KR950007601B1 - Method for preparing crystallized linbo3 powder - Google Patents

Method for preparing crystallized linbo3 powder Download PDF

Info

Publication number
KR950007601B1
KR950007601B1 KR1019900008017A KR900008017A KR950007601B1 KR 950007601 B1 KR950007601 B1 KR 950007601B1 KR 1019900008017 A KR1019900008017 A KR 1019900008017A KR 900008017 A KR900008017 A KR 900008017A KR 950007601 B1 KR950007601 B1 KR 950007601B1
Authority
KR
South Korea
Prior art keywords
raw material
powder
linbo
crucible
linbo3
Prior art date
Application number
KR1019900008017A
Other languages
Korean (ko)
Other versions
KR910020203A (en
Inventor
이성국
윤대호
Original Assignee
삼성코닝주식회사
안재학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성코닝주식회사, 안재학 filed Critical 삼성코닝주식회사
Priority to KR1019900008017A priority Critical patent/KR950007601B1/en
Publication of KR910020203A publication Critical patent/KR910020203A/en
Application granted granted Critical
Publication of KR950007601B1 publication Critical patent/KR950007601B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/22Complex oxides
    • C30B29/30Niobates; Vanadates; Tantalates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

The LiNbO3 source powder having the shrinkage rate of more than 20 % for lithium niobate single crystal growth is prepared by (a) mixing lithium carbonate and niobium oxide, which are dried at 120 deg.C for one day, in the ball mill with nylon vessel and urethane ball, (b) calcinating the mixed material in the platinum crucible at more than 1,240 deg.C for 1-3 hrs. at the speed of elevating temperature, 250 deg.C/hr, (c) cooling it to room temperature at 300 deg.C/hr.

Description

결정화된 LiNbO3원료분말의 제조방법Process for preparing crystallized LiNbO3 raw powder

제1도는 종래의 방법으로 합성된 원료의 도가니내 충진모양을 나타낸 단면도로서, (a)는 용융전의 경우이고, (b)는 용융시의 경우이다.1 is a cross-sectional view showing the filling shape of a crucible of a raw material synthesized by a conventional method, where (a) is before melting and (b) is melting.

제2도는 하소온도와 시간에 따른 LiNbO3의 수축율의 변화를 나타낸 그래프.2 is a graph showing the change in shrinkage rate of LiNbO 3 with calcination temperature and time.

제3도는 본 발명의 결정화된 LiNbO3원료의 도가니내 충진모양을 나타낸 단면도.3 is a cross-sectional view showing the filling shape of the crucible of the crystallized LiNbO 3 raw material of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : LiNbO3원료괴 2 : 충진된 LiNbO3 1: LiNbO 3 raw material 2: 2 filled LiNbO 3

3 : 백금도가니3: platinum crucible

본 발명은 2˝,3˝크기의 LiNbO3단결정 제조시 1회의 충진으로 성장도가니 용적의 90%이상을 용융물로 채울 수 있는 LiNbO3원료분말의 제조방법에 관한 것이다.The present invention relates to a method for producing a LiNbO 3 raw powder which can fill more than 90% of the volume of the growth crucible with a melt in one filling in the production of 2 ˝, 3 ˝ size LiNbO 3 single crystals.

LiNbO3단결정은 우수한 압전 및 전기광학 특성으로 TV VTR의 SAW필터, 공명기, 광변조소자에 응용되어진다.LiNbO 3 single crystal is applied to SAW filter, resonator, and optical modulation device of TV VTR because of its excellent piezoelectric and electro-optic characteristics.

종래의 LiNbO3단결정 성장용 원료합성은 하기의 2가지 방법으로 통상적으로 행해졌다.Conventional raw material synthesis for LiNbO 3 single crystal growth was conventionally performed by the following two methods.

첫째, Li2CO3와 Nb2O5를 소정의 비율로 혼합한 후 900℃이하에서 하소하여 분말체를 제조하는 방법이 있다.First, there is a method of preparing a powder by mixing Li 2 CO 3 and Nb 2 O 5 at a predetermined ratio and then calcining at 900 ° C. or less.

둘째, Li2CO3와 Nb2O5를 소정의 비율로 혼합한 후 1200℃이하에서 하소하여 LiNbO3원료괴로 제조하는 방법이 있다.Second, there is a method of mixing Li 2 CO 3 and Nb 2 O 5 in a predetermined ratio and then calcining at 1200 ° C. or less to produce LiNbO 3 raw material ingots.

크기가 2˝,3˝직경의 결정을 성장시키기 위해서는 성장도가니 용적의 90%이상을 용융물로 채워야 하는데 위의 방법으로는 다음과 같은 문제점이 있다.In order to grow crystals of 2˝, 3˝ diameter, more than 90% of the volume of the growth crucible must be filled with melt. The above method has the following problems.

첫번째 방법으로 합성한 분말을 사용할 경우에는 분말의 용적이 커서 성장도가니 용적의 90%를 용융물로 채울려면 원료를 2회 충진해야 하는데 1회 충진후 재충진할시에는 두가지 문제점이 있다. 첫째는 성장도가니에 원료를 충진하여 용융시킨 후 긴 석영관을 사용하여 재충진할 경우 분말원료가 성장도가니 밖으로 떨어지거나 주변 단열재에 달라붙어 단열재를 쉽게 소모시켜 버리는 것이고, 둘째는 성장도가니에 원료를 충진하여 재용융시킨 후 냉각하여 재충진할 경우 도가니의 수명이 급격히 떨어지고, 전력이 두배로 소모되는 점이다.In case of using the powder synthesized by the first method, the volume of the powder is large and the raw material needs to be filled twice in order to fill 90% of the volume of the crucible with the melt, but there are two problems in refilling once. First, when the raw material is filled into the growth crucible and melted and then refilled using a long quartz tube, the powder raw material falls out of the growth crucible or adheres to the surrounding heat insulator, thereby easily consuming the heat insulator. When refilled by remelting, cooling, and refilling, the life of the crucible is drastically reduced and power is consumed twice.

둘째, Li2CO3와 Nb2O5를 소정의 비율로 혼합한 후 1200℃이하에서 하소하여 LiNbO3원료괴로 제조하는 방법이 있다.Second, there is a method of mixing Li 2 CO 3 and Nb 2 O 5 in a predetermined ratio and then calcining at 1200 ° C. or less to produce LiNbO 3 raw material ingots.

한편, 상기 두번째 방법을 사용할 경우 성장도가니내의 원료 충진시 제1도(a)와 같이 LiNbO3소결괴가 도가니 밖으로 나오게 되어 용융시 소결괴가 제1도(b)처럼 도가니벽으로 넘어져 용융물이 도가니벽을 타고 밑으로 흘러 도가니를 지지하고 있는 내화물과 반응하게 된다. 이러한 경우 지지내화물에 손상을 입힐 뿐만 아니라 성장시 온도를 변화시켜 성장에 어려움을 준다.On the other hand, when the second method is used, when the raw material is filled in the growth crucible, the LiNbO 3 sintered mass comes out of the crucible as shown in FIG. 1 (a), and when melted, the sintered mass falls to the crucible wall as shown in FIG. It flows down the wall and reacts with the refractory holding the crucible. In this case, it not only damages the refractory, but also changes the temperature during growth, which makes it difficult to grow.

이와같이 1개의 단결정 잉고트(ingot)를 얻기 위하여 상기 방법들을 사용하는 것은 결정의 제조단가를 높이는 비경제적인 일이다.As such, using the above methods to obtain one single crystal ingot is an uneconomical task that increases the cost of producing the crystal.

제1도(a) 및 제1도(b)의 (1)은 LiNbO3원료괴, (2)는 충진된 LiNbO3및 (3)은 백금도가니이다.(A) and (b) of FIG. 1 (a) are LiNbO 3 raw material ingots, (2) are filled LiNbO 3 and (3) are platinum crucibles.

상기에서 언급된 문제점들을 보완하기 위하여, 본 발명에서는 건조→무게측정→혼합→하소의 공정으로 이루어지는 LiNbO3결정성장용 원료합성 공정에 있어서 하소를 1240℃ 이상에서 행하여 LiNbO3원료분말이 결정화되어 도가니 밖으로 원료가 떨어지지 않을 뿐만 아니라 주변의 단열재 수명이 연장되어 결정 잉고트(ingot)의 제조단가를 낮추는데 목적이 있다.In order to solve the above-mentioned problems, in the present invention, in the LiNbO 3 crystal growth raw material synthesis process consisting of drying → weighing → mixing → calcination, the LiNbO 3 raw material powder is crystallized by performing calcination at 1240 ° C. or higher. Not only does the raw material fall out, but the life of the surrounding insulator is extended to reduce the manufacturing cost of the crystal ingot.

이하, 본 발명의 구성을 좀더 구체적으로 설명하기로 한다.Hereinafter, the configuration of the present invention will be described in more detail.

먼저 LiCO3와 Nb2O5의 혼합분말을 2000kg/㎠의 압력으로 가압하여 합성용 전기로에 넣고 표 1과 같이 온도와 시간을 변경시켜가며 하소한 후 원료상태와 수축율을 측정하였다. 그 결과는 아래에 나타낸 도표와 같고 제2도는 이 값을 온도와 시간에 따른 수축율로 그래프화한 것이다.First, the mixed powder of LiCO 3 and Nb 2 O 5 was pressurized at a pressure of 2000kg / cm 2, put into a synthesis furnace, and calcined by varying the temperature and time as shown in Table 1, and then the raw materials and shrinkage were measured. The results are shown in the chart below and Figure 2 is a plot of this value as shrinkage over temperature and time.

[표 1]TABLE 1

Figure kpo00002
Figure kpo00002

상기 표 1과 제2도에서 보듯이 온도가 높고 시간이 길어짐에 따라 수축율이 커짐을 알 수 있다. 제2도에서 곡선 A는 1200℃, 곡선 B는 1220℃, 곡선 C는 1240℃일때의 수축율 변화를 나타낸 것이다.As shown in Table 1 and Figure 2 it can be seen that the shrinkage rate increases as the temperature is higher and the time is longer. In FIG. 2, curve A shows a change in shrinkage rate at 1200 ° C, curve B at 1220 ° C, and curve C at 1240 ° C.

특히, 1240℃에서는 수축율이 20%를 넘고 하소된 원료상태를 비교해 보면 1220℃이하에서 하소된 원료는 단단한 소결체를 이루고 있으나, 1240℃에서는 분말의 결정화가 일어나 쉽게 부서지는 상태가 된다. 이는 원료분말의 표면이 일부 녹아 냉각되면서 결정화되기 때문이라 생각된다.In particular, at 1240 ℃, the shrinkage is more than 20% and compared to the calcined raw material state is the raw material calcined at 1220 ℃ or less forms a solid sintered body, but the crystallization of the powder occurs at 1240 ℃ easily breaks. This is considered to be because the surface of the raw material powder is partially melted and cooled to crystallize.

이상의 결과를 이용하여 1240℃이상에서 원료를 합성한 후 성장도가니에 충진한 결과 제3도와 같이 성장도가니 밖으로 원료가 나오지 않고 1회에 성장도가니 용적의 90%이상을 용융물로 충진할 수가 있었다.Using the above results, the raw materials were synthesized at 1240 ° C. or higher and then filled into the growth crucible. As shown in FIG.

본 발명에서 사용된 LiNbO3결정성장용 원료합성공정은 건조→무게측정→혼합→하소와 같은 순서로 하였다. 먼저 Li2CO3와 Nb2O5를 각각 비이커에 담아 120℃에서 1일 동안 건조시킨 후 소정의 비율로 원료를 혼합한다. 혼합은 가능한한 불순물의 혼입을 피하기 위해 나일론 용기와 우레탄 볼을 사용하였고, 볼밀 M/C에서 1일동안 혼합하였다.The raw material synthesis process for growing LiNbO 3 crystals used in the present invention was carried out in the order of drying → measurement → mixing → calcination. First, Li 2 CO 3 and Nb 2 O 5 are each placed in a beaker, dried at 120 ° C. for 1 day, and then the raw materials are mixed at a predetermined ratio. Mixing used a nylon vessel and urethane balls to avoid incorporation of impurities as much as possible and mixed for 1 day in a ball mill M / C.

혼합된 원료는 합성용 백금도가니에 담아 전기로에 넣어 1240℃이상에서 수시간동안 하소되었다. 하소는 승온속도 250℃/시간으로 1240℃까지 올려지고 140℃에서 1~3시간 유지된 후 300℃/시간으로 상온까지 냉각되었다.The mixed raw materials were put in a synthetic platinum crucible and placed in an electric furnace, and calcined at 1240 ° C. for several hours. The calcining was raised to 1240 ° C. at a heating rate of 250 ° C./hour and maintained at 140 ° C. for 1 to 3 hours, and then cooled to room temperature at 300 ° C./hour.

이후 하소된 원료를 성장용 백금도가니에 담아 용융시켜 LiNbO3결정성장에 이용한다.Thereafter, the calcined raw material is melted in a growth crucible and used to grow LiNbO 3 crystals.

본 발명으로 합성된 LiNbO3원료를 결정성장에 사용하면 1회 충진으로 성장도가니 용적의 90%이상을 용융물로 채울 수 있고 제3도에 나타낸 것처럼 충진시 원료가 도가니 밖으로 나오지 않아 종래에 있었던 문제를 해결할 수가 있다.When the LiNbO 3 raw material synthesized according to the present invention is used for crystal growth, it is possible to fill more than 90% of the volume of the growth crucible with a melt in one filling, and as shown in FIG. I can solve it.

특히 충진시 도가니 밖으로 떨어지는 원료가 없어 성장도가니 주변의 단열재 수명이 길어지고 용융물의 온도가 안정되어 성장시 마다 변했던 seed담그는 점이 안정화됨에 따라 매번 오랜시간에 걸쳐 찾아야했던 seed담그는 점을 찾을 필요가 없다.In particular, there is no raw material falling out of the crucible during filling, which increases the life of the insulation material around the growth crucible and stabilizes the temperature of the melt so that the seed soaking point that has changed every time is stabilized. .

이상과 같이 수축율이 20%이상이며, 결정화된 LiNbO3원료분말을 사용하면 1회 충진으로 도가니 용적의 90% 이상을 용융물로 채울 수 있을 뿐만 아니라 도가니 주변의 단열재 수명이 길게되어 결정 잉고트의 제조단가를 낮출수가 있다.As described above, when the shrinkage rate is 20% or more and the crystallized LiNbO 3 raw material powder is used, it is possible to fill more than 90% of the volume of the crucible with melt in one charge, and also to increase the life of the insulator around the crucible, thereby increasing the manufacturing cost of the crystal ingot. Can be lowered.

이하 실시예를 통해 본 발명을 좀더 구체적으로 설명하기로 한다. 그러나, 하기예들이 본 발명의 범주를 한정하는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to the following examples. However, the following examples do not limit the scope of the present invention.

[실시예 1~4]EXAMPLES 1-4

Li2CO3와 Nb2O5를 각각 48.6몰%, 51.4몰%로 혼합한 후 하소온도를 각각 1240℃, 1242℃, 1245℃ 및 1246℃에서 3시간동안 행한것을 제외하고는 상기에서 언급된 방법과 동일한 방법으로 결정화한 분말을 제조하였다. 이렇게 제조된 분말을 130mmO×13mL크기의 성장도가니에 충진한 결과 1회에 도가니 용적의 90%이상이 되는 용융물을 얻을 수가 있었다. 또한 이 용융물의 2/3정도를 결정으로 성장한 뒤 성장도가니를 상기 분말로 충진한 결과 동일하게 1회 충진으로 도가니 용적의 90%이상되는 용융물을 얻을 수가 있었다.After mixing Li 2 CO 3 and Nb 2 O 5 at 48.6 mol% and 51.4 mol%, respectively, the calcining temperature was performed for 1 hour at 1240 ° C, 1242 ° C, 1245 ° C and 1246 ° C, respectively. Crystallized powder was prepared in the same manner as the method. The powder thus prepared was filled into a 130 mmO x 13 mL growth crucible to obtain a melt of 90% or more of the crucible volume at one time. As a result of growing about two-thirds of the melt into crystals and then filling the growth crucible with the powder, a melt of more than 90% of the volume of the crucible was obtained in the same filling.

Claims (1)

LiNbO3단결정 제조에 사용되는 LiNbO3원료의 합성에 있어서, 1240℃이상의 온도에서 하소시킨 후 원료의 수축율이 20%이상인 것을 특징으로 하는 결정화된 LiN bO3원료분말의 제조방법.A method for producing a crystallized LiN bO 3 raw material powder, characterized in that the shrinkage of the raw material is 20% or more after calcining at a temperature of 1240 ° C. or higher in the synthesis of the LiNbO 3 raw material used for preparing LiNbO 3 single crystal.
KR1019900008017A 1990-05-31 1990-05-31 Method for preparing crystallized linbo3 powder KR950007601B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019900008017A KR950007601B1 (en) 1990-05-31 1990-05-31 Method for preparing crystallized linbo3 powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019900008017A KR950007601B1 (en) 1990-05-31 1990-05-31 Method for preparing crystallized linbo3 powder

Publications (2)

Publication Number Publication Date
KR910020203A KR910020203A (en) 1991-12-19
KR950007601B1 true KR950007601B1 (en) 1995-07-12

Family

ID=19299644

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019900008017A KR950007601B1 (en) 1990-05-31 1990-05-31 Method for preparing crystallized linbo3 powder

Country Status (1)

Country Link
KR (1) KR950007601B1 (en)

Also Published As

Publication number Publication date
KR910020203A (en) 1991-12-19

Similar Documents

Publication Publication Date Title
US6514336B1 (en) Method of growing piezoelectric lanthanide gallium crystals
EP0053481A1 (en) Method for producing a single crystal
US4724038A (en) Process for preparing single crystal binary metal oxides of improved purity
Bing et al. Effects of chemical compositions on the growth of relaxor ferroelectric Pb (Sc1/2Nb1/2) 1− xTixO3 single crystals
JPS6345198A (en) Production of crystal of multiple system
CN110067024A (en) Photoelectric functional crystal M3RE(PO4)3And preparation method thereof
JP2006124223A (en) Method for manufacturing oxide single crystal
KR950007601B1 (en) Method for preparing crystallized linbo3 powder
CN103993348A (en) Rare earth orthoferrite monocrystal growth method and application
KR950006635B1 (en) METHOD OF PREPARATION LiTaO3 POWDER FOR GROWING SINGLE CRYSTAL
CN111379014A (en) Crystal growth fluxing agent and crystal growth method
JP2507910B2 (en) Method for producing oxide single crystal
US4634492A (en) Chrysoberyl single crystal and method of producing the same
JP6500807B2 (en) Growth method of CaMgZr substituted gadolinium gallium garnet (SGGG) single crystal
WO2003033780A1 (en) Method of growing piezoelectric lanthanide gallium crystals
JPS6278196A (en) Production of lithium niobate single crystal
JP3010848B2 (en) Single crystal manufacturing method
KR970007336B1 (en) Process for the preparation of single crystal for radioelectronics and piezotechnology
JP2825060B2 (en) Beta-barium borate single crystal processing surface modification method
JPS6046078B2 (en) Single crystal growth method of solid solution composition of inorganic composite oxide
JPH05117096A (en) Method for growing thin film of lithium niobate single crystal
JP6102686B2 (en) Method for producing complex oxide single crystal
JP2881737B2 (en) Manufacturing method of optical single crystal
JPH0411513B2 (en)
RU1457463C (en) Method of growing crystals of complex oxides

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20040702

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee