JP2881737B2 - Manufacturing method of optical single crystal - Google Patents

Manufacturing method of optical single crystal

Info

Publication number
JP2881737B2
JP2881737B2 JP9078190A JP9078190A JP2881737B2 JP 2881737 B2 JP2881737 B2 JP 2881737B2 JP 9078190 A JP9078190 A JP 9078190A JP 9078190 A JP9078190 A JP 9078190A JP 2881737 B2 JP2881737 B2 JP 2881737B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
temperature
crystal
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9078190A
Other languages
Japanese (ja)
Other versions
JPH03290389A (en
Inventor
新二 牧川
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9078190A priority Critical patent/JP2881737B2/en
Publication of JPH03290389A publication Critical patent/JPH03290389A/en
Application granted granted Critical
Publication of JP2881737B2 publication Critical patent/JP2881737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学用単結晶、特には化学量論組成をもつ光
導波路用、シンチレーター用の高品質の光学用単結晶の
製造方法に関するものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing a high-quality optical single crystal for optical waveguides, particularly for optical waveguides and scintillators having a stoichiometric composition. is there.

(従来の技術) 光導波路用に使用される結晶としてはタンタル酸リチ
ウム(LiTaO3)、ニオブ酸リチウム(LiNbO3)などが知
られており、これらの結晶は通常チョコラルスキー法で
製造されている。
(Prior Art) Lithium tantalate (LiTaO 3 ), lithium niobate (LiNbO 3 ) and the like are known as crystals used for optical waveguides, and these crystals are usually manufactured by the Czochralski method. .

しかし、この方法では融液内の温度勾配を小さくする
ことが非常に難しいことから高品質の結晶を得ることが
難しく、これには結晶の組成がコングルエント組成に近
いものしか得られず、光導波路用として必要とされる化
学量論組成のものが得られないという欠点がある。
However, in this method, it is very difficult to reduce the temperature gradient in the melt, so it is difficult to obtain a high-quality crystal.In this method, only a crystal composition close to the congruent composition can be obtained. However, there is a drawback that a stoichiometric composition required for use cannot be obtained.

(発明が解決しようとする課題) そのため、最近では集光式フローティングゾーン法や
水平ブリッジマン法を用いて化学量論組成に近い結晶を
得るという方法も提案されている(北村健二氏、人工鉱
物学会講演要旨集、'89、参照)が、これらの方法には
大きな結晶を得ることができないという不利がある。
(Problems to be Solved by the Invention) Therefore, recently, a method of obtaining a crystal close to the stoichiometric composition by using a condensing floating zone method or a horizontal Bridgman method has been proposed (Kenji Kitamura, Artificial Minerals) However, these methods have the disadvantage that large crystals cannot be obtained.

また、チョコラルスキー法や通常のブリッジマン法で
は、融液がルツボと長時間接触しているためにこれらが
反応してルツボ材料が結晶内に混入して、これが結晶の
特性を劣化させるという欠点があり、特にシンチレータ
ー結晶であるゲルマニウム酸ビスマスではルツボ材であ
る白金の混入によってエネルギー分解能、発光量などの
シンチレーター特性が劣化するという欠点がある。
In addition, in the Czochralski method and the ordinary Bridgman method, since the melt is in contact with the crucible for a long time, they react and the crucible material is mixed into the crystal, which deteriorates the characteristics of the crystal. In particular, bismuth germanate, which is a scintillator crystal, has a drawback that the scintillator characteristics such as energy resolution and light emission amount are deteriorated by mixing platinum, which is a crucible material.

(課題を解決するための手段) 本発明はこのような不利を解決した光学用単結晶の製
造方法に関するものであり、炉中央部の温度上限が原材
料の溶融温度以上であり、炉上下端の温度下限が結晶晶
出温度以下であるような温度勾配をもつ炉中に、原材料
を収納した上方ルツボと、上方ルツボで作られた原材料
融液の液滴を受けこれを晶出させる下方ルツボを入れ、
これらのルツボを炉内上部から徐々に降下させ、上方ル
ツボで溶融した原材料を下方ルツボ中に晶出させて光学
用単結晶を製造する方法において、化学量論比をAとし
た時にほぼ1Aとなる割合で配合した酸化物原料を用い、
結晶晶出部近傍の温度勾配を2〜20℃/cm、結晶の成長
速度を5mm/時以下の条件の元で操業する。また、この場
合の光学用単結晶はLiTaO3またはBi4Ge3O12であること
が望ましい。
(Means for Solving the Problems) The present invention relates to a method for producing an optical single crystal which has solved such disadvantages, wherein the upper limit of the temperature at the center of the furnace is equal to or higher than the melting temperature of the raw material, In a furnace having a temperature gradient such that the lower limit of the temperature is equal to or lower than the crystallization temperature, the upper crucible containing the raw materials and the lower crucible for receiving and crystallizing the droplets of the raw material melt produced by the upper crucible are placed. Get in,
In a method of gradually lowering these crucibles from the upper part of the furnace and crystallizing raw materials melted in the upper crucible into the lower crucible to produce an optical single crystal, when the stoichiometric ratio is A, it is approximately 1A. Using oxide raw materials blended at a certain ratio,
The operation is performed under the conditions that the temperature gradient near the crystal crystallization portion is 2 to 20 ° C./cm and the crystal growth rate is 5 mm / hour or less. In this case, the optical single crystal is desirably LiTaO 3 or Bi 4 Ge 3 O 12 .

(作用) 以下にこれをさらに詳述する。(Operation) This will be described in more detail below.

本発明は光導波路用、シンチレーター用の高品質の光
学用単結晶の製造方法に関するものであり、具体的には
タンタル酸リチウム(LiTaO3)およびゲルマン酸ビスマ
ス(Bi4Ge3O12)の製造方法に関するものである。
The present invention relates to a method for producing a high-quality optical single crystal for an optical waveguide or a scintillator, and more specifically, for producing lithium tantalate (LiTaO 3 ) and bismuth germanate (Bi 4 Ge 3 O 12 ). It is about the method.

これらの光学用単結晶の製造はいわゆる垂直方式のブ
リッジマン法で行われるが、これは例えば第1図に示し
たような装置で行なわれる。第1図に示したように、こ
の装置は原材料3を収納し、液滴滴下装置4を備えた上
方ルツボ1と、この上方ルツボ1から液滴を受け、この
融液を単結晶に晶出させるための下方ルツボ2とを含
む。この2つのルツボは、炉中央部の温度上限が原材料
の溶融温度以上であり、路上下端の温度下限が結晶晶出
温度以下である、第1図に示す温度勾配をもつ電気炉中
に収容されている。ここにおいて、Aの位置で溶融温
度、Bの位置で晶出開始温度となっている。
The production of these optical single crystals is performed by the so-called vertical Bridgman method, which is performed, for example, by an apparatus as shown in FIG. As shown in FIG. 1, this apparatus contains a raw material 3 and has an upper crucible 1 provided with a droplet dropping device 4 and receives droplets from the upper crucible 1, and crystallizes this melt into a single crystal. And a lower crucible 2. These two crucibles are housed in an electric furnace having a temperature gradient shown in FIG. 1 in which the upper limit of the temperature at the center of the furnace is equal to or higher than the melting temperature of the raw material, and the lower limit of the temperature at the upper and lower ends of the path is equal to or lower than the crystallization temperature. ing. Here, the position A is the melting temperature, and the position B is the crystallization start temperature.

第1図に示した状態では上方ルツボ1に収納されてい
る原材料は電気炉により加熱されるが、未だ溶融温度以
下であるために溶融することはない。この炉内で上下ル
ツボを矢印の方向に徐々に移動し、上方ルツボの下端が
A点を過ぎると原材料3はこの部分のみが溶融して液滴
となり、これが液滴滴下装置4を経て下方ルツボ2の中
に滴下される。この時、下方ルツボ2に滴下した融液は
未だ結晶晶出温度以上とされているために単結晶として
は晶出はしない。
In the state shown in FIG. 1, the raw material stored in the upper crucible 1 is heated by the electric furnace, but is not melted because it is still below the melting temperature. In this furnace, the upper and lower crucibles are gradually moved in the direction of the arrow, and when the lower end of the upper crucible passes through the point A, only the raw material 3 is melted into droplets. It is dropped into 2. At this time, the melt dropped into the lower crucible 2 does not crystallize as a single crystal because the temperature is still higher than the crystallization temperature.

しかし、この上下ルツボがさらに炉内を下降するとそ
の間に上方ルツボ1に収納されている原材料3は順次溶
融し、その融液の液滴が下方ルツボ2に集められる。こ
の下端部分が結晶晶出開始温度B点に達すると、この部
分に種結晶5が予じめ設けられているので、単結晶6と
して成長し、上下ルツボがこの電気炉中を通過し終ると
きには、上方ルツボ1に収納されていた原材料3はすべ
て下方ルツボ中に融液となって移動し、単結晶6として
晶出する。
However, when the upper and lower crucibles further descend in the furnace, the raw materials 3 stored in the upper crucible 1 are sequentially melted during this time, and droplets of the melt are collected in the lower crucible 2. When the lower end portion reaches the crystal crystallization start temperature point B, the seed crystal 5 is provided in advance in this portion, so that it grows as a single crystal 6, and when the upper and lower crucibles have passed through this electric furnace, All of the raw materials 3 stored in the upper crucible 1 move into the lower crucible as a melt and crystallize as a single crystal 6.

この場合、原材料から得られる融液の温度を必要以上
に過熱すると、成分の一部が揮散し融液組成が最初の原
料組成とズレてしまうことがあり、また、ルツボ材料、
例えば白金の融液との反応が進み、結晶内に白金が混入
し易くなることから、炉中央部の最高温度を融点より10
0℃を越えない温度に抑えるとよい。上方ルツボ中の原
材料3の下端が溶融開始温度となるようにし、下方ルツ
ボに集まる融液の下端が育成開始温度となるようにする
とよい。
In this case, if the temperature of the melt obtained from the raw materials is excessively heated, a part of the components may volatilize and the melt composition may deviate from the initial raw material composition.
For example, the reaction with the platinum melt proceeds, and platinum easily mixes into the crystal.
The temperature should be kept below 0 ° C. The lower end of the raw material 3 in the upper crucible may be set to the melting start temperature, and the lower end of the melt collected in the lower crucible may be set to the growth start temperature.

育成近傍の温度勾配を2℃/cm以上とし、温度勾配が
2℃/cm以下であると気泡や転位が入りやすいという問
題があるので、好ましくは5〜20℃/cmとする。
The temperature gradient in the vicinity of the growth is 2 ° C./cm or more. If the temperature gradient is 2 ° C./cm or less, there is a problem that bubbles and dislocations are likely to enter.

温度のゆらぎが2℃以上であるとストリエーションや
脈理が入りやすい問題があるので、温度のゆらぎを2℃
以下とすることが望ましい。
If the temperature fluctuation is 2 ° C or more, striations and striae tend to occur, so the temperature fluctuation should be 2 ° C.
It is desirable to make the following.

結晶の成長速度を5mm/時以下、好ましくは0.3〜3mm/
時とする。結晶の成長速度が5mm/時以上では気泡や転位
が入りやすい問題がある。
Crystal growth rate of 5 mm / hour or less, preferably 0.3 ~ 3 mm /
Time. If the crystal growth rate is 5 mm / hour or more, there is a problem that bubbles and dislocations are likely to enter.

この状態で溶融液のゾーンを10mm以上になるようにし
て結晶を育成すれば固液界面で発生する熱を効果的に除
くことができ、結晶内での気泡や介在物の発生を抑える
ことができ、また融液の温度ゆらぎを小さくすることで
脈理やストリエーションの発生を抑えることができる。
In this state, if the crystal is grown so that the zone of the melt is 10 mm or more, the heat generated at the solid-liquid interface can be effectively removed, and the generation of bubbles and inclusions in the crystal can be suppressed. In addition, the occurrence of striae and striae can be suppressed by reducing the temperature fluctuation of the melt.

このように操業条件を設定すると、得られる光学用単
結晶の元素組成が酸化物単位で化学量論比をAとしたと
き、0.95A〜1.05Aの範囲とすることができる。結晶の元
素組成を酸化物単位で化学量論比0.95A〜1.05Aの範囲と
することはチョコラルスキー法ではできない。本発明に
よれば、光学特性のすぐれた大型のタンタル酸リチウム
単結晶を育成することができ、また、シンチレーター用
結晶としてのゲルマニウム酸ビスマスの場合には、融液
とルツボの接触を本発明における短い融液幅に限定する
ことができるので、ルツボの大部分が融液と長時間接触
していた従来方法よりも結晶中の介在物や組成の変化を
大幅に低減することができ、すぐれた特性をもつシンチ
レーターを得ることができる。
When the operating conditions are set in this manner, the elemental composition of the obtained optical single crystal can be in the range of 0.95 A to 1.05 A, where the stoichiometric ratio is A in oxide units. It is not possible to make the elemental composition of the crystal in the stoichiometric ratio of 0.95A to 1.05A in oxide units by the Czochralski method. According to the present invention, it is possible to grow a large lithium tantalate single crystal having excellent optical properties, and in the case of bismuth germanate as a scintillator crystal, the contact between the melt and the crucible according to the present invention is performed. Since the width of the melt can be limited to a short one, the inclusions and composition changes in the crystal can be greatly reduced compared to the conventional method in which most of the crucible has been in contact with the melt for a long time. A scintillator having characteristics can be obtained.

(実施例) つぎに本発明の実施例をあげる。(Example) Next, an example of the present invention will be described.

実施例1 第1図における上方ルツボ1を直径60mmφ、長さ100m
mの白金製ルツボとし、これに、炭酸リチウムと酸化タ
ンタルとを1,000℃で仮焼し、酸化リチウム:酸化タン
タル=0.50:0.50(モル比)としたものを装入し、その
下方に同一寸法の白金製ルツボからなる下方ルツボ2を
セットした。
Example 1 The upper crucible 1 in FIG. 1 was set to a diameter of 60 mmφ and a length of 100 m.
m crucible made of platinum, lithium carbonate and tantalum oxide were calcined at 1,000 ° C, and lithium oxide: tantalum oxide = 0.50: 0.50 (molar ratio) was charged. A lower crucible 2 made of a platinum crucible was set.

この上下ルツボを第1図に示したような温度勾配をも
つ電気炉中に設置し、この炉内に上下ルツボを3mm/時の
速度で下降させたところ、上方ルツボの下端が1,280℃
となったときに原材料が溶融され、滴下されたのでこの
液滴を下方ルツボで受け、下方ルツボでの融液幅が10mm
になったときに融液下方部分が1,250℃になるように
し、このときの育成付近の温度勾配を5℃/cmとし、同
位置での温度ゆらぎを1℃となるようにし、25時間で上
方ルツボ1中の原材料がすべて下方ルツボ2中に融液と
なるようにしたところ、30時間後に直径60mmφ、長さ70
mmの単結晶を得ることができた。
The upper and lower crucibles were placed in an electric furnace having a temperature gradient as shown in FIG. 1, and the lower and upper crucibles were lowered at a speed of 3 mm / hour.
When the raw material was melted and dropped, this droplet was received by the lower crucible, and the melt width at the lower crucible was 10 mm.
When the temperature of the melt reaches 1,250 ° C, the temperature gradient near the growth at this time is 5 ° C / cm, and the temperature fluctuation at the same position is 1 ° C. When all the raw materials in the crucible 1 were melted in the lower crucible 2, the diameter was 60 mmφ and the length was 70 after 30 hours.
mm single crystal was obtained.

ついで、この単結晶を化学分析したところ、酸化リチ
ウム:酸化タンタル=0.499:0.501(モル比)の組成を
もつものであり、これをポーリングしたのち、9×9×
25mmサイズのブロックを切り出し、予め<001>方向に
切断した9×25mmの面を鏡面研磨し、この面に第2図に
示した装置を用いて1,310nmのレーザーを照射してその
消光比を測定したところ、40dBの結果が得られた。
Next, when the single crystal was chemically analyzed, it was found to have a composition of lithium oxide: tantalum oxide = 0.499: 0.501 (molar ratio).
A block of 25 mm size was cut out, and a 9 × 25 mm surface previously cut in the <001> direction was mirror-polished, and this surface was irradiated with a 1,310 nm laser using the apparatus shown in FIG. 2 to determine the extinction ratio. When measured, a result of 40 dB was obtained.

比較例1 しかし、比較のためにチョコラルスキー法で育成した
結晶を化学分析したところ、その結晶組成は酸化リチウ
ム:酸化タンタル=0.486:0.514(モル比)の組成であ
り、実施例1と同様の方法でその消光比を測定したとこ
ろ、15dBという結果を示した。
Comparative Example 1 However, when a crystal grown by the Czochralski method was subjected to chemical analysis for comparison, the crystal composition was lithium oxide: tantalum oxide = 0.486: 0.514 (molar ratio). When the extinction ratio was measured by the method, the result was 15 dB.

ここで、実施例1と比較例1の化学量論比Aは、実施
例1が「0.499/0.501=0.996」であり、比較例1が「0.
486/0.514=0.946」である。
Here, the stoichiometric ratio A of Example 1 and Comparative Example 1 is “0.499 / 0.501 = 0.996” in Example 1, and “0.
486 / 0.514 = 0.946 ".

実施例2 実施例1で使用した白金ルツボに酸化ビスマス(Bi2O
3)1,122.2gと酸化ゲルマニウム(GeO2)77.8gとを1,00
0℃で仮焼して酸化ビスマス:酸化ゲルマニウム=0.40:
0.60(モル比)であるものを装入し、その下方に同一寸
法の白金ルツボをセットした。この上下ルツボを第1図
に示したような温度勾配をもつ電気炉中に設置し、この
炉内に上下ルツボを2mm/時の速度で下降させたところ、
上方ルツボ1の下端が1,080℃になったときに原材料が
溶融され、滴下されたのでこの液滴を下方ルツボ2に受
け、下方ルツボ2における融液幅が10mmになったときに
融液下方部分が1,050℃になるようにし、このときの育
成付近の温度勾配を10℃/cmとし、同位置での温度ゆら
ぎを2℃となるようにし、40時間で上方ルツボ1の原材
料3がすべて下方ルツボ2中に融液として移行するよう
にしたところ、45時間後に直径60mmφ、長さ70mmの結晶
を成長させることができた。
Example 2 Bismuth oxide (Bi 2 O) was added to the platinum crucible used in Example 1.
3 ) 1,122.2 g and germanium oxide (GeO 2 ) 77.8 g for 1,00
Calcination at 0 ℃ bismuth oxide: germanium oxide = 0.40:
A platinum crucible having the same dimensions was set under the charge of 0.60 (molar ratio). The upper and lower crucibles were placed in an electric furnace having a temperature gradient as shown in FIG. 1, and the upper and lower crucibles were lowered into the furnace at a speed of 2 mm / hour.
When the lower end of the upper crucible 1 reached 1,080 ° C., the raw material was melted and dropped, and the droplets were received by the lower crucible 2. When the melt width in the lower crucible 2 became 10 mm, the lower part of the melt was melted. Is set to 1,050 ° C, the temperature gradient near the growth at this time is set to 10 ° C / cm, and the temperature fluctuation at the same position is set to 2 ° C. In 40 hours, all the raw materials 3 of the upper crucible 1 are set to the lower crucible. As a result, the crystal having a diameter of 60 mmφ and a length of 70 mm could be grown after 45 hours.

ついでこの結晶を化学分析したところ、これは酸化ビ
スマス:酸化ゲルマニウム=0.399:0.601(モル比)の
組成をもつものであり、これから6×12×24mmのブロッ
クを切り出し、その6×24mmの面を鏡面研磨したのち、
第3図に示した装置を用いてこれに137Csの発生するγ
線を照射して第4図の関係を求め、これよりエネルギー
分解能を式ΔE/E×100(%)より求めたところ、10%の
結果が得られた。
Next, when the crystal was chemically analyzed, it had a composition of bismuth oxide: germanium oxide = 0.399: 0.601 (molar ratio). From this, a block of 6 × 12 × 24 mm was cut out, and the 6 × 24 mm surface was cut out. After mirror polishing,
Using the device shown in FIG. 3, γ in which 137 Cs is generated
The relationship shown in FIG. 4 was obtained by irradiating a line, and the energy resolution was obtained from the equation ΔE / E × 100 (%). As a result, a result of 10% was obtained.

比較例2 しかし、比較のためにチョコラルスキー法で同様の結
晶を育成し、これを化学分析してその結晶組成をしらべ
たところ、これは酸化ビスマス:酸化ゲルマニウム=0.
424:0.564(モル比)であり、得られた結晶のエネルギ
ー分解能を実施例2と同じ方法でしらべたところ、これ
は最大15%という結果を示した。
Comparative Example 2 However, for comparison, a similar crystal was grown by the Czochralski method, and this was chemically analyzed and its crystal composition was examined. As a result, it was found that bismuth oxide: germanium oxide = 0.
424: 0.564 (molar ratio), and the energy resolution of the obtained crystal was examined in the same manner as in Example 2. The result showed that the result was 15% at the maximum.

ここで、実施例2と比較例2との化学量論比Aは、実
施例2が「(0.399/0.601)×(0.60/0.40)=0.996」
であり、比較例2が「(0.424/0.544)×(0.60/0.40)
=1.13」である。
Here, the stoichiometric ratio A between Example 2 and Comparative Example 2 is “(0.399 / 0.601) × (0.60 / 0.40) = 0.996” in Example 2.
Comparative Example 2 is “(0.424 / 0.544) × (0.60 / 0.40)
= 1.13 ".

(発明の効果) 本発明は光学用単結晶の製造方法に関
するもので、本発明によれば、タンタル酸リチウムのよ
うな光導波路用光学用単結晶を、消光比40dBという高い
品質で得ることができるし、シンチレーター用ゲルマニ
ウム酸ビスマスも、エネルギー分解能10%という高品質
のものを容易に得ることができる。これらの単結晶を構
成する元素組成が酸化物単位で化学量論比をAとしたと
きに0.95A〜1.05Aである単結晶が確実に得ることができ
るという工業的な有利性が与えられる。
(Effect of the Invention) The present invention relates to a method for producing an optical single crystal, and according to the present invention, an optical single crystal for an optical waveguide such as lithium tantalate can be obtained with a high extinction ratio of 40 dB. In addition, bismuth germanate for a scintillator can be easily obtained with a high quality with an energy resolution of 10%. An industrial advantage is provided in that a single crystal having an elemental composition of these oxides of 0.95 A to 1.05 A when the stoichiometric ratio is A in oxide units can be reliably obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明による単結晶製造方法の縦断面概念図、
第2図は光の挿入損失測定装置の縦断面図、第3図は結
晶のシンチレーター特性測定系を示す説明図、第4図は
γ線スペクトル図を示したものである。 1……上方ルツボ、2……下方ルツボ 3……原材料、4……液滴滴下装置 5……種結晶、6……単結晶
FIG. 1 is a schematic longitudinal sectional view of a method for producing a single crystal according to the present invention,
FIG. 2 is a longitudinal sectional view of an optical insertion loss measuring device, FIG. 3 is an explanatory view showing a scintillator characteristic measuring system of a crystal, and FIG. 4 is a γ-ray spectrum diagram. 1 upper crucible 2 lower crucible 3 raw material 4 droplet dropping device 5 seed crystal 6 single crystal

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炉中央部の温度上限が原材料の溶融温度以
上であり、炉上下端の温度下限が結晶晶出温度以下であ
るような温度勾配をもつ炉中に、原材料を収納した上方
ルツボと、上方ルツボで作られた原材料融液の液滴を受
けこれを晶出させる下方ルツボを入れ、これらのルツボ
を炉内上部から徐々に降下させ、上方ルツボで溶融した
原材料を下方ルツボ中に晶出させて光学用単結晶を製造
する方法において、化学量論比をAとした時にほぼ1Aと
なる割合で配合した酸化物原料を用い、結晶晶出部近傍
の温度勾配を2〜20℃/cm、結晶の成長速度を5mm/時以
下の条件の元で操業し、単結晶を構成する元素組成が酸
化物単位で化学量論比をAとした時に0.95A〜1.05Aの範
囲である単結晶を得ることを特徴とする光学用単結晶の
製造方法。
An upper crucible containing raw materials in a furnace having a temperature gradient such that the upper limit of the temperature at the center of the furnace is equal to or higher than the melting temperature of the raw materials and the lower limit of the temperature at the upper and lower ends of the furnace is equal to or lower than the crystallization temperature. Then, put the lower crucible that receives and crystallizes the droplets of the raw material melt made by the upper crucible, gradually lowers these crucibles from the upper part of the furnace, and puts the raw material melted by the upper crucible into the lower crucible. In the method of producing an optical single crystal by crystallizing, an oxide raw material blended at a ratio of approximately 1 A when the stoichiometric ratio is A is used, and the temperature gradient near the crystallized portion is 2 to 20 ° C. / cm, operating under the condition that the crystal growth rate is 5 mm / hour or less, and the element composition constituting the single crystal is in the range of 0.95 A to 1.05 A when the stoichiometric ratio is A in oxide units. A method for producing an optical single crystal, comprising obtaining a single crystal.
【請求項2】光学用単結晶がLiTaO3またはBi4Ge3O12
あることを特徴とする特許請求の範囲1に記載した光学
用単結晶の製造方法。
2. The method for producing an optical single crystal according to claim 1, wherein the optical single crystal is LiTaO 3 or Bi 4 Ge 3 O 12 .
JP9078190A 1990-04-05 1990-04-05 Manufacturing method of optical single crystal Expired - Fee Related JP2881737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9078190A JP2881737B2 (en) 1990-04-05 1990-04-05 Manufacturing method of optical single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9078190A JP2881737B2 (en) 1990-04-05 1990-04-05 Manufacturing method of optical single crystal

Publications (2)

Publication Number Publication Date
JPH03290389A JPH03290389A (en) 1991-12-20
JP2881737B2 true JP2881737B2 (en) 1999-04-12

Family

ID=14008144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9078190A Expired - Fee Related JP2881737B2 (en) 1990-04-05 1990-04-05 Manufacturing method of optical single crystal

Country Status (1)

Country Link
JP (1) JP2881737B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135228A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 METHOD FOR GROWING LiTaO3 SINGLE CRYSTAL AND METHOD FOR PROCESSING LiTaO3 SINGLE CRYSTAL

Also Published As

Publication number Publication date
JPH03290389A (en) 1991-12-20

Similar Documents

Publication Publication Date Title
JPH0152359B2 (en)
CN110029397B (en) Compound lithium cesium germanate and lithium cesium germanate nonlinear optical crystal as well as preparation method and application thereof
JP2881737B2 (en) Manufacturing method of optical single crystal
EP0642603B1 (en) Single cesium titanyl arsenate-type crystals and their preparation
US3939252A (en) Dilithium heptamolybdotetragadolinate
EP0187843B1 (en) Growth of single crystal cadmium-indium-telluride
JP2636929B2 (en) Method for producing bismuth germanate single crystal
JP2826364B2 (en) Manufacturing method of optical single crystal
JP4044315B2 (en) Single crystal manufacturing method
JPH08295507A (en) Optical crystal and its production
JP3115145B2 (en) Single crystal manufacturing method
US4537653A (en) Synthesis of beryl crystals
JP2000264787A (en) Production of nonlinear optical crystal
JP2622165B2 (en) Method for producing bismuth germanate single crystal
KR100321373B1 (en) Method for fabricating bismuth germanium oxides crystal
JPS606912B2 (en) Manufacturing method of indium borate single crystal
RU2103425C1 (en) Method of growing strontium tetraborate monocrystals
RU2112820C1 (en) Method of growing lithium triborate monocrystals
JPH0411513B2 (en)
RU2128734C1 (en) METHOD OF PREPARING MONOCRYSTALS OF POTASSIUM TITANYL ARSENATE KTiOAsO4
JP2741747B2 (en) Oxide single crystal and method for producing the same
JP3021937B2 (en) Method for producing cadmium manganese tellurium single crystal
JPH05117096A (en) Method for growing thin film of lithium niobate single crystal
JPH05270995A (en) Production of cadmium-tellurium based single crystal
JP2905321B2 (en) Lithium borate single crystal and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees