JPH03290389A - Optical single crystal and production thereof - Google Patents

Optical single crystal and production thereof

Info

Publication number
JPH03290389A
JPH03290389A JP9078190A JP9078190A JPH03290389A JP H03290389 A JPH03290389 A JP H03290389A JP 9078190 A JP9078190 A JP 9078190A JP 9078190 A JP9078190 A JP 9078190A JP H03290389 A JPH03290389 A JP H03290389A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
raw material
furnace
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9078190A
Other languages
Japanese (ja)
Other versions
JP2881737B2 (en
Inventor
Shinji Makikawa
新二 牧川
Toshihiko Riyuuou
俊彦 流王
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP9078190A priority Critical patent/JP2881737B2/en
Publication of JPH03290389A publication Critical patent/JPH03290389A/en
Application granted granted Critical
Publication of JP2881737B2 publication Critical patent/JP2881737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To obtain a single crystal having high quality for a light wave-guiding path or a scintillator by gradually lowering upper and lower crucibles received in upper part inside of a furnace having a fixed temperature gradient and crystallizing raw material melted in the upper crucible into the lower crucible. CONSTITUTION:A temperature gradient in which an upper limit is above melting temperature of ram material and a lower limit is below crystallizing temperature of a crystal is made in a furnace. In the furnace, an upper crucible containing raw material and a lower crucible receiving liquid drop of melt generated in the upper crucible and crystallizing the liquid drop are received. Next, said crucibles are gradually lowered from upper part of the furnace and raw material is crystallized in the lower crucible. Then, the aimed optical single crystal of LiTaO3, LiNbO3 or Bi4Ge3O12 formula having 0.95-1.05 (in a stoichiometric ratio) element composition constituting the single crystal is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は光学用単結晶、特には化学的量論比組成をもつ
先導波路用、シンチレータ−用の高品質の単結晶および
その製造方法に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to an optical single crystal, particularly a high quality single crystal having a stoichiometric composition for use in guiding waveguides and scintillators, and a method for producing the same. It is something.

(従来の技術) 先導波路用に使用される結晶としてはタンタル酸リチウ
ム(LiTaO:+)、ニオブ酸リチウム(LiNbO
s)などが知られており、これらの結果は通常チョコラ
ルスキー法で製造されている。
(Prior art) Lithium tantalate (LiTaO:+), lithium niobate (LiNbO) are used as crystals for guiding waveguides.
s) etc. are known, and these results are usually produced by the Czochralski method.

しかし、この方法ではメルト内の温度勾配を小さくする
ことが非常に難しいことから高品質の結晶を得ることが
難しく、これには結晶の組成制御がコングルエンド組成
に近いものしか得られず、先導波路用として必要とされ
る化学的量論組成のものが得られないという欠点がある
However, with this method, it is extremely difficult to reduce the temperature gradient within the melt, making it difficult to obtain high-quality crystals. The drawback is that the stoichiometric composition required for a leading waveguide cannot be obtained.

(発明が解決しようとする課題) そのため、最近では集光式フローティングゾーン法や水
平ブリッジマン法を用いて化学的量論比組成に近い結晶
を得るという方法も提案されている(北村健二氏、人工
鉱物学会講演要旨集、89、参照)が、これらの方法に
は大きな結晶を得ることができないという不利がある。
(Problem to be solved by the invention) Therefore, recently, methods have been proposed to obtain crystals with close to stoichiometric composition using the condensing floating zone method or the horizontal Bridgman method (Kenji Kitamura, (Refer to Proceedings of the Japan Society for Artificial Mineralogy, 89) However, these methods have the disadvantage that large crystals cannot be obtained.

また、チョクラルスキー法や通常のブリッジマン法では
、融液がルツボと長時間接触しているためにこれらが反
応してルツボ材料が結晶内に混入してこれが結晶の特性
を劣化させるという欠点があり、特にシンチレータ−結
晶であるゲルマン酸ビスマスではルツボ材である白金の
混入によってエネルギー分解能、発光量などのシンチレ
ータ−特性が劣化するという欠点がある。
In addition, in the Czochralski method and the normal Bridgman method, the melt is in contact with the crucible for a long time, so these react and the crucible material gets mixed into the crystal, which deteriorates the properties of the crystal. In particular, bismuth germanate, which is a scintillator crystal, has the disadvantage that scintillator properties such as energy resolution and luminescence amount deteriorate due to the inclusion of platinum, which is a crucible material.

(課題を解決するための手段) 本発明はこのような不利を解決した光学用単結晶および
その製造方法に関するものであり、これは単結晶を構成
する元素組成が化学的量論比で0.95〜1.05の範
囲であることを特徴とする光学用単結晶および上限が原
材料の溶融温度以上であり、下限が結晶晶出温度以下で
あるような温度勾配をもつ炉中に、原材料を収納した上
方ルツボとこの上方ルツボで作られた原材料融液の液滴
を受けこれを晶出させる下方ルツボを入れて結晶晶出に
したがって温度勾配を保持しながらこれらのルツボを炉
内上部から徐々に降下させ、上方ルツボで溶融した原材
料融液を下方ルツボ中に移し、これを晶出させて、単結
晶を構成する元素組成が化学的量論比で0,95〜1.
05の範囲である単結晶を得ることを特徴とする光学用
単結晶の製造方法に関するものである。
(Means for Solving the Problems) The present invention relates to an optical single crystal that solves the above-mentioned disadvantages, and a method for producing the same, in which the elemental composition constituting the single crystal has a stoichiometric ratio of 0. The raw material is placed in a furnace having an optical single crystal characterized by a temperature range of 95 to 1.05 and a temperature gradient such that the upper limit is above the melting temperature of the raw material and the lower limit is below the crystallization temperature. A lower crucible that receives droplets of raw material melt produced in the upper crucible and crystallizes them is inserted into the upper crucible, and these crucibles are gradually moved from the upper part of the furnace while maintaining a temperature gradient as the crystals crystallize. The raw material melt melted in the upper crucible is transferred to the lower crucible and crystallized, so that the elemental composition constituting the single crystal is in the stoichiometric ratio of 0.95 to 1.
The present invention relates to a method for producing an optical single crystal, which is characterized in that a single crystal having a particle size of 0.05 is obtained.

すなわち5本発明者らは先導波路用、シンチレータ−用
の高品質の単結晶および製造方法について種々検討した
結果、この製造についてはいわゆる垂直方式のブリッジ
マン法によることがよいと判断し、これについては原材
料を収納する上方ルツボと、この上方ルツボで溶融した
原材料融液の液滴を受けこれを晶出させる下方ルツボと
を準備し、これらのルツボを温度上限が原材料の溶融温
度以上であり、温度下限が結晶々出温度以下で上限が上
部に下限が下部にあるような温度勾配をもつ炉中に入れ
、これらのルツボをこの炉中で炉内上部から徐々に下降
させれば上方ルツボで溶解した原材料の液滴が下方ルツ
ボに徐々に集められ、ここて晶出するので目的とする単
結晶を容易に得ることができることを見出すと共に、こ
れによればi結晶を構成する元素組成が化学的量論比で
0.95〜1.05の範囲のものになるということを確
認して本発明を完成させた。
In other words, the inventors of the present invention have conducted various studies on high-quality single crystals for guiding waveguides and scintillators and their manufacturing methods, and have determined that it is best to use the so-called vertical Bridgman method for manufacturing them. prepares an upper crucible that stores the raw material and a lower crucible that receives droplets of the raw material melt melted in the upper crucible and crystallizes the droplets, and these crucibles have an upper temperature limit that is higher than the melting temperature of the raw material, If these crucibles are placed in a furnace with a temperature gradient such that the lower temperature limit is below the crystallization temperature, the upper limit is at the top, and the lower limit is at the bottom, and these crucibles are gradually lowered from the top of the furnace, the upper crucible It was discovered that droplets of the dissolved raw material were gradually collected in the lower crucible and crystallized there, making it possible to easily obtain the desired single crystal. The present invention was completed by confirming that the stoichiometric ratio is in the range of 0.95 to 1.05.

以下にこれをさらに詳述する。This will be explained in further detail below.

(作用) 本発明は先導波路用、シンチレータ−用の高品質の単結
晶およびその製造方法に関するものである。
(Function) The present invention relates to a high quality single crystal for guiding waveguides and scintillators, and a method for manufacturing the same.

本発明は先導波路用、シンチレータ−用に使用される光
学用単結晶は関するものであることから具体的にはタン
タル酸リチウム(LiTaOa)、ニオブ酸リチウム(
LiNb03) 、ゲルマン酸ビスマス(Bi。
Since the present invention relates to optical single crystals used for guiding waveguides and scintillators, specifically, lithium tantalate (LiTaOa), lithium niobate (
LiNb03), bismuth germanate (Bi.

Ga30.□)およびこれらの製造方法に関するもので
ある。
Ga30. □) and their manufacturing methods.

これらの単結晶の製造はいわゆる垂直方式のブリッジマ
ン法で行なはれるが、これは例えば第1図に示したよう
な装置て行なわれる。
These single crystals are produced by the so-called vertical Bridgman method, which is carried out using, for example, an apparatus as shown in FIG.

第1図に示したようにこの方法は原材料3を収納した上
部ルツボ1と、この上方ルツボ1で溶融した原材料融液
の液滴を受ける液滴量は装置4を備えたこの融液を単結
晶に晶出させるための下方ルツボ2とから構成されてい
る。この2つのルツボは温度上限が原材料の融点以上に
、また下限温度が単結晶の晶出温度以下に保たれており
、第1図に示したように原材料3の下端に融点温度Aが
存在し、融液の下端に晶出開始温度Bがあるような第1
図に示す温度勾配をもつ電気炉中に収容されている。
As shown in FIG. 1, this method consists of an upper crucible 1 containing a raw material 3, and a device 4 for receiving the droplets of the raw material melt melted in the upper crucible 1. It consists of a lower crucible 2 for crystallization. The upper temperature limit of these two crucibles is kept above the melting point of the raw material, and the lower limit temperature is kept below the crystallization temperature of the single crystal, and as shown in Figure 1, the melting point temperature A exists at the lower end of the raw material 3. , the first one has a crystallization start temperature B at the lower end of the melt.
It is housed in an electric furnace with the temperature gradient shown in the figure.

第1図に示した状態では上部ルツボ1に収納されている
原材料は電気炉により加熱されるが未だ融点以下である
ために溶融することはないが、この炉内に上下ルツボを
矢印の方向に徐々に移動し、上方ルツボの下端が、A点
に達すると原材料3はこの部分のみが溶融して液滴とな
り、これか滴下装置4を経て下方ルツボ2の中に滴下さ
れるが、この下方ルツボ2に滴下した融液はこの部分が
晶出温度以上とされているために単結晶として晶出はし
ない。
In the state shown in Figure 1, the raw material stored in the upper crucible 1 is heated by the electric furnace, but it does not melt because it is still below the melting point. Gradually moving, when the lower end of the upper crucible reaches point A, only this part of the raw material 3 melts and becomes a droplet, which is dropped into the lower crucible 2 via the dropping device 4. The melt dropped into the crucible 2 does not crystallize as a single crystal because this portion is above the crystallization temperature.

しかし、この上下ルツボがさらに炉内を下降するとその
間に上方ルツボ1に収納されている原材料3は順次溶融
し、その融液のM滴が下方ルツボ2に集められるが、こ
の下端部分が晶出開始温度B点に達するとこの部分に種
結晶5が予じめ設けられているのでこれは単結晶6とし
て成長し、上下ルツボがこの電気炉中を通過し終るとき
には上方ルツボ1に収納されていた原材料3はすべて下
方ルツボ中に単結晶6として晶出することになる。
However, as the upper and lower crucibles move further down inside the furnace, the raw material 3 stored in the upper crucible 1 is sequentially melted, and M droplets of the melt are collected in the lower crucible 2, but the lower end portion is crystallized. When the starting temperature reaches point B, the seed crystal 5 is previously provided in this area, so it grows as a single crystal 6, and when the upper and lower crucibles finish passing through this electric furnace, they are stored in the upper crucible 1. All of the raw material 3 will be crystallized as a single crystal 6 in the lower crucible.

この場合、原材料から得られる融液の温度は揮散物など
の生成によって融液を必要以上に過熱すると、1)融液
組成が最初の原料組成とズしてしまう、2)ルツボ材料
、例えば白金と融液との反応が進み、結晶内に白金が混
入し易くなるということから融点より 100℃を越え
ない温度に抑えて原材料3の下端が溶融開始温度となる
ようにし、融液の下端が育成開始温度となるようにする
ことがよく、具体的心は育成近傍の温度勾配を2℃/c
m以上とし、温度のゆらぎをこれが2℃/cm以下であ
ると気泡や転位が入り易いということから好ましくは5
〜b も5++++n/時以上とすると気泡や転移が入り易く
なるので好ましくは0.3〜3mm/時とすることがよ
く、この状態で溶融液のゾーンをI 0mm以上になる
ようにして結晶を育成すれば固液界面で発生する熱を効
果的に除くことができ、結晶内での気泡や介在物の発生
を抑えることができるし、また融液の温度ゆらぎを小さ
くすることで脈理やスリニージョンの発生を抑えること
ができる。
In this case, if the temperature of the melt obtained from the raw material is heated more than necessary due to the formation of volatile matter, 1) the melt composition will deviate from the initial raw material composition, 2) the crucible material, e.g. Since the reaction between the raw material 3 and the melt progresses, and platinum is likely to be mixed into the crystal, the temperature should be kept at no more than 100°C above the melting point so that the lower end of the raw material 3 reaches the melting start temperature, and the lower end of the melt It is best to set the temperature to the temperature at which the growth starts; specifically, the temperature gradient near the growth should be set to 2℃/c.
If the temperature fluctuation is less than 2°C/cm, bubbles and dislocations are likely to enter.
If ~b is also 5++++n/hour or more, bubbles and dislocations are likely to occur, so preferably it is 0.3 to 3 mm/hour.In this state, the crystal is grown by making the zone of the molten liquid I0 mm or more. By growing the crystal, it is possible to effectively remove the heat generated at the solid-liquid interface, suppress the generation of bubbles and inclusions within the crystal, and reduce the temperature fluctuation of the melt, which can reduce striae and It is possible to suppress the occurrence of slimy John.

なお、この結晶の組成の化学的量論比をAとしたとき、
これによれば結晶の組成をチョクラルスキー法では得ら
れない化学的量論比0.95A−1,05Aの範囲とす
ることができるので、光学特性のすぐれた大型のタンタ
ル酸リチウム、ニオブ酸リチウム単結晶を育成すること
ができるし、シンチレータ−用結晶としてのゲルマン酸
ビスマスについては融液とルツボの接触幅を融液幅に限
定することができるので、ルツボの大部分が融液と長時
間接触していた従来方法よりも結晶中の介在物を大幅に
低減することができ、すぐれた特性をもつシンチレータ
−を得ることができる。
Note that when the stoichiometric ratio of the composition of this crystal is A,
According to this method, it is possible to set the crystal composition to a stoichiometric ratio range of 0.95A to 1.05A, which cannot be obtained by the Czochralski method. Lithium single crystals can be grown, and for bismuth germanate, which is used as a scintillator crystal, the contact width between the melt and the crucible can be limited to the width of the melt, so most of the crucible can be Inclusions in the crystal can be significantly reduced compared to the conventional method of contacting the crystal for a long period of time, and a scintillator with excellent properties can be obtained.

(実施例) つぎに本発明の実施例をあげる。(Example) Next, examples of the present invention will be given.

実施例1 第1図における上部ルツボ1を直径60mmφ、長さ1
00+nm 42の白金製ルツボとし、これに炭酸リチ
ウム249.9 &と酸化タンタル899.0gとを1
,000 ’t:で仮焼し、酸化リチウム:酸化タンタ
ル= 0.50000.5000 (モル比)としたも
のを装入し、この下方に同一寸法の白金製ルツボからな
る下方ルツボ2をセットした。
Example 1 The upper crucible 1 in Fig. 1 has a diameter of 60 mmφ and a length of 1.
00+nm 42 platinum crucible, and 249.9 g of lithium carbonate and 899.0 g of tantalum oxide were placed in it.
,000't: and charged with lithium oxide: tantalum oxide = 0.50000.5000 (molar ratio), and lower crucible 2 consisting of a platinum crucible of the same size was set below this. .

この上下ルツボを第1図に示したような温度勾配をもつ
電気炉中に設置し、この炉内に上下ルツボを3mm/時
の速度で下降させたところ、上方ルツボの下端が1,2
80℃でとなったときに原材料が溶融され、滴下された
のでこの液滴を下方ルツボで受け、下方ルツボでの融液
幅が10mmになったときにこの部分が1,250 t
になるようにし、このときの融液付近および育成付近の
温度勾配を5℃/cmとし、同一位置での温度ゆらぎを
1℃となるようにし、25時間で上方ルツボl中の原材
料がすべて下方ルツボ2中に融液となるようにしたとこ
ろ、30時間後に直径60mmφ、長さ70mmの単結
晶を得ることができた。
The upper and lower crucibles were placed in an electric furnace with a temperature gradient as shown in Figure 1, and when lowered into the furnace at a speed of 3 mm/hour, the lower end of the upper crucible
When the temperature reached 80℃, the raw material was melted and dropped, and this droplet was received in the lower crucible, and when the melt width in the lower crucible became 10mm, this part was 1,250 t.
At this time, the temperature gradient near the melt and near the growth was set to 5°C/cm, and the temperature fluctuation at the same position was set to 1°C, and all the raw materials in the upper crucible l were moved downward in 25 hours. When the melt was placed in the crucible 2, a single crystal with a diameter of 60 mm and a length of 70 mm was obtained after 30 hours.

ライで、この結晶を化学分析したところ、これは酸化リ
チウム二酸化タンタル= 0.499:0.501(モ
ル比)の組成をもつものであり、これをポーリングした
のち、9 X 9 X25mmサイズのブロックを切り
出し、予じめ<001 >方向に切断した2 5mm方
向の面を光学研磨し、この面に第2図に示した装置を用
いて1,310nmのレーザーを照射してその消光比を
測定したところ、40dBの結果が得られた。
When we chemically analyzed this crystal in Lai, we found that it had a composition of lithium tantalum dioxide = 0.499:0.501 (molar ratio), and after polling it, we made it into a 9 x 9 x 25 mm block. A 25 mm-long surface cut in advance in the <001> direction was optically polished, and this surface was irradiated with a 1,310 nm laser using the apparatus shown in Figure 2 to measure its extinction ratio. As a result, a result of 40 dB was obtained.

しかし、比較のためにチョクラルスキー法で育成した結
晶を化学分析したところ、その結晶組成は酸化リチウム
二酸化タンタル= 0.485:0.514(モル比)
の組成であり、上記とP1様の方法でその消光比を測定
したところ、これは15dBという結果を示した。
However, for comparison, chemical analysis of crystals grown by the Czochralski method revealed that the crystal composition was lithium oxide tantalum dioxide = 0.485:0.514 (molar ratio)
When its extinction ratio was measured using the method described above and P1, it was found to be 15 dB.

実施例2 実施例1で使用した白金ルツボに酸化ビスマス(Bi2
03) 1.122.2gと酸化ゲルマニウム(GeO
z)377.8gとを1,000℃で仮焼して酸化ビス
マス:酸(IJ’ルマニウム=0.40:0.50  
(モル比)であるものを装入し、この下方に同一寸法の
白金ルツボをセットした。
Example 2 Bismuth oxide (Bi2) was added to the platinum crucible used in Example 1.
03) 1.122.2g and germanium oxide (GeO
z) 377.8g at 1,000℃ to obtain bismuth oxide:acid (IJ'rumanium=0.40:0.50)
(molar ratio), and a platinum crucible of the same size was set below this.

この上下ルツボを第1図に示したような温度勾配をもつ
電気炉中に設置し、この炉内に上下ルツボを2111f
fl/時の速度で下降させたところ、上方ルツボ1の下
iが1,080℃になったときに原材料が溶融され、滴
下されたのでこの液滴を下方ルツボ2に受け、下方ルツ
ボ2における融液幅が10mmになったときにこの部分
が1,050℃になるようにし、このときの融液付近お
よび育成付近の温度勾配を10℃/cmとし、同一位置
での温度ゆらぎを2℃となるようにし、40時間で上方
ルツボ1の原材料3がすべて下方ルツボ2中に融液とし
て貯えられるようにしたところ、45時間後に直径60
)、長さ70mmfの結晶を成長させることができた。
These upper and lower crucibles are installed in an electric furnace with a temperature gradient as shown in Figure 1, and the upper and lower crucibles are placed in this furnace at
When the lower part of the upper crucible 1 reached 1,080°C, the raw material was melted and dropped, and the droplets were received by the lower crucible 2 and When the melt width becomes 10 mm, this part is set to 1,050°C, the temperature gradient near the melt and the growth area at this time is set to 10°C/cm, and the temperature fluctuation at the same position is set to 2°C. When all of the raw material 3 in the upper crucible 1 was stored as a melt in the lower crucible 2 in 40 hours, the diameter was 60 mm after 45 hours.
), a crystal with a length of 70 mmf could be grown.

ついでこの結晶を化学分析したところ、これは酸化ビス
マス、酸化ゲルマニウム= 0.399+0.601(
モル比)の組成をもつものであり、これから6x 12
X 24mmのブロックを切り出し、その5 X 24
mmの面を鏡面研磨したのち、第2図に示した装置を用
いてこれに137 Csの発生するγ線を照射して第4
図の関係を求め、これよりエネルギー分解能式△E/E
xlOO(%)より求めたところ、10%の結果が得ら
れた。
Next, chemical analysis of this crystal revealed that it was bismuth oxide, germanium oxide = 0.399 + 0.601 (
molar ratio), and from this, 6x 12
Cut out a block of 5 x 24 mm.
After mirror-polishing the surface of mm, it was irradiated with gamma rays generated by 137 Cs using the equipment shown in Fig.
Find the relationship in the figure and use the energy resolution formula △E/E
When calculated from xlOO (%), a result of 10% was obtained.

しかし、比較のためにチョコラススキー法で同様の結晶
を育成し、これを化学分析してその結晶組成をしらべた
ところ、これは酸化ビスマヌ:*化ゲルマニウム=0.
424:0.564  (モル比)であり、この結晶の
エネルギー分解能を上記と同じ方法でしらべたとこるこ
れは最大15%という結果を示した。
However, for comparison, a similar crystal was grown using the Chocolaske method, and when it was chemically analyzed to determine its crystal composition, it was found to be bismanu oxide: germanium oxide = 0.
424:0.564 (molar ratio), and the energy resolution of this crystal was investigated using the same method as above and showed a maximum of 15%.

(発明の効果) 本発明は光学的単結晶およびその製造方法に関4゜ するもので、その製造方法は前記したように上限が原料
の溶融温度以上であり、下限が結晶々出温度以下である
ような温度勾配をもつ炉中に、原材料を収納した上方ル
ツボと、上方ルツボで作られた原材料融液の液滴を受け
これを晶出させる下方ルツボを入れて、これらのルツボ
を炉内上部から徐々に降下させ、上方ルツボで溶融した
原材料融液を下方ルツボ中で晶出させて単結晶を構成す
る元素組成が化学的量論比に近い単結晶を得るというも
のであり、これによればタンタル酸リチウム、ニオブ酸
リチウムのような光導波路用光学結晶を高い品質で容易
に得ることができるし、高品質のシンチレータ−用ゲル
マン酸ビスマスも容易に得ることができ、さらにはこれ
らの単結晶を構成する元素組成が化学的量論比で0.9
5〜1.05である単結晶を容易に得ることができると
いう工業的な有利性が与えられる。
(Effects of the Invention) The present invention relates to an optical single crystal and a method for producing the same, and as described above, the upper limit of the production method is equal to or higher than the melting temperature of the raw material, and the lower limit is equal to or lower than the crystallization temperature. An upper crucible containing raw materials and a lower crucible that receives and crystallizes droplets of the raw material melt produced in the upper crucible are placed in a furnace with a certain temperature gradient, and these crucibles are placed inside the furnace. The material melt is gradually lowered from the top, and the raw material melt melted in the upper crucible is crystallized in the lower crucible to obtain a single crystal whose elemental composition is close to the stoichiometric ratio. According to lithium tantalate and lithium niobate, it is possible to easily obtain high-quality optical crystals for optical waveguides, and also to obtain high-quality bismuth germanate for use in scintillators. The elemental composition that makes up the single crystal is 0.9 in stoichiometric ratio.
5 to 1.05 can be easily obtained, which provides an industrial advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による単結晶製造方法の縦断面概念図、
第2図は光の挿入損失測定装置の縦断面図、第3図は結
晶のシンチレータ−特性測定系を示す説明図、第4図は
γ線スペクトル図を示したものである。 1・・・上方ルツボ   2・・・下方ルツボ3・・・
原材料 4・・・液滴量は装置  5・・・種結晶6・・・単結
晶 1贋り配 第 図 LD九看 第 図
FIG. 1 is a longitudinal cross-sectional conceptual diagram of the single crystal manufacturing method according to the present invention;
FIG. 2 is a longitudinal sectional view of an optical insertion loss measuring device, FIG. 3 is an explanatory diagram showing a crystal scintillator characteristic measuring system, and FIG. 4 is a γ-ray spectrum diagram. 1... Upper crucible 2... Lower crucible 3...
Raw material 4...Droplet amount is equipment 5...Seed crystal 6...Single crystal 1 counterfeit layout diagram LD9 view diagram

Claims (1)

【特許請求の範囲】 1、単結晶を構成する元素組成が化学的量論比で0.9
5〜1.05の範囲であることを特徴とする光学的単結
晶。 2、単結晶がLiTaO_3、LiNbO_3またはB
i_4Ge_3O_1_2である請求項に記載した光学
的単結晶。 3、上限が原材料の溶融温度以上であり、下限が結晶々
出温度以下であるような温度勾配をもつ炉中に、原材料
を収納した上方ルツボと、上方ルツボで作られた原材料
融液の液滴を受けこれを晶出させる下方ルツボを入れ、
これらのルツボを炉内上部から徐々に降下させ、上方ル
ツボで溶融した原材料を下方ルツボ中に晶出させて、単
結晶を構成する元素組成が化学的量論比で0.95〜1
.05の範囲である単結晶を得ることを特徴とする光学
用単結晶の製造方法。
[Claims] 1. The elemental composition constituting the single crystal is 0.9 in stoichiometric ratio.
An optical single crystal characterized in that it has a molecular weight in the range of 5 to 1.05. 2. Single crystal is LiTaO_3, LiNbO_3 or B
An optical single crystal as claimed in claim which is i_4Ge_3O_1_2. 3. The upper crucible containing the raw material and the raw material melt produced in the upper crucible are placed in a furnace with a temperature gradient such that the upper limit is above the melting temperature of the raw material and the lower limit is below the crystallization temperature. Insert a lower crucible that receives the drops and crystallizes them.
These crucibles are gradually lowered from the upper part of the furnace, and the raw materials melted in the upper crucible are crystallized in the lower crucible, so that the elemental composition constituting the single crystal is 0.95 to 1 in stoichiometric ratio.
.. A method for producing an optical single crystal, characterized in that a single crystal having a molecular weight of 0.05 is obtained.
JP9078190A 1990-04-05 1990-04-05 Manufacturing method of optical single crystal Expired - Fee Related JP2881737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9078190A JP2881737B2 (en) 1990-04-05 1990-04-05 Manufacturing method of optical single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9078190A JP2881737B2 (en) 1990-04-05 1990-04-05 Manufacturing method of optical single crystal

Publications (2)

Publication Number Publication Date
JPH03290389A true JPH03290389A (en) 1991-12-20
JP2881737B2 JP2881737B2 (en) 1999-04-12

Family

ID=14008144

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9078190A Expired - Fee Related JP2881737B2 (en) 1990-04-05 1990-04-05 Manufacturing method of optical single crystal

Country Status (1)

Country Link
JP (1) JP2881737B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135228A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 METHOD FOR GROWING LiTaO3 SINGLE CRYSTAL AND METHOD FOR PROCESSING LiTaO3 SINGLE CRYSTAL

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018135228A (en) * 2017-02-21 2018-08-30 住友金属鉱山株式会社 METHOD FOR GROWING LiTaO3 SINGLE CRYSTAL AND METHOD FOR PROCESSING LiTaO3 SINGLE CRYSTAL

Also Published As

Publication number Publication date
JP2881737B2 (en) 1999-04-12

Similar Documents

Publication Publication Date Title
US4231838A (en) Method for flux growth of KTiOPO4 and its analogues
US5788764A (en) KTP solid solution single crystals and process for the production thereof
JPH03290389A (en) Optical single crystal and production thereof
CN1321229C (en) Flux growing method of R2CaB10O19 monocrystal
JP4072269B2 (en) Method for producing fluoride
JP2636929B2 (en) Method for producing bismuth germanate single crystal
US3939252A (en) Dilithium heptamolybdotetragadolinate
EP0642603B1 (en) Single cesium titanyl arsenate-type crystals and their preparation
Linares Growth of beryl from molten salt solutions
JP2826364B2 (en) Manufacturing method of optical single crystal
EP0174672A1 (en) Method of manufacturing bismuth germanate crystals
JP3021935B2 (en) Method for producing cadmium manganese tellurium single crystal
JP4228127B2 (en) Method for producing calcium fluoride crystals
JPH08295507A (en) Optical crystal and its production
JP2875699B2 (en) Lithium tantalate single crystal and method for producing the same
JP2002234795A (en) Lithium calcium aluminum fluoride single crystal and method for producing the same
JPH0329039B2 (en)
RU2112820C1 (en) Method of growing lithium triborate monocrystals
JPS606912B2 (en) Manufacturing method of indium borate single crystal
JPH06345580A (en) Production of single crystal
JPS5969490A (en) Manufacture of lithium tantalate single crystal
JP2741747B2 (en) Oxide single crystal and method for producing the same
JPS5858291B2 (en) Method for manufacturing two-component ionic crystal optical fiber
Olexeyuk et al. Preparation and some properties of thallium orthothioarsenate single crystals
JP2622165B2 (en) Method for producing bismuth germanate single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees