JP2000264787A - Production of nonlinear optical crystal - Google Patents

Production of nonlinear optical crystal

Info

Publication number
JP2000264787A
JP2000264787A JP11077289A JP7728999A JP2000264787A JP 2000264787 A JP2000264787 A JP 2000264787A JP 11077289 A JP11077289 A JP 11077289A JP 7728999 A JP7728999 A JP 7728999A JP 2000264787 A JP2000264787 A JP 2000264787A
Authority
JP
Japan
Prior art keywords
crucible
crystal
nonlinear optical
sbbo
optical crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11077289A
Other languages
Japanese (ja)
Inventor
Kiyoaki Shinohara
清晃 篠原
Kenichi Muramatsu
研一 村松
Hiroshi Hamamura
寛 浜村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP11077289A priority Critical patent/JP2000264787A/en
Publication of JP2000264787A publication Critical patent/JP2000264787A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a crystal having a large thickness in the c-axis direction by providing a temperature gradient to a crucible containing a mixture of Sr2Be2B2O7 and a flux and growing a crystal by the solution Bridgman method. SOLUTION: A single crystal having more than 4-5 mm thickness in the c-axis direction is obtained and the size is sufficient for use as a nonlinear optical material for UV. A mixture of Sr2Be2B2O7 and a flux is put in a crucible, this crucible is moved in an electric furnace having a temperature gradient and a single crystal is grown from the top of the crucible by the Bridgman method. A strontium borate compound or this compound and an alkali fluoride are preferably used as the flux. The crucible 1 is moved downward in the furnace and cooling and crystal growth proceed from the bottom. The top of the crucible 1 is pointed in such a way that the amount of nuclei formed is reduced and one crystal is formed in the early stage. A powdery mixture is melted at 1,100 deg.C in a platinum crucible, poured in the crucible 1 for the Bridgman method and cooled.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、非線形光学効果を利用
することで入射レーザー光の波長を変調させる結晶、非
線形光学結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a crystal for modulating the wavelength of incident laser light by utilizing a nonlinear optical effect, and a method for manufacturing a nonlinear optical crystal.

【0002】[0002]

【従来の技術】非線形光学結晶Sr2Be2B2O7(SBBO)はFuji
an Institute of Research on the Structure of Matte
r, Chinese Academy of Science のC.T.Chen教授の研究
グループによって発明された紫外線用非線形光学材料
(UVNLO)である。紫外線用非線形光学材料には、他にB
aB2O4(BBO)やLiB3O5(LBO)といった材料がある。しか
し、BBOは吸収端が189nmにあるため、200nm程度以下の
波長の発生では吸収の問題が大きく、また、紫外線領域
での分散が大きいためSHG(第2高調波発生:Secondary
Harmonic Generation)で位相整合できる最短波長は20
5nm程度が限界である。また、LBOは吸収端は160nmと優
れているが、複屈折率が小さいためSHGで位相整合でき
る最短波長は277nm程度が限界である。そのためBBOやLB
Oでは200nm以下の波長の光の発生には不適である。
2. Description of the Related Art Nonlinear optical crystal Sr 2 Be 2 B 2 O 7 (SBBO)
an Institute of Research on the Structure of Matte
r, a nonlinear optical material for UV (UVNLO) invented by the research group of Professor CTChen of the Chinese Academy of Science. Other nonlinear optical materials for ultraviolet light include B
There are materials such as aB 2 O 4 (BBO) and LiB 3 O 5 (LBO). However, since the absorption edge of BBO is at 189 nm, the generation of a wavelength of about 200 nm or less causes a problem of absorption, and the dispersion in the ultraviolet region is large, so that SHG (second harmonic generation: Secondary)
The shortest wavelength that can be phase-matched by Harmonic Generation) is 20
The limit is about 5 nm. LBO has an excellent absorption edge of 160 nm, but the shortest wavelength that can be phase-matched by SHG is limited to about 277 nm because of its small birefringence. BBO and LB
O is not suitable for generating light having a wavelength of 200 nm or less.

【0003】これに対しSBBOは、吸収端が155nm程度と
低く、しかもSHGで位相整合できる最短波長は177nm以下
であることから、200nm以下の波長を発生させるには極
めて有効である。同様の理由から200nm以下の波長の光
の発生に適当な材料としてKBe2BO3F2(KBBF)があるが、
これは結晶構造の問題から劈開性が極めて強く、非線形
光学材料として十分な大きさの結晶を得ることが極めて
困難である。したがって、実質200nm以下の波長の光の
発生に適当な非線形光学材料としてはSBBOが最良にして
たった一つの材料であると考えられる。
On the other hand, SBBO has an absorption edge as low as about 155 nm, and the shortest wavelength that can be phase-matched by SHG is 177 nm or less. Therefore, SBBO is extremely effective for generating a wavelength of 200 nm or less. For the same reason, there is KBe 2 BO 3 F 2 (KBBF) as a material suitable for generating light with a wavelength of 200 nm or less.
This has extremely high cleavage properties due to the problem of the crystal structure, and it is extremely difficult to obtain a crystal having a sufficient size as a nonlinear optical material. Therefore, it is considered that SBBO is the only material best suited as a nonlinear optical material suitable for generating light having a wavelength of substantially 200 nm or less.

【0004】[0004]

【発明が解決しようとする課題】しかし、このSBBOは物
理定数的には極めて優れているが、非線形光学材料とし
て十分な大きさの結晶を得るのは、KBBF程ではないもの
の、決して容易ではないという問題がある。その原因の
第一はSBBOの結晶構造にある。SBBO結晶構造は、BO3
がBeO4の四面体により面方向に無限に結合されており、
このBe-B-Oからなるマクロアニオンシートが層状に積層
するような構造になっている。しかし、このマクロアニ
オンシート同士の結合は、BeO4の四面体によるものと、
Srイオンによるものが交互にきており、このためこの方
向における結晶成長速度は面方向に比べると著しく遅
く、結晶外形は板状晶になりやすい。第二の原因として
はSBBOが比調和溶融系の物質であり、そのままの組成で
融解することがなく、異組成の物質に分解してしまうこ
とが上げられる。このため、SBBO結晶は、そのものを融
解して再結晶させるという融液成長の方法がとれない。
したがって、SBBO組成を溶媒組成に溶解させ、その溶液
から析出させる溶液成長の方法でしか育成することがで
きず、この場合のSBBO結晶の成長速度は極めて遅い。特
に板状晶の厚さ方向(c軸方向)の成長速度が著しく遅
くなっている。
However, although this SBBO is extremely excellent in physical constants, it is not as easy as KBBF to obtain a crystal of a sufficient size as a nonlinear optical material. There is a problem. The primary cause is the crystal structure of SBBO. In the SBBO crystal structure, BO 3 groups are bound infinitely in the plane direction by a tetrahedron of BeO 4 ,
The structure is such that the macro-anion sheets made of Be-BO are layered. However, the binding between the macroanion sheets is due to the tetrahedron of BeO 4
Sr ions alternate with each other, so that the crystal growth rate in this direction is much slower than in the plane direction, and the crystal shape tends to be plate-like. The second cause is that SBBO is a material of a relative harmonic melting system, and does not melt with the same composition, but is decomposed into a material with a different composition. Therefore, the SBBO crystal cannot be melted and recrystallized by the melt growth method.
Therefore, the SBBO composition can be grown only by a solution growth method in which the SBBO composition is dissolved in a solvent composition and precipitated from the solution. In this case, the growth rate of the SBBO crystal is extremely slow. In particular, the growth rate of the plate-like crystal in the thickness direction (c-axis direction) is extremely slow.

【0005】このSBBOを、溶液成長法で最も一般的な方
法であるフラックス法で育成すると、結晶は薄い板状の
ものが多数析出し大きな単結晶を得るのは困難である。
SBBOは発明者であるchen等によって、フラックス法によ
る育成が報告されているものの、現状では紫外用途の非
線形光学材料として工業的に入手することはできていな
い。
When this SBBO is grown by the flux method, which is the most common method of the solution growth method, it is difficult to obtain a large single crystal by depositing a large number of thin plate-like crystals.
Although the inventor, chen et al., Reported that the SBBO was grown by the flux method, SBBO is currently not industrially available as a nonlinear optical material for ultraviolet applications.

【0006】[0006]

【課題を解決するための手段】このような問題を解決す
るために、本発明では、非線形光学結晶Sr2Be2B2O7(SBB
O)を溶液ブリッジマン法で作成することを特徴とする非
線形光学結晶の製造方法を提供する。
In order to solve such a problem, according to the present invention, a nonlinear optical crystal Sr 2 Be 2 B 2 O 7 (SBB
O) is prepared by the solution Bridgman method, and a method for producing a nonlinear optical crystal is provided.

【0007】[0007]

【実施の形態】本実施例で試みた溶液ブリッジマン法
は、結晶成長させる目的物質と、高温時にそれを溶解さ
せるための溶媒物質の混合体を坩堝にいれ、その坩堝自
体を温度勾配の存在する電気炉内を移動させることで、
坩堝先端部から単結晶を育成するというものである。
In the solution Bridgman method attempted in this example, a mixture of a target substance for crystal growth and a solvent substance for dissolving it at a high temperature is placed in a crucible, and the crucible itself is exposed to a temperature gradient. Moving through the electric furnace,
A single crystal is grown from the crucible tip.

【0008】この場合、坩堝は炉内の温度勾配を高温部
から低温部に向かって移動していくことになり、移動す
る坩堝は先端方向から徐々に冷却されていくことにな
る。したがって、坩堝先端が坩堝内容物の液相線温度以
下に達したところで先端部での核形成が始まり、坩堝の
移動によりさらに冷却が進むことで結晶成長がおこる。
さらに坩堝の移動によって、液相線温度に相当する温度
の線が坩堝の後方に向かって進んでいくのに合わせて結
晶成長も坩堝後方に向かって進行していくことになる。
ここで、使用する坩堝は先端が尖った形状を持たせるこ
とが普通であり、これにより生成する核の量をできるだ
け少なくし、初期段階で結晶を一つにしぼろうとするも
のである。
In this case, the crucible moves along the temperature gradient in the furnace from the high temperature section to the low temperature section, and the moving crucible is gradually cooled from the tip direction. Therefore, when the tip of the crucible reaches the liquidus temperature of the crucible content or lower, nucleation starts at the tip, and the crucible moves to further cool and crystal growth occurs.
Further, by the movement of the crucible, the crystal growth proceeds toward the rear of the crucible as the line having the temperature corresponding to the liquidus temperature advances toward the rear of the crucible.
Here, the crucible to be used usually has a pointed shape, so that the amount of generated nuclei is reduced as much as possible, and an attempt is made to unite the crystals in the initial stage.

【0009】本実施例で用いた電気炉(結晶合成炉の概
念図)を図1、坩堝の概念図を図2にそれぞれ示す。電
気炉は縦型になっており、円筒状の炉内に坩堝1が図の
ようにつり下げられている。この坩堝は炉内を下方にむ
かって移動することにより、最下部より冷却、結晶成長
が進行する。坩堝1は白金製で鉛筆のように尖った円筒
状の先端部に円柱状のパイプを取り付けた形状になって
いる。先端部分には、種結晶を入れるか、あるいは種結
晶無しの場合でも、過飽和状態から最初の核形成が起こ
るときに坩堝から液相線温度に達している領域で一気に
多核形成が起こっても、それを十分に吸収できるように
考慮したものである。
FIG. 1 shows an electric furnace (a conceptual diagram of a crystal synthesis furnace) used in this embodiment, and FIG. 2 shows a conceptual diagram of a crucible. The electric furnace is of a vertical type, and a crucible 1 is suspended in a cylindrical furnace as shown in the figure. The crucible moves downward in the furnace, whereby cooling and crystal growth progress from the lowermost part. The crucible 1 is made of platinum, and has a shape in which a cylindrical pipe is attached to a cylindrical tip pointed like a pencil. In the tip part, even if a seed crystal is put, or even if there is no seed crystal, even if polynucleus formation occurs at a stretch in the region reaching the liquidus temperature from the crucible when the first nucleation occurs from the supersaturated state, It is designed so that it can be sufficiently absorbed.

【0010】SBBOおよび溶液組成(SBBOを溶媒組成に溶
かし込んだ物)の合成は以下の手順で行った。SBBOにつ
いては固相反応による粉体合成を行っており、 2SrCO3 + 2BeO + 2H3BO3 → Sr2Be2B2O7 + 2CO2↑ + 3H
2O↑ の化学反応を利用している。使用した原料粉体は SrCO3 : 295.26g(2mol) 2BeO : 50.02g(2mol) 2H3BO3 : 123.68g(2mol) で、これらを秤量したのちクロスローリングミキサーを
利用して十分に混合を行った後、Φ150×150mmの白金坩
堝に入れ、950℃で48時間の熱処理を行った。熱処理を
施した粉体は乳鉢を用いて粉砕混合した後、再び950℃
で48時間の熱処理を施した。熱処理を施した粉体は再び
鉢を用いて粉砕混合した後、さらに950℃で24時間の熱
処理を施した。
The synthesis of SBBO and solution composition (SBBO dissolved in solvent composition) was performed according to the following procedure. For SBBO, powder synthesis by solid-state reaction is performed, and 2SrCO 3 + 2BeO + 2H 3 BO 3 → Sr 2 Be 2 B 2 O 7 + 2CO 2 ↑ + 3H
Utilizes the chemical reaction of 2 O ↑. The raw material powder used was SrCO3: 295.26 g (2 mol), 2BeO: 50.02 g (2 mol), 2H3BO3: 123.68 g (2 mol). It was placed in a platinum crucible of × 150 mm and heat-treated at 950 ° C. for 48 hours. The heat-treated powder is crushed and mixed using a mortar and then again at 950 ° C.
For 48 hours. The heat-treated powder was pulverized and mixed again using a pot, and then heat-treated at 950 ° C. for 24 hours.

【0011】結晶成長のための溶媒物質にはSrB2O4とNa
Fを用いた。ここで、SrB2O4は固相反応による粉体合成
を行っており、 SrCO3 + 2H3BO3 → SrB2O4 + CO2↑ + 3H2O↑ の化学反応を利用している。 使用した原料粉体は SrCO3 : 147.63g(1mol) 2H3BO3 : 123.68g(2mol) で、これらを秤量したのちクロスローリングミキサーを
利用して十分に混合を行った後、Φ100×150mmの白金坩
堝に入れ、800℃で5時間の熱処理を行った。熱処理を施
した粉体は乳鉢を用いて粉砕混合した後、再び800℃で5
時間の熱処理を施した。
SrB 2 O 4 and Na are used as solvent materials for crystal growth.
F was used. Here, SrB 2 O 4 performs powder synthesis by a solid phase reaction, and utilizes a chemical reaction of SrCO 3 + 2H 3 BO 3 → SrB 2 O 4 + CO 2 ↑ + 3H 2 O ↑. The raw material powder used was SrCO 3 : 147.63 g (1 mol) 2H 3 BO 3 : 123.68 g (2 mol). After weighing these, they were thoroughly mixed using a cross rolling mixer, and then Φ100 × 150 mm It was put in a platinum crucible and heat-treated at 800 ° C. for 5 hours. The heat-treated powder is pulverized and mixed using a mortar and then again at 800 ° C for 5 minutes.
Time heat treatment was applied.

【0012】SBBOと溶媒であるSrB2O4の混合比は、SBBO
−SrB2O4系の状態図から判断している。この2成分系は
共晶系になっており、SBBO:SrB2O4=22:78の組成に共晶
点が存在することから、これよりもSBBOのリッチな、液
相からの最初の析出相がSBBOになる領域で組成を選ん
だ。さらに、析出温度の低下と溶液の粘性の低下のた
め、溶媒としてNaFも用いた。本実施例の組成比は以下
の通りである。 SBBO : SrB2O4 : NaF = 44 : 56 : 56×55/45 SBBO、SrB2O4、NaFの各試料はそれぞれ SBBO : 24.52g(0.075mol) SrB2O4 : 16.54g(0.095mol) NaF : 4.96g(0.177mol) の粉体試料の状態で乳鉢混合した。混合粉体は60ccの白
金坩堝内で1100℃で30分間溶融し、十分に低粘性の液相
になった状態でブリッジマン用の白金坩堝に流し込み冷
却した。
The mixing ratio of SBBO and SrB 2 O 4 as a solvent is
Judgment is made from the state diagram of -SrB 2 O 4 system. This two-component system is a eutectic system, and since there is a eutectic point in the composition of SBBO: SrB 2 O 4 = 22: 78, the first precipitation of SBBO from the liquid phase is richer than this. The composition was selected in the region where the phase becomes SBBO. Further, NaF was also used as a solvent to lower the deposition temperature and the viscosity of the solution. The composition ratio of this example is as follows. SBBO: SrB 2 O 4 : NaF = 44: 56: 56 × 55/45 Each sample of SBBO, SrB 2 O 4 and NaF is SBBO: 24.52 g (0.075 mol) SrB 2 O 4 : 16.54 g (0.095 mol) NaF: A mortar was mixed in the state of a powder sample of 4.96 g (0.177 mol). The mixed powder was melted in a 60 cc platinum crucible at 1100 ° C. for 30 minutes, poured into a platinum crucible for Bridgman in a state of a sufficiently low-viscosity liquid phase, and cooled.

【0013】試料を充填した坩堝は、白金ロジウム線を
用いて炉内につり下げた。坩堝をセットした後、炉内温
度を3.3℃/分で昇温させ、坩堝先端部が1100℃以上にな
る状態で6時間保持し、坩堝先端が1030℃になるまで3.3
℃/分で降温、炉温をその状態で保持した。この状態で6
時間待った後、坩堝駆動を開始、坩堝の駆動速度は20mm
/月で行った。坩堝がトータルで90mm移動したところで
結晶成長を終了。結果、c軸方向の厚さ6mmの単結晶が
得られた。この単結晶をX線回折により分析した結果、
求めるSBBO単結晶であることが確認された。
The crucible filled with the sample was suspended in a furnace using a platinum rhodium wire. After setting the crucible, raise the furnace temperature at 3.3 ℃ / min, hold the crucible tip at 1100 ℃ or more for 6 hours, until the crucible tip reaches 1030 ℃
The temperature was lowered at a rate of ° C./min, and the furnace temperature was maintained in that state. 6 in this state
After waiting time, start driving the crucible, the driving speed of the crucible is 20mm
/ Went by month. The crystal growth ends when the crucible has moved a total of 90 mm. As a result, a single crystal having a thickness of 6 mm in the c-axis direction was obtained. As a result of analyzing this single crystal by X-ray diffraction,
It was confirmed that it was the required SBBO single crystal.

【0014】さらに、このSBBO結晶を加工し、SHG特性
についての測定を行った。1064nmの波長変換実験につて
の実施例を以下に示す。実験方法は図3に示す。入力光
光源としてはcontinuum社製QスイッチYAGレーザを用
い、レンズで絞ったビームの焦点付近にSBBO結晶をおい
た。レーザ光のパラメータは以下の通りである。 波長 : 1064nm 繰り返し : 10Hz 平均パワー : 80nW パルス幅 : 約10ns パルスエネルギー : 8mJ ピークパワー : 800kW レンズ焦点距離 : 450mm 結晶位置でのビーム経 : 約0.1mm(直径) 結晶でのピークパワー密度: 約10GW/cm2 また、SHGによる第二高調波の発生は、入力光の結晶中
における位相速度と、結晶のSHGにより発生した第二高
調波の結晶中における位相速度が等しくなる方向にかぎ
られており、いわゆる位相整合条件を満たすことが条件
である。これは入射光の波長によって決まる条件であ
り、位相整合条件を満たす方向(c軸からの角度をとっ
て位相整合角と呼ぶ)を探すため、試料結晶は入射ビー
ムに対する角度を任意に選べるようにゴニオメータに取
り付けてある。実験の結果、入射光の結晶のc軸に対す
る角度θが、θ=21゜の時、透過光の中に、入射ビーム
の1064nmの第二高調波である532nmの光が観測された。
これはSBBOの1064nmの入射光に対する位相整合角と一致
するものである。
Further, the SBBO crystal was processed and measured for SHG characteristics. An example of a wavelength conversion experiment of 1064 nm will be described below. The experimental method is shown in FIG. A Q-switched YAG laser manufactured by continuum was used as an input light source, and an SBBO crystal was placed near the focal point of the beam focused by the lens. The parameters of the laser light are as follows. Wavelength: 1064 nm Repetition: 10 Hz Average power: 80 nW Pulse width: about 10 ns Pulse energy: 8 mJ Peak power: 800 kW Lens focal length: 450 mm Beam diameter at crystal position: about 0.1 mm (diameter) Peak power density at crystal: about 10 GW / cm 2 Further, generation of the second harmonic by the SHG, and the phase velocity in the input optical crystal has been limited in the direction in which the phase velocity becomes equal at the second harmonic in the crystal caused by the SHG crystal That is, the so-called phase matching condition must be satisfied. This is a condition determined by the wavelength of the incident light. In order to search for a direction that satisfies the phase matching condition (called the phase matching angle by taking an angle from the c axis), the sample crystal can be arbitrarily selected with respect to the incident beam. It is attached to the goniometer. As a result of the experiment, when the angle θ of the incident light with respect to the c-axis of the crystal was θ = 21 °, 532 nm light, which is the 1064 nm second harmonic of the incident beam, was observed in the transmitted light.
This coincides with the phase matching angle of the SBBO with respect to the incident light of 1064 nm.

【0015】比較実験として、通常のフラックス法によ
る結晶実験も行い、結果を比較した。試料の合成は溶液
ブリッジマン法の時と同様で、 SBBO : SrB2O4 : NaF = 44 : 56 : 56×55/45 SBBO、SrB2O4、NaFの各試料はそれぞれ SBBO : 24.52g(0.075mol) SrB2O4 : 16.54g(0.095mol) NaF : 4.96g(0.177mol) の粉体試料を用いた。粉体は乳鉢で混合した後、60ccの
白金坩堝内で1100℃で30分間溶融した。坩堝をマッフル
炉内にセットした後、炉内温度を3.3℃/分で昇温させ、
1100℃で6時間保持し、1030℃まで3.3℃/分で降温、6時
間保持した後、800℃まで2℃/日で降温した。この時、
降温速度はブリッジマン法の坩堝内の一点における降温
速度とほぼ等しくなるように考慮している。 結果、c
軸方向の厚さが最大で2mm程度のSBBO板状結晶多数生成
していたが、溶液ブリッジマンで得られるサイズのもの
は全く含まれていなかった。
As a comparative experiment, a crystallization experiment by a normal flux method was also performed, and the results were compared. The synthesis of the sample was the same as that of the solution Bridgman method. SBBO: SrB 2 O 4 : NaF = 44: 56: 56 × 55/45 Each sample of SBBO, SrB 2 O 4 , and NaF was SBBO: 24.52 g ( 0.075mol) SrB 2 O 4: 16.54g (0.095mol) NaF: using the powder sample of 4.96 g (0.177 mol). The powder was mixed in a mortar and then melted at 1100 ° C. for 30 minutes in a 60 cc platinum crucible. After setting the crucible in the muffle furnace, raise the furnace temperature at 3.3 ° C / min.
The temperature was maintained at 1100 ° C. for 6 hours, the temperature was lowered to 1030 ° C. at 3.3 ° C./min, and after the temperature was maintained for 6 hours, the temperature was lowered to 800 ° C. at 2 ° C./day. At this time,
The cooling rate is considered to be substantially equal to the cooling rate at one point in the crucible of the Bridgman method. Result, c
Although a large number of SBBO plate crystals with a maximum thickness of about 2 mm in the axial direction were produced, none of the sizes obtained by the solution Bridgman was included.

【0016】[0016]

【発明の効果】このように本発明により、溶液ブリッジ
マン法によりSBBO結晶を育成することで、通常のフラッ
クス法では得にくい、200nm以下の紫外線用非線形光学
材料として十分な大きさである、c軸方向の厚さ4〜5
mm以上の単結晶をより効果的に得ることができるように
なった。
As described above, according to the present invention, by growing an SBBO crystal by the solution Bridgman method, it is difficult to obtain by a normal flux method, and has a sufficient size as a nonlinear optical material for ultraviolet rays of 200 nm or less. Axial thickness 4-5
A single crystal of mm or more can be obtained more effectively.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 成長炉の概略図FIG. 1 Schematic of the growth furnace

【図2】 坩堝の概略図FIG. 2 Schematic of crucible

【図3】 SHGの評価方法を示す図[Figure 3] Diagram showing SHG evaluation method

【符号の説明】[Explanation of symbols]

1 坩堝 2 スケール 3 坩堝駆動モータ 4 保護管(Al23) 5 耐火物 6 発熱体(SiC) 7 R熱電対 8 ガラスウール 31 QスイッチYAGレーザ 32 SBBO結晶 33 パワーメータ1 crucible 2 Scale 3 crucible drive motor 4 protective tube (Al 2 O 3) 5 refractories 6 heating elements (SiC) 7 R thermocouple 8 glass wool 31 Q-switched YAG laser 32 SBBO crystal 33 power meter

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 2K002 AB12 CA02 FA12 HA20 4G077 AA02 BD06 BD08 CD02 EC08 MB04  ──────────────────────────────────────────────────続 き Continued on the front page F term (reference) 2K002 AB12 CA02 FA12 HA20 4G077 AA02 BD06 BD08 CD02 EC08 MB04

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】Sr2Be2B2O7(SBBO)と溶媒組成との混合物を
入れた坩堝に温度勾配を生じさせて結晶成長させること
を特徴とする、溶液ブリッジマン法による非線形光学結
晶の製造方法。
1. A nonlinear optical crystal by a solution Bridgman method, wherein a crystal is grown by generating a temperature gradient in a crucible containing a mixture of Sr 2 Be 2 B 2 O 7 (SBBO) and a solvent composition. Manufacturing method.
【請求項2】請求項1に記載の非線形光学結晶の製造方
法において、溶媒組成としてホウ酸ストロンチウム化合
物あるいはホウ酸ストロンチウム化合物とフッ化アルカ
リを用いることを特徴とする非線形光学結晶の製造方
法。
2. A method for producing a nonlinear optical crystal according to claim 1, wherein a strontium borate compound or a strontium borate compound and an alkali fluoride are used as a solvent composition.
【請求項3】請求項2に記載の非線形光学結晶の製造方
法において、ホウ酸ストロンチウム化合物としてSrB2O4
を用いることを特徴とする非線形光学結晶の製造方法。
3. The method for producing a nonlinear optical crystal according to claim 2, wherein the strontium borate compound is SrB 2 O 4.
A method for producing a nonlinear optical crystal, characterized by using:
【請求項4】請求項3に記載の非線形光学結晶の製造方
法において、SrB2O4の組成比を、28:72≦Sr2Be2B2O7
SrB2O4≦48:52の範囲で用いることを特徴とする、非線
形光学結晶の製造方法
4. The method for producing a nonlinear optical crystal according to claim 3, wherein the composition ratio of SrB 2 O 4 is 28: 72 ≦ Sr 2 Be 2 B 2 O 7 :
A method for producing a nonlinear optical crystal, characterized in that it is used in the range of SrB 2 O 4 ≦ 48: 52.
【請求項5】請求項1に記載の非線形光学結晶の製造方
法において、 坩堝として白金坩堝、また内面を白金で
保護してある坩堝を用いることを特徴とする、非線形光
学結晶の製造方法
5. The method for producing a nonlinear optical crystal according to claim 1, wherein a platinum crucible is used as the crucible, and a crucible whose inner surface is protected by platinum is used.
JP11077289A 1999-03-23 1999-03-23 Production of nonlinear optical crystal Pending JP2000264787A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11077289A JP2000264787A (en) 1999-03-23 1999-03-23 Production of nonlinear optical crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11077289A JP2000264787A (en) 1999-03-23 1999-03-23 Production of nonlinear optical crystal

Publications (1)

Publication Number Publication Date
JP2000264787A true JP2000264787A (en) 2000-09-26

Family

ID=13629729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11077289A Pending JP2000264787A (en) 1999-03-23 1999-03-23 Production of nonlinear optical crystal

Country Status (1)

Country Link
JP (1) JP2000264787A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943305A (en) * 2012-11-13 2013-02-27 中国科学院新疆理化技术研究所 Cesium boric silicon compound and cesium boric silicon nonlinear optical crystal and preparation method and application of cesium boric silicon compound and cesium boric silicon nonlinear optical crystal
WO2014169104A1 (en) * 2013-04-10 2014-10-16 Kla-Tencor Corporation Passivation of nonlinear optical crystals
CN104141170A (en) * 2013-05-08 2014-11-12 中国科学院新疆理化技术研究所 Method for growth of compound cadmium sodium borate crystal
CN106757339A (en) * 2016-11-29 2017-05-31 中国科学院福建物质结构研究所 Halogen Firebrake ZB salt compound and its nonlinear optical crystal and growing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102943305A (en) * 2012-11-13 2013-02-27 中国科学院新疆理化技术研究所 Cesium boric silicon compound and cesium boric silicon nonlinear optical crystal and preparation method and application of cesium boric silicon compound and cesium boric silicon nonlinear optical crystal
WO2014169104A1 (en) * 2013-04-10 2014-10-16 Kla-Tencor Corporation Passivation of nonlinear optical crystals
CN105189814A (en) * 2013-04-10 2015-12-23 科磊股份有限公司 Passivation of nonlinear optical crystals
US11180866B2 (en) 2013-04-10 2021-11-23 Kla Corporation Passivation of nonlinear optical crystals
CN104141170A (en) * 2013-05-08 2014-11-12 中国科学院新疆理化技术研究所 Method for growth of compound cadmium sodium borate crystal
CN106757339A (en) * 2016-11-29 2017-05-31 中国科学院福建物质结构研究所 Halogen Firebrake ZB salt compound and its nonlinear optical crystal and growing method

Similar Documents

Publication Publication Date Title
Fukuda et al. Fiber crystal growth from the melt
Kumar et al. Recent advances in rare earth-based borate single crystals: Potential materials for nonlinear optical and laser applications
JP5880938B2 (en) Doped β-barium borate single crystal, its production method and its frequency converter component
US6391229B1 (en) Borate crystal, growth method of the same and laser equipment using the same
CN1236027A (en) Compound R2MB10O10 as non-linear optical crystal and its preparation and use
WO2021057151A1 (en) Cesium barium borate nonlinear optical crystal, preparation method therefor and use thereof
CN113200681A (en) Preparation method of fluorite-based glass ceramic substrate for solidifying molybdenum-containing high radioactive nuclear waste
Pylneva et al. Growth and non-linear optical properties of lithium triborate crystals
JP2000264787A (en) Production of nonlinear optical crystal
Simonova et al. Growth of bulk β-BaB2O4 crystals from solution in LiF-Li2O melt and study of phase equilibria
Bartwal et al. Growth and characterization of PbB4O7 single crystals
JP3115250B2 (en) Cesium-lithium-borate crystal
Yoon Crystal growth of the oxide fiber single crystal for optical applications
Wu et al. Bridgman growth of large-aperture yttrium calcium oxyborate crystal
JP3819710B2 (en) Nonlinear optical crystal
CN101787558B (en) Fluxing agent growing method of K2Al2B2O7 crystal
Wang et al. Growth and properties of KBe2BO3F2 crystal
CN110408995B (en) Compound lead strontium silicate, lead strontium silicate nonlinear optical crystal, preparation method and application
JP4619946B2 (en) Borate crystal manufacturing method and laser oscillation apparatus
CN112575375A (en) Compound cesium fluorozincate and cesium fluorozincate nonlinear optical crystal as well as preparation method and application thereof
RU2262556C1 (en) Method of growing large perfect crystals of lithium triborate
CN1115430C (en) Non-linear optical crystal of large-size high-temp zinc borophosphate and its preparing process and use
Yoon et al. Compositional homogeneity of potassium lithium niobate crystals grown by micro pulling down method
Karek et al. Yb3+-doped NaBi (WO4) 2 fibre single crystals grown by the micro-pulling down technique and emission spectroscopic characterization
JP3317338B2 (en) Wavelength conversion crystal, method of manufacturing the same, and laser device using the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees