary to reduce the crystal growth rate in order to prevent the formation of silicon coagulum at the edge of the melt in the crucible, whereas with the double crucible of the present invention, it is necessary to reduce the crystal growth rate. In this case, such a deceleration operation is unnecessary, and the crystal growth rate, that is, the production rate, can be greatly improved.

【表】 本実施例においては、二重るつぼの外側に黒鉛
るつぼを使用し、上下に2分割し、更にその接合
部に熱伝導率の小さいスペーサーを設けたが、る
つぼ上部の熱伝導率を小さくするためスペーサー
を設ける代りにるつぼ上部の高純度のセラミツ
ク、その他伝導率の小さい材質を使用してもよ
い。又外側るつぼを分割するだけでも伝熱量の減
少に有効であり、上下2分割に限らず3分割もし
くはそれ以上としてもよい。 発明の効果 以上述べたように、半導体の原料等溶融液を収
容する容器として本発明の二重るつぼを使用し
て、例えばシリコン単結晶をCZ法により製造す
る場合、外側るつぼの上縁部が保温筒から突出し
温度が降下しても、前記外側るつぼの下部の温度
の降下を防止することができ、溶融液の縁部から
のシリコン凝固物の生成を避けることができる。
その結果、結晶成長条件を一定に保つことが可能
となり、従来前記シリコン凝固物の生成を防ぐた
めに行なつていた結晶成長速度の減速操作が不要
となつて生産速度を大幅に向上させることがで
き、実用的に極めて有効である。
[Table] In this example, a graphite crucible was used on the outside of the double crucible, divided into upper and lower parts, and a spacer with low thermal conductivity was provided at the joint, but the thermal conductivity of the upper part of the crucible was Instead of providing a spacer to reduce the size, high-purity ceramic or other material with low conductivity may be used for the upper part of the crucible. Furthermore, simply dividing the outer crucible is effective in reducing the amount of heat transfer, and the crucible is not limited to being divided into upper and lower halves, but may be divided into three or more. Effects of the Invention As described above, when producing, for example, a silicon single crystal by the CZ method using the double crucible of the present invention as a container for storing a melt of semiconductor raw materials, etc., the upper edge of the outer crucible Even if the temperature drops due to protrusion from the heat insulating cylinder, the temperature at the lower part of the outer crucible can be prevented from dropping, and the formation of silicon coagulates from the edge of the melt can be avoided.
As a result, the crystal growth conditions can be kept constant, and the operation to slow down the crystal growth rate, which was conventionally performed to prevent the formation of silicon coagulation, is no longer necessary, making it possible to significantly increase the production rate. , is extremely effective in practice.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の二重るつぼの構成の一例およ
び該二重るつぼと保温筒との相対位置を示す説明
図、第2図は従来の二重るつぼの構成の一例およ
び該るつぼと保温筒との相対位置を示す説明図で
あり、同図イは結晶成長開始時における相対位置
を、ロは結晶成長終了直前における相対位置をそ
れぞれ示す。 1……二重るつぼ、2……原料溶融液、3……
石英るつぼ、4……るつぼ、5……るつぼ軸、6
……上部、7……下部、8……スペーサー、9…
…ヒーター、10……保温筒、11……開口部、
12……水冷チヤンバー、13……シリコン単結
晶、14……引上げ軸、15……凝固物。
FIG. 1 is an explanatory diagram showing an example of the structure of a double crucible according to the present invention and the relative positions of the double crucible and the heat-insulating tube, and FIG. 2 is an example of the structure of a conventional double-crucible and the crucible and the heat-insulating tube. FIG. 2 is an explanatory diagram showing the relative position with respect to the crystal growth. 1... Double crucible, 2... Raw material melt, 3...
Quartz crucible, 4... Crucible, 5... Crucible shaft, 6
...Top, 7...Bottom, 8...Spacer, 9...
... Heater, 10 ... Heat insulation tube, 11 ... Opening,
12... Water cooling chamber, 13... Silicon single crystal, 14... Pulling shaft, 15... Solidified material.

Claims (1)

【特許請求の範囲】 1 溶融液を収容するための内側るつぼと、該内
側るつぼを保持するための外側るつぼからなる二
重るつぼにおいて、前記外側るつぼを上下方向複
数個に分割可能に設け、かつ外側るつぼの上部
に、下方部におけるよりも熱伝導率の小さい材質
を用いてなる二重るつぼ。 2 外側るつぼを筒体である上部と椀体である下
部との2分割した特許請求の範囲第1項記載の二
重るつぼ。 3 溶融液を収容するための内側るつぼと、該内
側るつぼを保持するための外側るつぼからなる二
重るつぼにおいて、前記外側るつぼを上下方向複
数個に分割し、かつ該分割された各部の接合部の
少なくとも一箇所に熱伝導率の小さいスペーサー
を設けてなる二重るつぼ。 4 外側るつぼを筒体である上部と椀体である下
部とに2分割し、前記上部及び下部の接合部にス
ペーサーを設けた特許請求の範囲第3項記載の二
重るつぼ。 5 内側るつぼの材質が石英であり、外側るつぼ
の材質が黒鉛である特許請求の範囲第3項又は第
4項記載の二重るつぼ。 6 内側るつぼの材質が石英であり、外側るつぼ
の材質がセラミツクである特許請求の範囲第3項
又は第4項記載の二重るつぼ。
[Scope of Claims] 1. A double crucible consisting of an inner crucible for containing a melt and an outer crucible for holding the inner crucible, wherein the outer crucible is provided so as to be divisible into a plurality of parts in the vertical direction, and A double crucible in which the upper part of the outer crucible is made of a material with lower thermal conductivity than the lower part. 2. The double crucible according to claim 1, in which the outer crucible is divided into two parts: an upper part that is a cylinder and a lower part that is a bowl. 3. In a double crucible consisting of an inner crucible for containing a melt and an outer crucible for holding the inner crucible, the outer crucible is divided into a plurality of parts in the vertical direction, and the joints of each of the divided parts are A double crucible which is provided with a spacer having low thermal conductivity in at least one part of the crucible. 4. The double crucible according to claim 3, wherein the outer crucible is divided into two parts: an upper part that is a cylindrical body and a lower part that is a bowl body, and a spacer is provided at the joint of the upper part and the lower part. 5. The double crucible according to claim 3 or 4, wherein the material of the inner crucible is quartz and the material of the outer crucible is graphite. 6. The double crucible according to claim 3 or 4, wherein the material of the inner crucible is quartz and the material of the outer crucible is ceramic.
JP21346886A 1986-09-09 1986-09-09 Duplex crucible Granted JPS6369791A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21346886A JPS6369791A (en) 1986-09-09 1986-09-09 Duplex crucible

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21346886A JPS6369791A (en) 1986-09-09 1986-09-09 Duplex crucible

Publications (2)

Publication Number Publication Date
JPS6369791A JPS6369791A (en) 1988-03-29
JPH0475880B2 true JPH0475880B2 (en) 1992-12-02

Family

ID=16639703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21346886A Granted JPS6369791A (en) 1986-09-09 1986-09-09 Duplex crucible

Country Status (1)

Country Link
JP (1) JPS6369791A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0383886A (en) * 1989-08-29 1991-04-09 Mitsubishi Materials Corp Susceptor for pulling up single crystal
JP3815805B2 (en) * 1994-11-15 2006-08-30 富士重工業株式会社 Automatic transmission pump discharge amount control device
JPH102415A (en) * 1996-06-13 1998-01-06 Nissan Motor Co Ltd Flow control valve for automatic transmission

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840666U (en) * 1971-09-16 1973-05-23
JPS5443045U (en) * 1977-08-29 1979-03-23

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4840666U (en) * 1971-09-16 1973-05-23
JPS5443045U (en) * 1977-08-29 1979-03-23

Also Published As

Publication number Publication date
JPS6369791A (en) 1988-03-29

Similar Documents

Publication Publication Date Title
JPH01119598A (en) Method and apparatus for producing monocrystal
JPH02133389A (en) Production device of silicon single crystal
US4243471A (en) Method for directional solidification of silicon
JPH0475880B2 (en)
JP3152971B2 (en) Manufacturing method of high purity copper single crystal ingot
JP2690419B2 (en) Single crystal growing method and apparatus
JPH0315550Y2 (en)
CN221254774U (en) Crucible for Czochralski silicon single crystal furnace
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPS5964591A (en) Apparatus for pulling up single crystal
JPH04219398A (en) Production of single crystalline silicon
JPH09309791A (en) Method for producing semiconducting single crystal
JP3788077B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus
JPS63295498A (en) Production of single-crystal of group iii-v compound semiconductor
JPH05319973A (en) Single crystal production unit
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JP3018429B2 (en) Method and apparatus for producing single crystal
JPS62167213A (en) Production of silicon polycrystalline ingot
JPH0449185Y2 (en)
JPH09142982A (en) Apparatus for growing single crystal and method for growing single crystal
JPS62252395A (en) Crucible for producing single crystal
JPH02212395A (en) Production of compound semiconductor crystal and producing device
JPH0867593A (en) Method for growing single crystal
JPH05124887A (en) Production of single crystal and device therefor
JPS63233091A (en) Process and apparatus for producing single crystal of compound semiconductor