JPH05279196A - Production of cadmium manganese tellurium single crystal - Google Patents

Production of cadmium manganese tellurium single crystal

Info

Publication number
JPH05279196A
JPH05279196A JP7366592A JP7366592A JPH05279196A JP H05279196 A JPH05279196 A JP H05279196A JP 7366592 A JP7366592 A JP 7366592A JP 7366592 A JP7366592 A JP 7366592A JP H05279196 A JPH05279196 A JP H05279196A
Authority
JP
Japan
Prior art keywords
crucible
single crystal
tellurium
manganese
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7366592A
Other languages
Japanese (ja)
Other versions
JP3021937B2 (en
Inventor
Minoru Imaeda
美能留 今枝
Sukehito Asano
祐人 浅野
Shojiro Takeyama
正二郎 嶽山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4073665A priority Critical patent/JP3021937B2/en
Publication of JPH05279196A publication Critical patent/JPH05279196A/en
Application granted granted Critical
Publication of JP3021937B2 publication Critical patent/JP3021937B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prolong the life of a crucible and improve the single crystal quality, etc., in the growth of a cadmium manganese tellurium single crystal by Bridgman method using a raw material sealed in a crucible by using a raw material produced by reacting Mn with Te. CONSTITUTION:Manganese is made to react with tellurium in a reaction vessel different from a growing crucible. The reaction product of manganese and tellurium is charged together with cadmium into a crucible and sealed under evacuation. A Cd1-xMnxTe single crystal is grown in the crucible by Bridgman method. Since a reaction product of manganese and tellurium is used as the raw material, the reaction of manganese with tellurium does not take place in the growing crucible. Accordingly, the overheating of the molten liquid in the growing crucible by the reaction heat can be prevented to prevent the damage of the inner surface of the growing crucible and prolong the life of the crucible. There is no contamination of the cadmium manganese tellurium single crystal with the constituent component of the growing crucible.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はカドミウムマンガンテル
ル単結晶の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal of cadmium manganese tellurium.

【0002】[0002]

【従来の技術】Cd1-xMnxTeをー般式とするカドミウムマ
ンガンテルルの単結晶(以下Cd1-xMnxTe系単結晶という
ことがある)は、光通信、光情報記録等に用いる半導体
レザーの戻り光防止用の光アイソレータ素子、光ファイ
バー電流センサ素子等として使用されるファラデー材料
であり、組成の相違により異なる波長の分野で使用され
るものである。また、当該単結晶はー般にはCd、Mn、Te
等を原料としてこれらの混合物をカーボンにて内面がコ
ートされた石英ガラス製の育成坩堝や、パイロリテック
ボロンナイトライド製の坩堝を入れた石英ガラスのアン
プル内に密閉した状態にてブリッジマン法によって製造
される。
2. Description of the Related Art Cd 1-x Mn x Te single crystal of Cd 1-x Mn x Te (hereinafter sometimes referred to as Cd 1-x Mn x Te single crystal) is used for optical communication, optical information recording, etc. It is a Faraday material used as an optical isolator element for preventing return light of a semiconductor laser used in, an optical fiber current sensor element, and the like, and is used in fields of different wavelengths due to different compositions. The single crystal is generally Cd, Mn, Te.
As a raw material, these mixtures are grown by a Bridgman method in a sealed state in a quartz glass growth crucible whose inner surface is coated with carbon and a quartz glass ampoule containing a pyrolithic boron nitride crucible. Manufactured.

【0003】[0003]

【発明が解決しようとする課題】ところで、上記したブ
リッジマン法によるCd1-xMnxTe系単結晶体の製造方法に
おいてはCd、Mn、Teの3者を溶解状態で反応させると、
特にMnとTeの反応により高温となって育成坩堝の内面が
損傷される。例えば、カーボンを内面にコートされた石
英ガラス製の坩堝を育成坩堝として用いる場合には育成
坩堝の内面にコートされているカーボンが剥離され、育
成坩堝内のCd1-xMnxTe融液が育成中に石英ガラスと反応
して結晶中に不純物としてSiが混入して多結晶となる公
算が高く、また育成坩堝にクラックが入ることに起因し
て単結晶にもクラックが入るとともに、育成坩堝が破壊
されて単結晶の育成を続行し得なくなるおそれがある。
また、パイロリテックボロンナイトライド製の坩堝を育
成坩堝として用いた場合には、前者の場合のごとき多結
晶化することはないが、育成坩堝の損傷によりその使用
し得る回数が少ない。例えば、Cd1-xMnxTeにおいてX=0.
48の化合物の場合には、育成坩堝は2〜3回程度しか使用
し得ない。従って、本発明の目的は、これらの問題に対
処することにある。
By the way, in the above-mentioned method for producing a Cd 1-x Mn x Te-based single crystal body by the Bridgman method, when three members of Cd, Mn, and Te are reacted in a dissolved state,
In particular, the reaction between Mn and Te raises the temperature and damages the inner surface of the growing crucible. For example, when using a quartz glass crucible coated with carbon on the inner surface as a growth crucible, the carbon coated on the inner surface of the growth crucible is peeled off, and Cd 1-x Mn x Te melt in the growth crucible is It is highly likely that Si reacts with quartz glass during the growth and becomes mixed with Si as an impurity in the crystal to become a polycrystal, and also cracks occur in the single crystal due to cracks in the growth crucible and the growth crucible. May be destroyed and the growth of the single crystal may not be continued.
When a crucible made of Pyrolithec boron nitride is used as a growing crucible, it does not become polycrystallized as in the former case, but it can be used only a few times due to damage to the growing crucible. For example, in Cd 1-x Mn x Te X = 0.
In the case of 48 compounds, the growth crucible can be used only about 2 to 3 times. Therefore, it is an object of the present invention to address these issues.

【0004】[0004]

【課題を解決するための手段】本発明は、Cd1-xMnxTeの
原料を育成坩堝内に密閉した状態でブリッジマン法にて
前記Cd1-xMnxTeの単結晶を育成するカドミウムマンガン
テルル単結晶の製造方法において、前記原料として予め
MnとTeとを反応させた原料を用いることを特徴するもの
である。
According to the present invention, a single crystal of Cd 1-x Mn x Te is grown by the Bridgman method in a state where a raw material of Cd 1-x Mn x Te is sealed in a growth crucible. In the method for producing a single crystal of cadmium manganese tellurium, as the raw material,
It is characterized by using a raw material obtained by reacting Mn and Te.

【0005】[0005]

【発明の作用・効果】本発明の製造方法においては、Mn
とTeとを育成坩堝とは異なる他の反応容器で予め反応さ
せた反応物を原料の一部または全部として採用している
ため、育成坩堝内でのMnとTeとの反応は皆無またはこれ
に近い状態となる。従って、育成坩堝内の融液が従来ほ
ど高温になることはなくて、育成坩堝の内面にコートさ
れているカーボンが損傷されて剥離することがなく、融
液と石英ガラスとは反応しないため単結晶中に育成坩堝
の構成成分が不純物として混入することがないとともに
多結晶となることがなく、また育成坩堝にクラックが入
ることに起因する単結晶でのクラックの発生がないとと
もに、育成坩堝が破壊されて単結晶の育成が続行不能に
陥ることもない。また、パイロリテックボロンナイトラ
イド製の坩堝を育成坩堝として使用した場合においても
その内面の損傷が少なく、育成坩堝の寿命が向上する。
例えば、Cd1-xMnxTeにおいてX=0.48の化合物の場合には
使用回数が2〜3回程度から20回以上と寿命が飛躍的に向
上する。このため、単結晶はバラツキのない高品質で光
学特性の安定した単結晶となる。
In the manufacturing method of the present invention, Mn
Since the reaction product obtained by pre-reacting Fe and Te in another reaction vessel different from the growing crucible is adopted as a part or all of the raw material, there is no or no reaction between Mn and Te in the growing crucible. It will be close. Therefore, the melt in the growth crucible does not become as hot as in the conventional case, the carbon coated on the inner surface of the growth crucible is not damaged and peeled off, and the melt and quartz glass do not react with each other. The constituent components of the growing crucible in the crystal do not become a polycrystal together with being mixed as impurities, and also without the occurrence of cracks in the single crystal due to cracks in the growing crucible, the growing crucible It is not destroyed and the single crystal growth cannot be continued. Further, even when the crucible made of Pyrolithec boron nitride is used as the growing crucible, the inner surface of the crucible is less damaged and the life of the growing crucible is improved.
For example, in Cd 1-x Mn x Te, in the case of a compound of X = 0.48, the life is dramatically improved from about 2 to 3 times to 20 times or more. Therefore, the single crystal becomes a single crystal with high quality and stable optical characteristics without variations.

【0006】[0006]

【実施例】以下本発明の実施例を示す。 (実施例)原料としてMnとTeの反応物とCdとを使用し
て、X=0.09,0.13,0.30および0.48の4種類のCd1-xMnx
Te単結晶の育成を行った。MnとTeの反応物は不活性ガス
の下での加熱溶解、アーク溶解等の一般的方法で生成し
た。また、育成坩堝としては図1および図2に示す2種
類の坩堝A,Bを使用した。両坩堝A,Bとも底部の頂
角が40度、内径が16mm、外径が18mm、長さが150mmのも
のである。坩堝Aは内面にカーボンをコートしたシリカ
製の坩堝であり、所定量の原料Cを入れて真空引きしな
がら上部を封入して育成に供する。また、坩堝Bはパイ
ロリテックボロンナイトライド製の坩堝であり、所定量
の原料を入れた後底部の頂角40度、内径18.2mm、外径20
mmの石英ガラスのアンプルDに入れ、真空引きしながら
アンプルDの上部を封入して育成に供する。
EXAMPLES Examples of the present invention will be shown below. (Example) Four kinds of Cd 1-x Mn x of X = 0.09, 0.13, 0.30 and 0.48 were prepared by using a reaction product of Mn and Te and Cd as raw materials.
A Te single crystal was grown. The reaction products of Mn and Te were formed by general methods such as heat melting under inert gas and arc melting. As the growing crucible, two types of crucibles A and B shown in FIGS. 1 and 2 were used. Both crucibles A and B have a bottom apex angle of 40 degrees, an inner diameter of 16 mm, an outer diameter of 18 mm, and a length of 150 mm. The crucible A is a silica crucible having an inner surface coated with carbon. A crucible A is charged with a predetermined amount of the raw material C, and the upper part of the crucible A is sealed while being evacuated for growth. Further, crucible B is a crucible made of Pyrolitec boron nitride, which has a vertical angle of 40 degrees, an inner diameter of 18.2 mm, and an outer diameter of 20 after containing a predetermined amount of raw material.
It is put in an ampoule D of mm quartz glass, and the upper part of the ampoule D is sealed while being evacuated and is used for growth.

【0007】原料Cを封入した坩堝A、および原料Cを
入れた坩堝Bを封入したアンプルDを縦型ブリッジマン
炉内にセットして原料Cを溶解した後、2mm/hrの速度
で単結晶を育成した。育成は、高温部(炉の上部)を1,
100〜1,120℃、低温部(炉の下部)を910〜930℃に設定
し、かつこの2つのゾーン間の温度勾配を20℃/cmに設
定して行った。
A crucible A containing the raw material C and an ampoule D containing the crucible B containing the raw material C were set in a vertical Bridgman furnace to melt the raw material C, and then a single crystal was formed at a rate of 2 mm / hr. Was trained. For the growth, the high temperature part (upper part of the furnace)
The temperature was set to 100 to 1,120 ° C, the low temperature part (lower part of the furnace) was set to 910 to 930 ° C, and the temperature gradient between these two zones was set to 20 ° C / cm.

【0008】(比較例)原料としてMnとTeとCdとをそれ
ぞれ単体で使用した以外は上記実施例と同様に両坩堝
A,Bを使用して上記実施例と同様の条件で育成を行っ
た。但し、坩堝との反応性が高いMnの多いものについて
は、育成速度を早くした。
Comparative Example: Both crucibles A and B were used in the same manner as in the above-mentioned examples except that Mn, Te and Cd were used alone as raw materials, and the growth was carried out under the same conditions as in the above-mentioned examples. .. However, for those with a large amount of Mn, which has a high reactivity with the crucible, the growth rate was increased.

【0009】(結晶性評価)実施例および比較例で得ら
れた単結晶の光学特性を表1および表2に示す。当該光
学特性は消光比測定により結晶性を評価したものであ
る。ここで消光比とは、クロスニコル状態の偏光子と検
光子の間に単結晶のサンプルを入れて、光の散乱状態に
より結晶性を評価するものである。消光比は数値の大き
いものほど結晶性が良いことを示しており、表1および
表2においては下記の基準で表示されている。
(Evaluation of Crystallinity) Tables 1 and 2 show the optical characteristics of the single crystals obtained in Examples and Comparative Examples. The optical characteristics are obtained by evaluating the crystallinity by measuring the extinction ratio. Here, the extinction ratio means that a single crystal sample is put between a polarizer and an analyzer in the crossed Nicols state, and the crystallinity is evaluated by the light scattering state. The larger the numerical value of the extinction ratio, the better the crystallinity. In Tables 1 and 2, the following criteria are used.

【0010】 [0010]

【0011】[0011]

【表1】 [Table 1]

【0012】[0012]

【表2】 [Table 2]

【0013】(考察)カーボンコートしたシリカ製の坩
堝Aを使用した場合においては表1から明かなように、
本発明の方法を採用した場合単結晶の光学特性が著しく
向上していることがわかる。また、パイロリテックボロ
ンナイトライド製の坩堝Bを使用した場合において表2
から明かなように、本発明の方法を採用した場合坩堝の
使用できる回数が20回以上であってその寿命が著しく向
上していることがわかる。なお、高価な坩堝の寿命の向
上により単結晶の育成コストが廉価になる。
(Discussion) When the carbon-coated silica crucible A is used, as is clear from Table 1,
It can be seen that when the method of the present invention is adopted, the optical properties of the single crystal are remarkably improved. Further, in the case of using the crucible B made of Pyrolithec Boron Nitride, Table 2
As is clear from the above, when the method of the present invention is adopted, the crucible can be used more than 20 times and its life is remarkably improved. It should be noted that the cost of growing a single crystal is reduced due to the improvement of the life of the expensive crucible.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の製造方法を実施する坩堝の一例を示す
縦断面図である。
FIG. 1 is a vertical cross-sectional view showing an example of a crucible for carrying out a manufacturing method of the present invention.

【図2】本発明の製造方法を実施する坩堝の他の一例を
示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing another example of a crucible for carrying out the manufacturing method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】Cd1-xMnxTeの原料を育成坩堝内に密閉した
状態でブリッジマン法にて前記Cd1-xMnxTeの単結晶を育
成するカドミウムマンガンテルル単結晶の製造方法にお
いて、前記原料として予めMnとTeとを反応させた原料を
用いることを特徴するカドミウムマンガンテルル単結晶
の製造方法。
1. A method for producing a cadmium manganese tellurium single crystal, which comprises growing a single crystal of Cd 1-x Mn x Te by a Bridgman method in a state where a raw material of Cd 1-x Mn x Te is sealed in a growth crucible. 2. The method for producing a cadmium manganese tellurium single crystal according to, wherein a raw material obtained by previously reacting Mn and Te is used as the raw material.
JP4073665A 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal Expired - Lifetime JP3021937B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4073665A JP3021937B2 (en) 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4073665A JP3021937B2 (en) 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal

Publications (2)

Publication Number Publication Date
JPH05279196A true JPH05279196A (en) 1993-10-26
JP3021937B2 JP3021937B2 (en) 2000-03-15

Family

ID=13524779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4073665A Expired - Lifetime JP3021937B2 (en) 1992-03-30 1992-03-30 Method for producing cadmium manganese tellurium single crystal

Country Status (1)

Country Link
JP (1) JP3021937B2 (en)

Also Published As

Publication number Publication date
JP3021937B2 (en) 2000-03-15

Similar Documents

Publication Publication Date Title
EP1634981B1 (en) Indium phosphide substrate, indium phosphide single crystal and process for producing them
JPS6345198A (en) Production of crystal of multiple system
EP0513191B1 (en) Doped crystalline compositions and a method for preparation thereof
JPH05279196A (en) Production of cadmium manganese tellurium single crystal
JPH0234597A (en) Growing method for gaas single crystal by horizontal bridgman method
JP3021935B2 (en) Method for producing cadmium manganese tellurium single crystal
US4483734A (en) Method for the preparation of single crystals of gadolinium gallium garnet
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JPH06128096A (en) Production of compound semiconductor polycrystal
JPH04295097A (en) Production of cadmium manganese telluride single crystal
Veber et al. Bridgman growth of paratellurite single crystals
JP4200690B2 (en) GaAs wafer manufacturing method
JP2003146791A (en) Method of manufacturing compound semiconductor single crystal
JPS6153186A (en) Heater for resistance heating
JPS6355195A (en) Method for growing inorganic compound single crystal
JP3030584B2 (en) Method and apparatus for producing compound semiconductor single crystal
RU2156327C2 (en) Method of preparing charge for growing lanthanum-gallium silicate monocrystals
JPS58155719A (en) Manufacture of single crystal body
JPH025720B2 (en)
JPS6389497A (en) Production of silicon-added gallium arsenic single crystal
JPH05254997A (en) Method for growing oxide single crystal
JPS63274690A (en) Method and apparatus for producing inp single crystal
JPH0380194A (en) Rare earth-gallium-perovskite single crystal and production thereof
JPH01188500A (en) Production of compound semiconductor single crystal
JPH0465399A (en) Production of lithium niobate single crystal