JP3021937B2 - Method for producing cadmium manganese tellurium single crystal - Google Patents

Method for producing cadmium manganese tellurium single crystal

Info

Publication number
JP3021937B2
JP3021937B2 JP4073665A JP7366592A JP3021937B2 JP 3021937 B2 JP3021937 B2 JP 3021937B2 JP 4073665 A JP4073665 A JP 4073665A JP 7366592 A JP7366592 A JP 7366592A JP 3021937 B2 JP3021937 B2 JP 3021937B2
Authority
JP
Japan
Prior art keywords
crucible
single crystal
growth
growing
cadmium manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4073665A
Other languages
Japanese (ja)
Other versions
JPH05279196A (en
Inventor
美能留 今枝
祐人 浅野
正二郎 嶽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4073665A priority Critical patent/JP3021937B2/en
Publication of JPH05279196A publication Critical patent/JPH05279196A/en
Application granted granted Critical
Publication of JP3021937B2 publication Critical patent/JP3021937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明はカドミウムマンガンテル
ル単結晶の製造方法に関する。
The present invention relates to a method for producing a cadmium manganese tellurium single crystal.

【0002】[0002]

【従来の技術】Cd1-xMnxTeをー般式とするカドミウムマ
ンガンテルルの単結晶(以下Cd1-xMnxTe系単結晶という
ことがある)は、光通信、光情報記録等に用いる半導体
レザーの戻り光防止用の光アイソレータ素子、光ファイ
バー電流センサ素子等として使用されるファラデー材料
であり、組成の相違により異なる波長の分野で使用され
るものである。また、当該単結晶はー般にはCd、Mn、Te
等を原料としてこれらの混合物をカーボンにて内面がコ
ートされた石英ガラス製の育成坩堝や、パイロリテック
ボロンナイトライド製の坩堝を入れた石英ガラスのアン
プル内に密閉した状態にてブリッジマン法によって製造
される。
(Hereinafter sometimes referred Cd 1-x Mn x Te single crystal) [Prior Art] Cd 1-x Mn x Te single crystal of cadmium manganese telluride to over general formula is optical communication, optical information recording, etc. This is a Faraday material used as an optical isolator element for preventing return light of a semiconductor laser, an optical fiber current sensor element, and the like, and is used in the field of different wavelengths due to a difference in composition. In addition, the single crystal is generally Cd, Mn, Te
Using the mixture as a raw material, the mixture is sealed by a Bridgman method in a quartz glass ampoule containing a quartz glass growth crucible whose inside surface is coated with carbon or a quartz glass crucible made of Pyrolyte boron nitride. Manufactured.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記したブ
リッジマン法によるCd1-xMnxTe系単結晶体の製造方法に
おいてはCd、Mn、Teの3者を溶解状態で反応させると、
特にMnとTeの反応により高温となって育成坩堝の内面が
損傷される。例えば、カーボンを内面にコートされた石
英ガラス製の坩堝を育成坩堝として用いる場合には育成
坩堝の内面にコートされているカーボンが剥離され、育
成坩堝内のCd1-xMnxTe融液が育成中に石英ガラスと反応
して結晶中に不純物としてSiが混入して多結晶となる公
算が高く、また育成坩堝にクラックが入ることに起因し
て単結晶にもクラックが入るとともに、育成坩堝が破壊
されて単結晶の育成を続行し得なくなるおそれがある。
また、パイロリテックボロンナイトライド製の坩堝を育
成坩堝として用いた場合には、前者の場合のごとき多結
晶化することはないが、育成坩堝の損傷によりその使用
し得る回数が少ない。例えば、Cd1-xMnxTeにおいてX=0.
48の化合物の場合には、育成坩堝は2〜3回程度しか使用
し得ない。従って、本発明の目的は、これらの問題に対
処することにある。
In the above-mentioned method for producing a Cd 1-x Mn x Te single crystal by the Bridgman method, when Cd, Mn and Te are reacted in a dissolved state,
In particular, the reaction between Mn and Te raises the temperature and damages the inner surface of the growth crucible. For example, when a quartz glass crucible coated with carbon on the inner surface is used as a growing crucible, the carbon coated on the inner surface of the growing crucible is peeled off, and the Cd 1-x Mn x Te melt in the growing crucible is removed. It is highly likely that Si reacts with quartz glass during the growth to mix with Si as an impurity in the crystal, resulting in polycrystals.In addition, cracks in the growth crucible cause cracks in the single crystal as well as growth crucibles. May be destroyed and the growth of the single crystal may not be continued.
Further, when a crucible made of Pyrrolitec boron nitride is used as a growth crucible, polycrystallization is not performed as in the former case, but the number of times that the growth crucible can be used is small due to damage to the growth crucible. For example, X = 0 in Cd 1-x Mn x Te.
In the case of 48 compounds, the growth crucible can be used only about two or three times. Accordingly, it is an object of the present invention to address these issues.

【0004】[0004]

【課題を解決するための手段】本発明は、Cd1-XMnX
Teの原料を育成坩堝内に密閉した状態でブリッジマン
法にて前記Cd1-XMnXTeの単結晶を育成するカドミ
ウムマンガンテルル単結晶の製造方法において、前記原
料として予めMnとTeとをMnの割合を0.09〜
0.48の範囲として反応させた反応物とCdを用いる
ことを特徴とするものである。
SUMMARY OF THE INVENTION The present invention provides a Cd 1 -X Mn X
In the method for producing a cadmium manganese tellurium single crystal in which a single crystal of Cd 1-x Mn x Te is grown by the Bridgman method in a state in which a Te raw material is sealed in a growth crucible, Mn and Te are previously used as the raw materials. Is from 0.09 to
It is characterized by using a reactant and Cd reacted in a range of 0.48 .

【0005】[0005]

【発明の作用・効果】本発明の製造方法においては、M
nとTeとを育成坩堝とは異なる他の反応容器で予め反
応させた反応物とCdを原料として採用しているため、
育成坩堝内でのMnとTeとの反応はほぼ皆無となる。
従って、育成坩堝内の融液が従来ほど高温になることは
なくて、育成坩堝の内面にコートされているカーボンが
損傷されて剥離することがなく、融液と石英ガラスとは
反応しないため単結晶中に育成坩堝の構成成分が不純物
として混入することがないとともに多結晶となることが
なく、また育成坩堝にクラックが入ることに起因する単
結晶でのクラックの発生がないとともに、育成坩堝が破
壊されて単結晶の育成が続行不能に陥ることもない。ま
た、パイロリテックボロンナイトライド製の坩堝を育成
坩堝として使用した場合においてもその内面の損傷が少
なく、育成坩堝の寿命が向上する。例えば、Cd1-X
XTeにおいてX=0.48の化合物の場合には使用
回数が2〜3回程度から20回以上と寿命が飛躍的に向
上する。このため、単結晶はバラツキのない高品質で光
学特性の安定した単結晶となる。特に、原料の一方であ
るMnとTeとの反応物は、Mnの割合を0.09〜
0.48の範囲として反応させた反応物Mn X Te
(0.09≦X≦0.48)であって、安定な容易に得
られる合金であり、目的とする単結晶を容易に製造する
ことができる。
In the manufacturing method of the present invention, M
n and Te are reacted in advance in another reaction vessel different from the growth crucible, and a reactant and Cd are used as raw materials.
There is almost no reaction between Mn and Te in the growing crucible.
Therefore, the melt in the growth crucible does not become as hot as before, the carbon coated on the inner surface of the growth crucible is not damaged and exfoliated, and the melt does not react with the quartz glass because it does not react. The constituents of the growing crucible do not mix as impurities in the crystal and do not become polycrystalline, and there is no crack in the single crystal due to cracks entering the growing crucible. The single crystal is not broken and cannot be grown. Further, even when a crucible made of Pyrrolitec boron nitride is used as a growing crucible, the inner surface thereof is less damaged and the life of the growing crucible is improved. For example, Cd 1-X M
n number of times of use in the case of the compound of X = 0.48 in X Te is 20 times more than the life of two to three times is remarkably improved. Therefore, the single crystal becomes a single crystal having high quality without variation and stable optical characteristics. In particular, one of the raw materials
The reaction product of Mn and Te having a Mn ratio of 0.09 to
Reactant Mn x Te reacted in the range of 0.48
(0.09 ≦ X ≦ 0.48) and is stable and easily obtained.
Alloy that is easy to produce the desired single crystal
be able to.

【0006】[0006]

【実施例】以下本発明の実施例を示す。 (実施例)原料としてMnとTeの反応物とCdとを使用し
て、X=0.09,0.13,0.30および0.48の4種類のCd1-xMnx
Te単結晶の育成を行った。MnとTeの反応物は不活性ガス
の下での加熱溶解、アーク溶解等の一般的方法で生成し
た。また、育成坩堝としては図1および図2に示す2種
類の坩堝A,Bを使用した。両坩堝A,Bとも底部の頂
角が40度、内径が16mm、外径が18mm、長さが150mmのも
のである。坩堝Aは内面にカーボンをコートしたシリカ
製の坩堝であり、所定量の原料Cを入れて真空引きしな
がら上部を封入して育成に供する。また、坩堝Bはパイ
ロリテックボロンナイトライド製の坩堝であり、所定量
の原料を入れた後底部の頂角40度、内径18.2mm、外径20
mmの石英ガラスのアンプルDに入れ、真空引きしながら
アンプルDの上部を封入して育成に供する。
Embodiments of the present invention will be described below. (Example) Using a reactant of Mn and Te and Cd as raw materials, four types of Cd 1-x Mn x of X = 0.09, 0.13, 0.30 and 0.48
Te single crystals were grown. The reactant of Mn and Te was formed by a general method such as heat melting under an inert gas and arc melting. Further, two types of crucibles A and B shown in FIGS. 1 and 2 were used as the growing crucible. Both crucibles A and B have a bottom apex angle of 40 degrees, an inner diameter of 16 mm, an outer diameter of 18 mm, and a length of 150 mm. The crucible A is a silica crucible having an inner surface coated with carbon. A predetermined amount of the raw material C is put in the crucible A, and the upper part is sealed while evacuation is performed for growth. Further, the crucible B is a crucible made of Pyrotechnic boron nitride, and after a predetermined amount of raw material is put, the apex angle of the bottom is 40 degrees, the inner diameter is 18.2 mm, and the outer diameter is 20 mm.
It is put into an ampoule D made of mm quartz glass, and the upper part of the ampoule D is sealed and cultivated while vacuuming.

【0007】原料Cを封入した坩堝A、および原料Cを
入れた坩堝Bを封入したアンプルDを縦型ブリッジマン
炉内にセットして原料Cを溶解した後、2mm/hrの速度
で単結晶を育成した。育成は、高温部(炉の上部)を1,
100〜1,120℃、低温部(炉の下部)を910〜930℃に設定
し、かつこの2つのゾーン間の温度勾配を20℃/cmに設
定して行った。
A crucible A containing the raw material C and an ampoule D containing the crucible B containing the raw material C are set in a vertical Bridgman furnace to melt the raw material C, and then the single crystal is formed at a speed of 2 mm / hr. Nurtured. For growing, the high temperature part (upper part of the furnace)
The temperature was set at 100 to 1,120 ° C., the low temperature section (the lower part of the furnace) was set at 910 to 930 ° C., and the temperature gradient between the two zones was set at 20 ° C./cm.

【0008】(比較例)原料としてMnとTeとCdとをそれ
ぞれ単体で使用した以外は上記実施例と同様に両坩堝
A,Bを使用して上記実施例と同様の条件で育成を行っ
た。但し、坩堝との反応性が高いMnの多いものについて
は、育成速度を早くした。
(Comparative Example) Growth was carried out under the same conditions as in the above embodiment using both crucibles A and B in the same manner as in the above embodiment, except that Mn, Te and Cd were used alone as raw materials. . However, for those having a high reactivity with the crucible and a large amount of Mn, the growing speed was increased.

【0009】(結晶性評価)実施例および比較例で得ら
れた単結晶の光学特性を表1および表2に示す。当該光
学特性は消光比測定により結晶性を評価したものであ
る。ここで消光比とは、クロスニコル状態の偏光子と検
光子の間に単結晶のサンプルを入れて、光の散乱状態に
より結晶性を評価するものである。消光比は数値の大き
いものほど結晶性が良いことを示しており、表1および
表2においては下記の基準で表示されている。
(Evaluation of Crystallinity) The optical properties of the single crystals obtained in Examples and Comparative Examples are shown in Tables 1 and 2. The optical characteristics are obtained by evaluating the crystallinity by measuring the extinction ratio. Here, the extinction ratio refers to a method in which a single crystal sample is placed between a polarizer and an analyzer in a crossed Nicols state, and crystallinity is evaluated based on a light scattering state. The larger the numerical value of the extinction ratio is, the better the crystallinity is, and in Tables 1 and 2, the extinction ratio is indicated by the following criteria.

【0010】 [0010]

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】(考察)カーボンコートしたシリカ製の坩
堝Aを使用した場合においては表1から明かなように、
本発明の方法を採用した場合単結晶の光学特性が著しく
向上していることがわかる。また、パイロリテックボロ
ンナイトライド製の坩堝Bを使用した場合において表2
から明かなように、本発明の方法を採用した場合坩堝の
使用できる回数が20回以上であってその寿命が著しく向
上していることがわかる。なお、高価な坩堝の寿命の向
上により単結晶の育成コストが廉価になる。
(Consideration) As shown in Table 1, when a silica crucible A coated with carbon is used,
It can be seen that the optical characteristics of the single crystal are significantly improved when the method of the present invention is employed. Table 2 shows the results when Crucible B made of Pyrrolitec boron nitride was used.
As can be seen, when the method of the present invention is employed, the number of times the crucible can be used is 20 times or more, and the life of the crucible is significantly improved. The cost of growing a single crystal is reduced by improving the life of an expensive crucible.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の製造方法を実施する坩堝の一例を示す
縦断面図である。
FIG. 1 is a longitudinal sectional view showing an example of a crucible for carrying out the production method of the present invention.

【図2】本発明の製造方法を実施する坩堝の他の一例を
示す縦断面図である。
FIG. 2 is a longitudinal sectional view showing another example of the crucible for carrying out the production method of the present invention.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ──────────────────────────────────────────────────続 き Continuation of front page (58) Field surveyed (Int.Cl. 7 , DB name) C30B 1/00-35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Cd1-XMnXTeの原料を育成坩堝内に密
閉した状態でブリッジマン法にて前記Cd1-XMnXTe
の単結晶を育成するカドミウムマンガンテルル単結晶の
製造方法において、前記原料として予めMnとTeと
Mnの割合を0.09〜0.48の範囲として反応さ
せた反応物とCdを用いることを特徴とするカドミウム
マンガンテルル単結晶の製造方法。
1. A Cd 1-X Mn wherein at Bridgman method X Te raw material in a sealed state to the breeding crucible Cd 1-X Mn X Te
In the method for producing a cadmium manganese tellurium single crystal for growing a single crystal , Mn and Te are reacted as the raw materials in advance with the ratio of Mn in the range of 0.09 to 0.48.
A method for producing a cadmium manganese tellurium single crystal, comprising using the reacted reactant and Cd .
JP4073665A 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal Expired - Lifetime JP3021937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073665A JP3021937B2 (en) 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073665A JP3021937B2 (en) 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal

Publications (2)

Publication Number Publication Date
JPH05279196A JPH05279196A (en) 1993-10-26
JP3021937B2 true JP3021937B2 (en) 2000-03-15

Family

ID=13524779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073665A Expired - Lifetime JP3021937B2 (en) 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal

Country Status (1)

Country Link
JP (1) JP3021937B2 (en)

Also Published As

Publication number Publication date
JPH05279196A (en) 1993-10-26

Similar Documents

Publication Publication Date Title
WO2004106597A1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
US4528061A (en) Process for manufacturing boron-doped gallium arsenide single crystal
US6514336B1 (en) Method of growing piezoelectric lanthanide gallium crystals
JPS6345198A (en) Production of crystal of multiple system
US5084206A (en) Doped crystalline compositions and a method for preparation thereof
JP3021937B2 (en) Method for producing cadmium manganese tellurium single crystal
Mateika et al. Czochralski growth of barium hexaaluminate single crystals
Shone et al. Vertical zone growth and characterization of undoped and Na, P and Mn doped ZnSe
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
JP3021935B2 (en) Method for producing cadmium manganese tellurium single crystal
US4483734A (en) Method for the preparation of single crystals of gadolinium gallium garnet
US4664744A (en) Process for the production of bismuth germanate monocrystals with a high scintillation response
US4302280A (en) Growing gadolinium gallium garnet with calcium ions
JP3207983B2 (en) Method for producing single crystal of group I-III-VI2 compound
US4708763A (en) Method of manufacturing bismuth germanate crystals
EP0355833A2 (en) Method of producing compound semiconductor single crystal
Harris et al. Optical studies of Czochralski and hydrothermal bismuth silicate
CN1279732A (en) Charge for vertical boat growth process and use thereof
EP0018111B1 (en) Method of producing ferrite single crystals
JP2001354499A (en) GaAs SINGLE CRYSTAL WAFER
CA1302848C (en) Process for making homogeneous lithium niobate
JPH04295097A (en) Production of cadmium manganese telluride single crystal
JP3115145B2 (en) Single crystal manufacturing method
JP2881737B2 (en) Manufacturing method of optical single crystal
JPH05310494A (en) Growth of single crystal