JPS62223088A - Method for growing compound single crystal - Google Patents

Method for growing compound single crystal

Info

Publication number
JPS62223088A
JPS62223088A JP6596486A JP6596486A JPS62223088A JP S62223088 A JPS62223088 A JP S62223088A JP 6596486 A JP6596486 A JP 6596486A JP 6596486 A JP6596486 A JP 6596486A JP S62223088 A JPS62223088 A JP S62223088A
Authority
JP
Japan
Prior art keywords
single crystal
crucible
compound
temperature
temperature zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6596486A
Other languages
Japanese (ja)
Inventor
Yoshihiko Sho
義彦 正
Akikazu Tanaka
明和 田中
Yukiko Saitou
斎藤 由樹子
Toshio Kawasaki
川崎 敏夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP6596486A priority Critical patent/JPS62223088A/en
Publication of JPS62223088A publication Critical patent/JPS62223088A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To produce compound single crystal having low dislocation density and a little grain boundary in good yield, by making a specific temperature gradient in the vicinity of a solid-liquid interface of a compound melted in a crucible. CONSTITUTION:A compound is put in a crucible having a conic bottom part and sealed. Then, the crucible is attached to a drive shaft of Bridgman furnace, fed to Bridgman furnace and the compound is melted by setting temperatures of a high-temperature zone and a low-temperature zone in such a way that the temperature gradient in the vicinity of a solid-liquid interface is 1-10 deg.C/cm. The whole crucible is moved to the low-temperature zone and gradually cooled to grow compound single crystal.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ブリッジマン法により転位密度が低(且つ粒
界の少ない化合物単結晶を育成する方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for growing a compound single crystal with a low dislocation density (and few grain boundaries) by the Bridgman method.

〔従来の技術〕[Conventional technology]

テルル化カドミウム(CdTe)単結晶は、赤外線検出
器用材料であるテルル化水銀カドミウムのエピタキシャ
ル成長用基板や、室温動作の可能な放射線検出器用材料
として用いられている。CdTe単結晶を得るには通常
、Cd及びTeを鋭い突出部を有するルツボ中に真空封
入後熔融して 化合物を合成し、又は、別途合成された
化合物多結晶をルツボに真空封入して熔融し、これを徐
々に冷却しながら固化せしめて単結晶体を育成するよう
にしている。この育成方法において鋭い突出部を有する
ルツボを用いるのは、突出部先端内に最初に析出する微
少な単結晶体を種結晶として全体を単結晶化させるため
である。このような原理に暴く単結晶育成方法は種々知
られているが、代表的なものはブリッジマン法で、これ
はルツボを適当な温度勾配を有する電気炉中で高温帯か
ら低温帯へ移動させて結晶化させるものである。ブリッ
ジマン法は更に垂直型と水平型に分けられるが、垂直ブ
リッジマン法を例にとって以下説明する。
Cadmium telluride (CdTe) single crystals are used as substrates for epitaxial growth of mercury cadmium telluride, which is a material for infrared detectors, and as materials for radiation detectors that can operate at room temperature. To obtain a CdTe single crystal, the compound is usually synthesized by vacuum sealing Cd and Te in a crucible with sharp protrusions and then melting, or by vacuum sealing a separately synthesized compound polycrystal in a crucible and melting it. This is gradually cooled and solidified to grow a single crystal. The reason why a crucible having a sharp protrusion is used in this growth method is to use a minute single crystal that is first precipitated within the tip of the protrusion as a seed crystal to turn the whole into a single crystal. Various methods for growing single crystals based on this principle are known, but the representative one is the Bridgman method, in which a crucible is moved from a high temperature zone to a low temperature zone in an electric furnace with an appropriate temperature gradient. It is used for crystallization. The Bridgman method is further divided into a vertical type and a horizontal type, and the vertical Bridgman method will be explained below as an example.

垂直ブリッジマン法は、円錐状の底部を有するルツボと
、上方がCdTeの融点(1092°C)より高い温度
に保たれ、下方がCdTeの融点より低い温度に保たれ
た電気炉を用いるが、従来のCdTe単結晶の育成方法
は高温帯の温度を1100〜1200℃、低温帯の温度
を800〜1000℃程度とし、高温帯から低温帯へ遷
移する固化帯の温度勾配を20〜b あった。ルツボの降下速度は数n/時と大変遅く、熱的
に平衡状態にあると考えられるので、この温度勾配はル
ツボ内部における固液界面近傍での温度勾配に等しいと
してほぼ差支えない。ところが上記のような従来の育成
条件によると、得られるCdTe結晶体中の単結晶のサ
イズが小さく、即ち結晶粒界が多く所要の方位の結晶板
(ウェハ)を切り出すのに手数がかかり、又、ウェハの
歩留りが低い欠点があった。又、単結晶の重要な品質で
ある転位密度が約106c+n−”と極めて高い欠点も
ある。この転位は第2図に示すように主として網目状に
配列した構造になっており、このような構造をセル構造
と呼んでいるが、このようなセル構造があると各セル(
直径約100〜300μm)間で結晶方位がわずかに異
なったり、電気的特性に不均一性を生ずる原因になる。
The vertical Bridgman method uses a crucible with a conical bottom and an electric furnace whose upper part is kept at a temperature higher than the melting point of CdTe (1092 °C) and whose lower part is kept at a temperature lower than the melting point of CdTe. The conventional method for growing CdTe single crystals is to set the temperature of the high temperature zone to 1100 to 1200 °C, the temperature of the low temperature zone to about 800 to 1000 °C, and the temperature gradient of the solidification zone that transitions from the high temperature zone to the low temperature zone to be 20 to 120 °C. . Since the crucible descends at a very slow rate of several nanometers per hour and is considered to be in a thermal equilibrium state, it is almost safe to assume that this temperature gradient is equal to the temperature gradient near the solid-liquid interface inside the crucible. However, according to the conventional growth conditions as described above, the size of the single crystal in the resulting CdTe crystal is small, that is, there are many grain boundaries, and it takes time and effort to cut out a crystal plate (wafer) in the desired orientation. However, it had the disadvantage of low wafer yield. Another disadvantage is that the dislocation density, which is an important quality of a single crystal, is extremely high at approximately 106c+n-''.As shown in Figure 2, these dislocations are mainly arranged in a network structure. is called a cell structure, but if there is a cell structure like this, each cell (
This may cause slight differences in crystal orientation between the diameters of about 100 to 300 μm and non-uniformity in electrical characteristics.

このようなCdTe単結晶基板上にテルル化水銀カドミ
ウムをエピタキシャル成長させると、転位や、転位のセ
ル構造がエピタキシャル層に伝播し、品質のよいエピタ
キシャル層が得られない。
When mercury cadmium telluride is epitaxially grown on such a CdTe single crystal substrate, dislocations and cell structures of dislocations propagate to the epitaxial layer, making it impossible to obtain a high-quality epitaxial layer.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、上記従来法の欠点を解消し、転位密度
の低い高品質の化合物単結晶ウェハが歩留り良く得られ
る化合物単結晶の育成方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for growing compound single crystals that eliminates the drawbacks of the above-mentioned conventional methods and allows high-quality compound single crystal wafers with low dislocation density to be obtained with good yield.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため本発明者らは、結晶粒界、転位
密度の制御要因として固化帯の温度勾配、即ち、固液界
面近傍の温度勾配に着目し、温度勾配を種々変えて育成
実験を行った結果、温度勾配を1〜b が減少して融液の殆んどが単結晶化すること、しかも得
られる単結晶にはセル構造の転位がなくなり、転位密度
が約10分の1に減少することを見出して本発明に到達
した。
To achieve this objective, the present inventors focused on the temperature gradient of the solidification zone, that is, the temperature gradient near the solid-liquid interface, as a control factor for grain boundaries and dislocation density, and conducted growth experiments with various temperature gradients. As a result, the temperature gradient was reduced by 1 to b, and most of the melt became single crystal. Moreover, the resulting single crystal had no dislocations in the cell structure, and the dislocation density was reduced to about one-tenth. The present invention was achieved by discovering that this can be reduced.

固液界面近傍の温度勾配を1〜b る理由は10℃/cII+を超えると結晶粒界の数が増
し、又、単結晶部分の転位密度が増すためである。
The reason why the temperature gradient near the solid-liquid interface is set to 1 to b is that when it exceeds 10° C./cII+, the number of grain boundaries increases and the dislocation density in the single crystal portion increases.

この温度勾配は小さい程好ましいが、温度制御の精度か
ら1°C/ c+nを下限とした。このような低温度勾
配で粒界が減少し、セル構造の転位がなくなるのは、固
液界面の熱的安定性が増すためと考えられる。特にルツ
ボ上下に勾配があると融液の対流が避けられないが、温
度勾配を緩やかにすることによってこの対流が抑制され
、固液界面上の微妙な温度変化が防止されるのであろう
と推測される。
Although it is preferable that this temperature gradient be as small as possible, the lower limit was set at 1°C/c+n in view of the accuracy of temperature control. The reason why such a low temperature gradient reduces grain boundaries and eliminates dislocations in the cell structure is thought to be because the thermal stability of the solid-liquid interface increases. In particular, if there is a slope above and below the crucible, convection of the melt is unavoidable, but it is assumed that by making the temperature gradient gentler, this convection will be suppressed and subtle temperature changes at the solid-liquid interface will be prevented. Ru.

〔実施例〕〔Example〕

ルツボとして内径3cm、円筒部の長さ10cm、円錐
状底部の深さ4cmの石英アンプルを用い、該アンプル
内面には炭素膜を付着させ、CdTe多結晶350gを
装入し、10−”Torrの真空にして該アンプルを封
止した。該アンプル上部には石英製吊手を熔接し、ブリ
ッジマン炉の駆動軸に取付けた。
A quartz ampoule with an inner diameter of 3 cm, a cylindrical part length of 10 cm, and a conical bottom part depth of 4 cm was used as a crucible. A carbon film was attached to the inner surface of the ampoule, 350 g of CdTe polycrystal was charged, and the temperature was set at 10-" Torr. The ampoule was sealed under vacuum.A quartz hanger was welded to the top of the ampoule and attached to the drive shaft of a Bridgman furnace.

該ブリッジマン炉の炉内温度分布は高温帯が1100℃
、低温帯が1060°C1固化帯の距離は8 cm(従
って、温度勾配は5℃/ am )とした。駆動軸を降
下して上記アンプル全体を高温帯に位置せしめ、毎分1
.5回転の回転速度でCdTe多結晶が完全に熔融する
時間そのまま保持し、熔融完了後膣アンプルを1.5關
/時の速度で降下した。アンプル全体が低温帯に移動し
終った後は降下を停止し、回転はそのままにして炉内温
度を徐々に低下し、室温まで冷却した。育成されたCd
Te結晶を< 111 >方向で切断した結果、切断面
に殆んど粒界が認められなかった。この結晶から(11
1)面を持ったウェハを切り出し、鏡面研磨後部酸系エ
ツチング液でエツチングした。第1図に(111)Cd
面の写真を(倍率62.5倍)を示す。図の斑点はエッ
チピットであり、これは、転位に相当し、このエッチピ
ットの数から転位密度を求めることができる。第1図に
示す(111)Cd面はセル構造が全く認められず、転
位密度は2 X I Q−’cm−”である。
The temperature distribution inside the Bridgman furnace is 1100°C in the high temperature zone.
, the low temperature zone was 1060 °C, and the solidification zone distance was 8 cm (therefore, the temperature gradient was 5 °C/am). The drive shaft is lowered to position the entire ampoule in the high temperature zone, and the
.. The rotation speed was maintained at 5 rotations until the CdTe polycrystal was completely melted, and after the melting was completed, the vaginal ampoule was lowered at a rate of 1.5 rotations/hour. After the entire ampoule had moved to the low-temperature zone, the descent was stopped, and while the rotation continued, the temperature inside the furnace was gradually lowered to room temperature. Cultivated Cd
As a result of cutting the Te crystal in the <111> direction, almost no grain boundaries were observed on the cut surface. From this crystal (11
1) A wafer with a flat surface was cut out, polished to a mirror surface, and then etched with an acid-based etching solution. In Figure 1, (111)Cd
A photograph of the surface is shown (62.5x magnification). The spots in the figure are etch pits, which correspond to dislocations, and the dislocation density can be determined from the number of etch pits. In the (111) Cd plane shown in FIG. 1, no cell structure is observed at all, and the dislocation density is 2 X I Q-'cm-''.

比較のため、高温帯を1130℃、低温帯を980℃、
固化帯の距離を5crn(従って温度勾配は30℃/c
m)として育成したCdTe結晶の単結晶部分について
、同様にエツチング処理した(111)Cdの写真を第
2図に示す。第2図は転位のセル構造が明瞭に認められ
、転位密度は5 X I Q −’arm−”である。
For comparison, the high temperature zone is 1130℃, the low temperature zone is 980℃,
The distance of the solidification zone is 5crn (therefore, the temperature gradient is 30℃/c
FIG. 2 shows a photograph of (111)Cd that was similarly etched with respect to the single crystal portion of the CdTe crystal grown as (m). In FIG. 2, a cell structure of dislocations is clearly recognized, and the dislocation density is 5 X I Q -'arm-''.

本発明法により転位密度が従来法に比べて10分の1以
下になっていることが分る。
It can be seen that the method of the present invention reduces the dislocation density to one tenth or less compared to the conventional method.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明によれば粒界が少なく、はぼ
全体に亘って単結晶化でき、しかも転位の極めて少ない
単結晶が得られ、単結晶ウェハの歩留り向上と高品質化
を一挙に達成することができた。
As described above, according to the present invention, a single crystal with few grain boundaries, which can be formed over the entire wafer, and with extremely few dislocations can be obtained, thereby improving the yield and quality of single crystal wafers at once. was able to achieve this.

本発明を主にCdTe結晶について説明したが、本発明
はCdTe結晶に限定されるものではない。又、育成法
についても垂直ブリッジマン法に限定されないことは言
うまでもない。
Although the present invention has been mainly described with respect to CdTe crystals, the present invention is not limited to CdTe crystals. It goes without saying that the growing method is not limited to the vertical Bridgman method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明法で育成したCdTe単結晶の(111
)Cd面のエツチング後の写真、第2図は従来法で育成
したCdTe単結晶の(111)Cd面のエツチング後
の写真である。 特許出願人  住友金属鉱山株式会社 手続補正舎(自発) 昭和61年5月21日
Figure 1 shows the (111) CdTe single crystal grown using the method of the present invention.
) A photograph of the Cd plane after etching. FIG. 2 is a photograph of the (111) Cd plane of a CdTe single crystal grown by the conventional method after etching. Patent applicant Sumitomo Metal Mining Co., Ltd. Procedures Correction Office (spontaneous) May 21, 1986

Claims (1)

【特許請求の範囲】[Claims] 化合物をルツボ中で熔融し、徐々に冷却しながら化合物
単結晶を、育成する方法において、固液界面近傍におけ
る温度勾配を1〜10℃/cmとすることを特徴とする
化合物単結晶の育成方法。
A method for growing a single crystal of a compound by melting the compound in a crucible and gradually cooling it to grow a single crystal of the compound, characterized in that the temperature gradient near the solid-liquid interface is 1 to 10°C/cm. .
JP6596486A 1986-03-26 1986-03-26 Method for growing compound single crystal Pending JPS62223088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6596486A JPS62223088A (en) 1986-03-26 1986-03-26 Method for growing compound single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6596486A JPS62223088A (en) 1986-03-26 1986-03-26 Method for growing compound single crystal

Publications (1)

Publication Number Publication Date
JPS62223088A true JPS62223088A (en) 1987-10-01

Family

ID=13302186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6596486A Pending JPS62223088A (en) 1986-03-26 1986-03-26 Method for growing compound single crystal

Country Status (1)

Country Link
JP (1) JPS62223088A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489385A (en) * 1990-07-30 1992-03-23 Agency Of Ind Science & Technol Method for growing compound single crystal

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244796A (en) * 1975-10-07 1977-04-08 Sumitomo Electric Ind Ltd Production of gallium arsenide single crystal
JPS5819637A (en) * 1981-07-30 1983-02-04 Shimizu Constr Co Ltd Duct system for hot and cold water in air conditioner
JPS58176193A (en) * 1982-04-09 1983-10-15 Mitsubishi Monsanto Chem Co Preparation of single crystal of inorganic compound
JPS59107997A (en) * 1982-12-06 1984-06-22 Natl Inst For Res In Inorg Mater Single crystal growth method of inorganic compound oxide
JPS59137400A (en) * 1983-01-26 1984-08-07 Sumitomo Electric Ind Ltd P type gallium arsenide single crystal with low dislocation density and its manufacture
JPS6042292A (en) * 1983-08-18 1985-03-06 Furukawa Electric Co Ltd:The Method and device for growing gallium arsenide single crystal
JPS62148389A (en) * 1985-12-23 1987-07-02 Nippon Mining Co Ltd Method for growing single crystal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5244796A (en) * 1975-10-07 1977-04-08 Sumitomo Electric Ind Ltd Production of gallium arsenide single crystal
JPS5819637A (en) * 1981-07-30 1983-02-04 Shimizu Constr Co Ltd Duct system for hot and cold water in air conditioner
JPS58176193A (en) * 1982-04-09 1983-10-15 Mitsubishi Monsanto Chem Co Preparation of single crystal of inorganic compound
JPS59107997A (en) * 1982-12-06 1984-06-22 Natl Inst For Res In Inorg Mater Single crystal growth method of inorganic compound oxide
JPS59137400A (en) * 1983-01-26 1984-08-07 Sumitomo Electric Ind Ltd P type gallium arsenide single crystal with low dislocation density and its manufacture
JPS6042292A (en) * 1983-08-18 1985-03-06 Furukawa Electric Co Ltd:The Method and device for growing gallium arsenide single crystal
JPS62148389A (en) * 1985-12-23 1987-07-02 Nippon Mining Co Ltd Method for growing single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0489385A (en) * 1990-07-30 1992-03-23 Agency Of Ind Science & Technol Method for growing compound single crystal

Similar Documents

Publication Publication Date Title
JP3343615B2 (en) Bulk crystal growth method
Deitch et al. Bulk single crystal growth of silicon-germanium
JP2003286024A (en) Unidirectional solidified silicon ingot and manufacturing method thereof, silicon plate, substrate for solar cell and target base material for sputtering
JP2003206200A (en) p-TYPE GaAs SINGLE CRYSTAL AND METHOD FOR PRODUCING THE SAME
JPS62223088A (en) Method for growing compound single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JP2734820B2 (en) Method for manufacturing compound semiconductor single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP2622274B2 (en) Single crystal growth method
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPS60122791A (en) Pulling up method of crystal under liquid sealing
JPH11274537A (en) Manufacture of polycrystalline silicon of large grain size
JPH11130579A (en) Production of compound semiconductor single crystal and apparatus for producing the same
JPH09309791A (en) Method for producing semiconducting single crystal
JPH05319973A (en) Single crystal production unit
JPH10212192A (en) Method for growing bulk crystal
JPH0341432B2 (en)
JPH0559873B2 (en)
JPH03193689A (en) Production of compound semiconductor crystal
JPS58176194A (en) Vessel for growing single crystal
JPS6385082A (en) Method for growing single crystal and apparatus thereof
JPH0867593A (en) Method for growing single crystal
JPH0733303B2 (en) Crystal growth equipment