JP2810975B2 - Single crystal manufacturing method - Google Patents

Single crystal manufacturing method

Info

Publication number
JP2810975B2
JP2810975B2 JP6234697A JP23469794A JP2810975B2 JP 2810975 B2 JP2810975 B2 JP 2810975B2 JP 6234697 A JP6234697 A JP 6234697A JP 23469794 A JP23469794 A JP 23469794A JP 2810975 B2 JP2810975 B2 JP 2810975B2
Authority
JP
Japan
Prior art keywords
single crystal
pipe
crystal
melt
crystallized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6234697A
Other languages
Japanese (ja)
Other versions
JPH0891984A (en
Inventor
秀夫 木村
健則 沼澤
充典 佐藤
Original Assignee
科学技術庁金属材料技術研究所長
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 科学技術庁金属材料技術研究所長 filed Critical 科学技術庁金属材料技術研究所長
Priority to JP6234697A priority Critical patent/JP2810975B2/en
Publication of JPH0891984A publication Critical patent/JPH0891984A/en
Application granted granted Critical
Publication of JP2810975B2 publication Critical patent/JP2810975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、単結晶の製造方法に
関するものである。さらに詳しくは、この発明は、欠陥
の少ない良質な単結晶を引き上げ法により簡便に製造す
ることのできる単結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal. More specifically, the present invention relates to a method for producing a single crystal, which can easily produce a high-quality single crystal with few defects by a pulling method.

【0002】[0002]

【従来の技術とその課題】酸化物等の単結晶を融液から
育成させる方法として、引き上げ法が従来より知られて
いる。この引き上げ法においては、種結晶は目的とする
単結晶と同じ組成及び結晶構造のものを用いるのが一般
的であるが、種結晶として適当な単結晶がない場合に
は、たとえば白金線等を用いて多結晶を生成させた後
に、この多結晶にネッキングを繰り返すことにより単結
晶化させている。
2. Description of the Related Art As a method for growing a single crystal such as an oxide from a melt, a pulling method is conventionally known. In this pulling method, it is common to use a seed crystal having the same composition and crystal structure as the target single crystal. However, when there is no suitable single crystal as the seed crystal, for example, a platinum wire or the like is used. After the polycrystal is generated by using the polycrystal, the polycrystal is repeatedly necked to form a single crystal.

【0003】しかしながら、この場合には、多結晶の段
階で固液界面が不安定なものとなりやすいため、形状を
制御することが困難であり、しかもネッキングには熟練
を要するという欠点があった。また、多結晶の部分は粒
界で割れやすく、単結晶の育成中に試料が落下すること
がしばしばあった。一方、ブリッジマン法、浮遊帯溶融
法等によりあらかじめ単結晶を作製しておき、これを種
結晶として用いることも行われているが、この場合に
は、種結晶を融液に浸した時点で結晶中心部に転位等の
結晶欠陥が発生しやすく、良質の単結晶を得ることは難
しいのが実際であった。また、結晶によっては、ブリッ
ジマン法、浮遊帯溶融法等の適用が困難なものもある。
However, in this case, since the solid-liquid interface tends to be unstable at the polycrystalline stage, it is difficult to control the shape, and the necking requires skill. Further, the polycrystalline portion was easily broken at the grain boundary, and the sample often dropped during the growth of the single crystal. On the other hand, a single crystal is prepared in advance by a Bridgman method, a floating zone melting method, or the like, and is used as a seed crystal.In this case, when the seed crystal is immersed in the melt, Crystal defects such as dislocations are likely to occur at the center of the crystal, and it was actually difficult to obtain a high-quality single crystal. Some crystals are difficult to apply to the Bridgman method, the floating zone melting method, and the like.

【0004】この発明は、以上の通りの事情に鑑みてな
されたものであり、従来の単結晶の製造方法の欠点を解
消し、欠陥の少ない良質な単結晶を引き上げ法により簡
便に製造することのできる単結晶の製造方法を提供する
ことを目的としている。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has been made to solve the drawbacks of the conventional method for producing a single crystal and to easily produce a high-quality single crystal with few defects by a pulling method. It is an object of the present invention to provide a method for producing a single crystal that can be performed.

【0005】[0005]

【課題を解決するための手段】この発明は、上記の課題
を解決するものとして、引き上げ法により単結晶を製造
する際に、パイプを融液に浸し、次いでパイプを上方に
引き上げてパイプ中において最初に多結晶を晶出させ
た後この多結晶を単結晶化させて単結晶種結晶を作
し、引き続いてパイプ中で結晶成長を継続させて単結晶
を製造することを特徴とする単結晶の製造方法を提供す
る。
SUMMARY OF THE INVENTION The present invention, as to solve the above problems, in producing a single crystal by the pulling method, immersing the pipe in the melt, then pulling the pipe upwards, the pipe first polycrystalline the after was crystallized this multi-crystal by single crystal single crystal seed crystal to create in
Then, the present invention provides a method for producing a single crystal, characterized in that crystal growth is continued in a pipe to produce a single crystal.

【0006】この発明の単結晶の製造方法においては、
パイプを融液に浸した後に上方に引き上げて、パイプ中
で結晶化させて最初に多結晶体を晶出させる。次いで、
この多結晶がパイプ中で成長する間にこれを単結晶化さ
せ、単結晶を作製する。そして、この単結晶をそのまま
種結晶として使用し、引き上げ法によって融液から目的
とする大きさの単結晶を製造する。
In the method for producing a single crystal according to the present invention,
After immersing the pipe in the melt, the pipe is pulled upward and crystallized in the pipe to initially crystallize a polycrystal. Then
While the polycrystal grows in the pipe, it is monocrystallized to produce a single crystal. Then, this single crystal is used as a seed crystal as it is, and a single crystal of a desired size is produced from the melt by a pulling method.

【0007】図1のa及びbは、各々、この発明の単結
晶の製造方法を工程順に示した模式的な断面図である。
単結晶を製造する場合には、まず、図1aに示したよう
に、パイプ(1)を融液(2)に上方から浸す。する
と、融液(2)は、毛管現象によりパイプ(1)中を上
昇し、パイプ(1)内の低温部において結晶化が開始さ
れる。この時点では多結晶が晶出する。
FIGS. 1A and 1B are schematic cross-sectional views showing a method of manufacturing a single crystal according to the present invention in the order of steps.
In the case of producing a single crystal, first, as shown in FIG. 1a, a pipe (1) is immersed in a melt (2) from above. Then, the melt (2) rises in the pipe (1) by capillary action, and crystallization starts in a low-temperature portion in the pipe (1). At this point, polycrystals crystallize.

【0008】次いで、図1bに示したように、パイプ
(1)を上方に引き上げると、この移動に伴って、晶出
した多結晶と融液との界面はパイプ(1)中を下方へと
移動し、その間に多結晶が単結晶化する。この単結晶を
種結晶として用い、目的とする大きさの単結晶をその単
結晶種結晶の作製に引き続いて行う。最終的に結晶化し
た単結晶は、パイプ(1)の下端から離れ、通常の引き
上げ法と同じように単結晶化される。所望の大きさの単
結晶が製造される。
Next, as shown in FIG. 1B, when the pipe (1) is pulled upward, the interface between the crystallized polycrystal and the melt moves downward in the pipe (1) with this movement. Move, during which time the polycrystal single crystallizes. This single crystal is used as a seed crystal, and a single crystal of a desired size is formed following the production of the single crystal seed crystal. The finally crystallized single crystal is separated from the lower end of the pipe (1), and is crystallized in the same manner as in a normal pulling method. A single crystal of the desired size is produced.

【0009】このように、この発明の単結晶の製造方法
においては、種結晶の作製と単結晶の製造とを連続的に
行うことができる。単結晶種結晶の作製において、形状
制御は容易であり、多結晶の部分が粒界で割れることは
なく、しかも試料の落下という問題はない。また、ネッ
キングのような熟練は要しない。さらに、作製した単結
晶をそのまま種結晶として使用するため、転位等の結晶
欠陥は抑制される。ブリッジマン法、浮遊帯溶融法等の
適用が困難な結晶についても種結晶の作製が可能であ
る。欠陥の少ない良質な単結晶を引き上げ法により簡便
に製造することができる。この発明の場合、種結晶とし
て適当な単結晶がない場合にも有効に単結晶種結晶とと
もに単結晶を製造することができ、また、以上からも明
らかなように、特別な装置を使用しないため、従来から
用いられている引き上げ装置にそのまま適用することが
可能である。
As described above, in the method for producing a single crystal according to the present invention, the production of the seed crystal and the production of the single crystal can be performed continuously. In the preparation of a single crystal seed crystal, shape control is easy, the polycrystalline portion does not break at the grain boundaries, and there is no problem of dropping the sample. Also, skill such as necking is not required. Furthermore, since the produced single crystal is used as a seed crystal as it is, crystal defects such as dislocations are suppressed. Seed crystals can also be produced for crystals for which it is difficult to apply the Bridgman method, the floating zone melting method, or the like. A high-quality single crystal with few defects can be easily manufactured by a pulling method. In the case of the present invention, even when there is no suitable single crystal as a seed crystal, a single crystal can be effectively produced together with the single crystal seed crystal, and as is clear from the above, no special device is used. In addition, the present invention can be applied as it is to a conventionally used lifting device.

【0010】[0010]

【実施例】以下実施例を示し、この発明の単結晶の製造
方法についてさらに詳しく説明する。実施例1 引き上げ装置において、直径、高さともに50mmの白金
るつぼ中でBaB2 4 を融解し(融点1095℃)、直径
2mm、肉厚0.1mm 、長さ50mmの白金パイプをホルダー
に装着して20rpm で回転させながら上方から融液に浸
した。白金はBaB2 4 と反応せず、良く濡れた。
EXAMPLES Examples are shown below to produce a single crystal of the present invention.
The method will be described in more detail.Example 1 In the lifting device, platinum with a diameter and height of 50 mm
BaB in the crucibleTwoO FourIs melted (melting point 1095 ° C) and the diameter is
2mm, 0.1mm thick, 50mm long platinum pipe holder
Immersed in the melt from above while rotating at 20 rpm
did. Platinum is BaBTwoOFourIt did not react with and wet well.

【0011】融液は、白金パイプ中を毛管現象によりパ
イプ下端から約10mm上昇し、パイプ内の低温部分によ
り結晶化が始まった(多結晶の晶出)。この後に、パイ
プを上方へ2mm/hで引き上げるにつれて、晶出した多
結晶と融液との界面がパイプ中を下方へと移動し、その
間に多結晶は単結晶化した。この単結晶を種結晶として
用い、引き続いて結晶成長を継続させた。最終的に結晶
化した単結晶は、パイプ端より離れ、通常の引き上げ法
と同様に単結晶化が進行し、直径20mm、長さ50mmの
単結晶を製造することができた。
The melt rises about 10 mm from the lower end of the platinum pipe by capillary action due to capillary action, and crystallization starts at a low temperature portion in the pipe (polycrystal crystallization). Thereafter, as the pipe was pulled upward at 2 mm / h, the interface between the crystallized polycrystal and the melt moved downward in the pipe, during which the polycrystal was single-crystallized. Using this single crystal as a seed crystal, crystal growth was subsequently continued. The single crystal finally crystallized was separated from the end of the pipe, and the single crystallization proceeded in the same manner as in a normal pulling method, whereby a single crystal having a diameter of 20 mm and a length of 50 mm could be produced.

【0012】以上において、多結晶部分はパイプ内にあ
り、育成中に試料が粒界で割れて落下することはなかっ
た。実施例2 引き上げ装置において、直径、高さともに50mmの白金
るつぼ中でBaB2 4 を融解し(融点1095℃)、直径
2mm、肉厚0.1mm 、長さ100mm の白金パイプをホルダー
に装着して20rpm で回転させながら上方から融液に浸
した。そして、白金パイプをるつぼ底近傍から30mmの
ところまで下げた。
In the above description, the polycrystalline portion is inside the pipe.
The sample does not break at the grain boundaries during growth
Was.Example 2 In the lifting device, platinum with a diameter and height of 50 mm
BaB in the crucibleTwoO FourIs melted (melting point 1095 ° C) and the diameter is
2mm, 0.1mm thick, 100mm long platinum pipe holder
Immersed in the melt from above while rotating at 20 rpm
did. Then, put the platinum pipe 30mm from near the bottom of the crucible.
Lowered to the point.

【0013】融液は、白金パイプ中を毛管現象によりパ
イプ下端から約40mm上昇し、パイプ内の低温部分によ
り結晶化が始まった(多結晶の晶出)。この後に、パイ
プを上方へ2mm/hで引き上げるにつれて、晶出した多
結晶と融液との界面がパイプ中を下方へと移動し、その
間に多結晶は単結晶化した。パイプ内で20mm以上成長
させると、最初の結晶化で発生した結晶中心部の転位等
の結晶欠陥は結晶から抜け出した。
The melt rose in the platinum pipe by about 40 mm from the lower end of the pipe due to capillary action, and crystallization started at a low temperature portion in the pipe (crystallization of polycrystal). Thereafter, as the pipe was pulled upward at 2 mm / h, the interface between the crystallized polycrystal and the melt moved downward in the pipe, during which the polycrystal was single-crystallized. When the crystal was grown by 20 mm or more in a pipe, crystal defects such as dislocations at the center of the crystal generated in the first crystallization escaped from the crystal.

【0014】この単結晶を種結晶として用い、引き続い
て結晶成長を継続させた。最終的に結晶化した単結晶
は、パイプ端より離れ、通常の引き上げ法と同様に単結
晶化が進行し、直径20mm、長さ50mmの単結晶を製造
することができた。以上において、多結晶部分はパイプ
内にあり、育成中に試料が粒界で割れて落下することは
なかった。また、最初の結晶化で発生した結晶中心部の
転位等の結晶欠陥が低減し、高品質の単結晶となった。
Using this single crystal as a seed crystal, the crystal growth was continued. The single crystal finally crystallized was separated from the end of the pipe, and the single crystallization proceeded in the same manner as in a normal pulling method, whereby a single crystal having a diameter of 20 mm and a length of 50 mm could be produced. In the above, the polycrystalline portion was in the pipe, and the sample did not break at the grain boundaries and fall during growth. In addition, crystal defects such as dislocations in the center of the crystal generated in the first crystallization were reduced, and a high-quality single crystal was obtained.

【0015】もちろんこの発明は、以上の例によって限
定されるものではない。単結晶の種類及び大きさ、パイ
プの材質及び形状等の細部については様々な態様が可能
であることはいうまでもない。
Of course, the present invention is not limited by the above examples. It goes without saying that various aspects are possible for details such as the type and size of the single crystal, the material and shape of the pipe, and the like.

【0016】[0016]

【発明の効果】以上詳しく説明した通り、この発明によ
って、単結晶を引き上げ法により簡便に製造することが
でき、種結晶として適当な単結晶がない場合にも、目的
とする大きさの単結晶を製造することができる。種結晶
の作製と単結晶の製造とを連続的に行うことができ、ま
た、従来からの引き上げ装置を適用することもできるた
め、単結晶製造の効率が向上する。欠陥の少ない良質の
単結晶の製造も可能となる。たとえば単結晶レーザー素
子、波長変換素子などの光学分野において有用とされて
いる非線形光学材料に好適となる。
As described in detail above, according to the present invention, a single crystal can be easily produced by a pulling method, and even if there is no suitable single crystal as a seed crystal, a single crystal having a desired size can be obtained. Can be manufactured. Since seed crystal production and single crystal production can be performed continuously, and a conventional pulling apparatus can be applied, the efficiency of single crystal production is improved. It is also possible to produce a high-quality single crystal with few defects. For example, it is suitable for a nonlinear optical material that is useful in the optical field such as a single crystal laser element and a wavelength conversion element.

【図面の簡単な説明】[Brief description of the drawings]

【図1】a及びbは、各々、この発明の単結晶の製造方
法を工程順に示した模式的な断面図である。
FIGS. 1a and 1b are schematic cross-sectional views showing a method of manufacturing a single crystal according to the present invention in the order of steps.

【符号の説明】[Explanation of symbols]

1 パイプ 2 融液 1 pipe 2 melt

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 15/00 C30B 15/36 C30B 28/00 - 35/00──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 15/00 C30B 15/36 C30B 28/00-35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 引き上げ法により単結晶を製造する際
に、パイプを融液に浸し、次いでパイプを上方に引き上
げてパイプ中において最初に多結晶を晶出させた後
この多結晶を単結晶化させて単結晶種結晶を作成し、
き続いてパイプ中で結晶成長を継続させて単結晶を製造
することを特徴とする単結晶の製造方法。
In producing a single crystal by 1. A pull-up method, immersing the pipe in the melt, then pulling the pipe upwards, first <br/> polycrystalline after crystallized this in a pipe polycrystalline was single-crystallized create a single crystal seed crystal, followed by the method for producing a single crystal, characterized by producing a single crystal by continued crystal growth in the pipe.
JP6234697A 1994-09-29 1994-09-29 Single crystal manufacturing method Expired - Lifetime JP2810975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6234697A JP2810975B2 (en) 1994-09-29 1994-09-29 Single crystal manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6234697A JP2810975B2 (en) 1994-09-29 1994-09-29 Single crystal manufacturing method

Publications (2)

Publication Number Publication Date
JPH0891984A JPH0891984A (en) 1996-04-09
JP2810975B2 true JP2810975B2 (en) 1998-10-15

Family

ID=16974997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6234697A Expired - Lifetime JP2810975B2 (en) 1994-09-29 1994-09-29 Single crystal manufacturing method

Country Status (1)

Country Link
JP (1) JP2810975B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04321590A (en) * 1991-04-23 1992-11-11 Sumitomo Electric Ind Ltd Growing method of single crystal

Also Published As

Publication number Publication date
JPH0891984A (en) 1996-04-09

Similar Documents

Publication Publication Date Title
WO2003089697A1 (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
JP2810975B2 (en) Single crystal manufacturing method
JP2692732B2 (en) Single crystal manufacturing method
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JP2007045640A (en) Forming method of semiconductor bulk crystal
JP2834558B2 (en) Compound semiconductor single crystal growth method
JP2622274B2 (en) Single crystal growth method
JP2833432B2 (en) Silicon single crystal growth method
JPH07330482A (en) Method and apparatus for growing single crystal
JP2535773B2 (en) Method and apparatus for producing oxide single crystal
JP2809364B2 (en) Method for producing lithium tetraborate single crystal
JPH09309791A (en) Method for producing semiconducting single crystal
JP2814657B2 (en) Method for growing compound semiconductor single crystal
TWI304844B (en)
JPH09227268A (en) Production of solid solution single crystal
JPH07108837B2 (en) Beta barium borate single crystal growth method
JPH08133884A (en) Production of single crystal
JPH0699228B2 (en) Single crystal pulling method
JPH0742196B2 (en) Single crystal growth method
JPH0737360B2 (en) Beta barium borate single crystal growth method
JPS62223088A (en) Method for growing compound single crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JP2001158693A (en) Method for producing oxide single crystal
JPH0367995B2 (en)
JP2004250297A (en) Method for manufacturing compound semiconductor single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term