JP2622274B2 - Single crystal growth method - Google Patents

Single crystal growth method

Info

Publication number
JP2622274B2
JP2622274B2 JP63275823A JP27582388A JP2622274B2 JP 2622274 B2 JP2622274 B2 JP 2622274B2 JP 63275823 A JP63275823 A JP 63275823A JP 27582388 A JP27582388 A JP 27582388A JP 2622274 B2 JP2622274 B2 JP 2622274B2
Authority
JP
Japan
Prior art keywords
single crystal
crucible
crystal
seed crystal
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63275823A
Other languages
Japanese (ja)
Other versions
JPH02124792A (en
Inventor
浩之 石橋
一司 清水
誠人 吉田
憲三 須佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP63275823A priority Critical patent/JP2622274B2/en
Publication of JPH02124792A publication Critical patent/JPH02124792A/en
Application granted granted Critical
Publication of JP2622274B2 publication Critical patent/JP2622274B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、ヒ化ガリウム、シリコンなどの半導体単結
晶、ゲルマニウム酸ビスマス、タングステン酸カドミウ
ム、タングステン酸亜鉛、ケイ酸ガドリニウム等の酸化
物単結晶の育成方法に関する。
The present invention relates to semiconductor single crystals such as gallium arsenide and silicon, and oxide single crystals such as bismuth germanate, cadmium tungstate, zinc tungstate and gadolinium silicate. On how to breed.

(従来の技術) 従来の単結晶の育成方法としては、チョクラルスキー
法がある。
(Prior Art) As a conventional single crystal growing method, there is a Czochralski method.

チョクラルスキー法は第2図に示すようにるつぼ5中
の原料を高周波加熱等で融解したのち種結晶2を融液4
に接触させ、温度を制御しつつ回転しながら引き上げる
方法である。引き上げ中は、通常結晶又はるつぼ系の重
量変化を検出し、それを電源にフィードバックして融液
の温度を精密にコントロールし、成長した単結晶6の直
径を自動制御する方法がとられている。
In the Czochralski method, as shown in FIG. 2, the raw material in a crucible 5 is melted by high-frequency heating or the like, and then the seed crystal 2 is melted.
And pulling it up while rotating while controlling the temperature. During pulling, a method is usually employed in which a change in weight of a crystal or a crucible system is detected, and the change is fed back to a power source to precisely control the temperature of the melt and automatically control the diameter of the grown single crystal 6. .

(発明が解決しようとする課題) 上述のチョクラルスキー法は、円柱状の単結晶が得ら
れ製品の採取効率が良いものの、成長した単結晶の重量
変化等を測定し、るつぼの温度を強制的に変えて単結晶
の直径を制御しなければならず、単結晶内部に温度変化
による歪が発生し易いという問題があった。
(Problems to be Solved by the Invention) In the above-mentioned Czochralski method, although a columnar single crystal is obtained and the product collection efficiency is high, a change in weight of the grown single crystal is measured, and the temperature of the crucible is forced. Therefore, the diameter of the single crystal must be controlled by changing the temperature, and there is a problem that strain due to a temperature change is easily generated inside the single crystal.

本発明は、単結晶内部に温度変化による歪の発生がな
い単結晶の育成方法を提供するものである。
The present invention provides a method for growing a single crystal in which no strain is generated inside the single crystal due to a temperature change.

(課題を解決するための手段) 本発明は、原料を入れたるつぼを加熱して融液とし、
るつぼ内の融液から融液表面に付着した種結晶を引き上
げることにより種結晶にさらに単結晶を成長させる単結
晶の成長方法において、単結晶の育成が完了する前に種
結晶の引き上げを途中で停止し、その後はるつぼの温度
をゆるやかに制御して単結晶の成長を引き続き行うもの
である。
(Means for Solving the Problems) The present invention heats a crucible containing raw materials to form a melt,
In a single crystal growth method in which a single crystal is further grown on the seed crystal by pulling the seed crystal attached to the melt surface from the melt in the crucible, the seed crystal is pulled before the growth of the single crystal is completed. After stopping, the temperature of the crucible is slowly controlled to continue the growth of the single crystal.

本発明は、単結晶の育成が完了する前に種結晶の引き
上げを途中で停止するが、全体の融液の10〜20%が単結
晶として育成した段階で停止するのが好ましい。しか
し、原料の種類、単結晶の成長方位、るつぼの直径等装
置上の制約等を勘案して種結晶の引き上げを停止する時
期が決められる。
In the present invention, the pulling of the seed crystal is stopped halfway before the growth of the single crystal is completed, but it is preferably stopped at the stage when 10 to 20% of the entire melt has grown as a single crystal. However, the time when the pulling of the seed crystal is stopped is determined in consideration of the type of the raw material, the growth orientation of the single crystal, the diameter of the crucible, and other restrictions on the apparatus.

種結晶の引き上げを停止した後は、るつぼの温度をゆ
るやかに制御、例えば1時間に10〜200度の温度勾配で
るつぼの温度をゆるやかに冷却する等を行い単結晶の成
長を引き続き行う。
After stopping the pulling of the seed crystal, the temperature of the crucible is gradually controlled, for example, the temperature of the crucible is gradually cooled with a temperature gradient of 10 to 200 degrees per hour, and the growth of the single crystal is continued.

種結晶を引き上げるとはるつぼの移動に対して相対的
に種結晶を引き上げることを意味し、また種結晶の引き
上げを停止するとは、るつぼの移動に対して相対的な種
結晶を停止することを意味する。
Pulling up the seed crystal means pulling up the seed crystal relative to the movement of the crucible, and stopping pulling up the seed crystal means stopping the seed crystal relative to the movement of the crucible. means.

種結晶を引き上げている時は、種結晶及び/又はるつ
ぼを回転していても良い。種結晶をるつぼに対して相対
的に回転するのが好ましい。
When raising the seed crystal, the seed crystal and / or the crucible may be rotated. Preferably, the seed crystal is rotated relative to the crucible.

種結晶の引き上げを停止した後、育成した単結晶がる
つぼ壁に達するまでは、種結晶をるつぼに対して相対的
に回転してもよく、回転を停止してもよい。育成した単
結晶がるつぼ壁に達した後は、種結晶をるつぼに対して
相対的に回転できなくなるが、種結晶とるつぼを同方
向、同回転速度で回転しても良い。
After the pulling of the seed crystal is stopped, the seed crystal may be rotated relative to the crucible or the rotation may be stopped until the grown single crystal reaches the crucible wall. After the grown single crystal reaches the crucible wall, the seed crystal cannot be rotated relative to the crucible, but the seed crystal and the crucible may be rotated in the same direction and at the same rotation speed.

種結晶の引き上げ停止後は、成長単結晶部分をるつぼ
壁まで到達させ、さらに全ての融液を単結晶化させるこ
とが円柱状の単結晶が得られ製品の採取効率が良いので
望ましい。
After stopping the pulling of the seed crystal, it is desirable to allow the grown single crystal part to reach the crucible wall and to make all the melt a single crystal, since a columnar single crystal can be obtained and the product collection efficiency is good.

またるつぼの断面形状は必ずしも円形でなくてもよ
く、所望の単結晶断面形状に応じて矩形、正方形、楕円
形などの形状のるつぼを使用することができる。
Further, the cross-sectional shape of the crucible does not necessarily have to be circular, and a crucible having a rectangular, square, or elliptical shape can be used according to a desired single-crystal cross-sectional shape.

(作用) 種結晶の引き上げ停止後は、単結晶直径を制御する必
要はなく、強制的に融液温度を変化させる必要がないの
で、単結晶内部に温度変化による歪の発生がないと考え
られる。
(Operation) After stopping the pulling of the seed crystal, it is not necessary to control the diameter of the single crystal, and it is not necessary to forcibly change the melt temperature. .

実施例 第1図は、本発明の一実施例を説明するための単結晶
の育成状況の時間的変化を模式的に示した断面図であ
る。以下第1図を使用して一本発明の実施例を説明す
る。
Embodiment FIG. 1 is a cross-sectional view schematically showing a change over time in the growth state of a single crystal for explaining an embodiment of the present invention. An embodiment of the present invention will be described below with reference to FIG.

原料であるGaAs多結晶と封止剤であるB2O3を直径100m
mの窒化ホウ素製るつぼに入れ加熱して融かした。第1
図(a)で示したように種結晶保持具1で保持したGaAs
単結晶から切り出した種結晶2をB2O3の液体封止剤3を
通してGaAsの原料融液4の表面に付着した。第1図
(b)で示したように原料融液4の温度を制御するとと
もに種結晶2を回転しながら引き上げ、単結晶6を成長
させた。そして成長した単結晶の直径が第1図(c)で
示したように約70mmになった所で種結晶2の引き上げと
回転を停止した。その後ゆるやかに温度を下げ、第1図
(d)に示したように成長した単結晶はるつぼ内壁に到
達した。さらに、ゆるやかに温度を下げ、第1図(e)
に示したように全ての原料を結晶化した。その後室温ま
で除冷し、育成した単結晶を取り出した。得られたGaAs
単結晶は、直径94mmで歪の少ない良質な単結晶であっ
た。
GaAs polycrystal as raw material and B 2 O 3 as sealant are 100m in diameter
m was melted by heating in a boron nitride crucible. First
GaAs held by the seed crystal holder 1 as shown in FIG.
The seed crystal 2 cut out of the single crystal was attached to the surface of the GaAs raw material melt 4 through the B 2 O 3 liquid sealant 3. As shown in FIG. 1 (b), while controlling the temperature of the raw material melt 4, the seed crystal 2 was pulled up while rotating, and the single crystal 6 was grown. Then, when the diameter of the grown single crystal became about 70 mm as shown in FIG. 1 (c), pulling up and rotation of the seed crystal 2 were stopped. Thereafter, the temperature was gradually lowered, and the grown single crystal reached the inner wall of the crucible as shown in FIG. 1 (d). Further, the temperature is gradually lowered, and FIG.
All the raw materials were crystallized as shown in Table 1. Thereafter, it was cooled to room temperature, and the grown single crystal was taken out. GaAs obtained
The single crystal was a high-quality single crystal with a diameter of 94 mm and little distortion.

上述の実施例は液体封止剤を使用する場合でについて
のものであるが、本発明は、液体封止剤を必要としない
単結晶の育成の場合にも適応でき同様な効果が期待でき
る。
Although the above-described embodiment is for the case where a liquid sealant is used, the present invention can be applied to the case of growing a single crystal that does not require a liquid sealant, and similar effects can be expected.

上述の実施例ではるつぼを固定して単結晶を育成した
が、るつぼを移動する場合にも本発明は適応でき同様な
効果が期待できる。
In the above embodiment, the single crystal was grown while the crucible was fixed. However, the present invention can be applied to the case where the crucible is moved, and similar effects can be expected.

上述の実施例では融液原料のすべてを単結晶化させた
が、単結晶化を途中で終了する場合にも本発明は適応で
き、同様な効果が期待できる、 (発明の効果) 本発明の単結晶の育成方法によれば、育成中の温度変
化をゆるやかにすることができ、温度変化による歪の発
生を制御することができる。またチョクラルスキー法に
比べて、同じ直径のるつぼから直径の大きな単結晶を容
易に得ることができる。
In the above embodiment, all of the melt raw material is single-crystallized. However, the present invention can be applied to the case where the single crystallization is terminated halfway, and similar effects can be expected. (Effect of the Invention) According to the method for growing a single crystal, the temperature change during growth can be made gentle, and the generation of strain due to the temperature change can be controlled. In addition, compared to the Czochralski method, a single crystal having a large diameter can be easily obtained from a crucible having the same diameter.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)〜(e)は本発明の方法を示す簡略断面
図、第2図は従来の方法を示す断面図である。 符号の説明 1……種結晶保持具、2……種結晶 3……液体封止剤、4……原料融液 5……るつぼ、6……成長した単結晶
1A to 1E are simplified sectional views showing a method of the present invention, and FIG. 2 is a sectional view showing a conventional method. DESCRIPTION OF SYMBOLS 1... Seed crystal holder 2... Seed crystal 3 .. liquid sealant 4... Raw material melt 5 .. crucible 6.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉田 誠人 茨城県つくば市和台48番 日立化成工業 株式会社筑波開発研究所内 (72)発明者 須佐 憲三 茨城県つくば市和台48番 日立化成工業 株式会社筑波開発研究所内 (56)参考文献 特開 昭60−90897(JP,A) ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor, Masato Yoshida 48, Wadai, Tsukuba, Ibaraki Prefecture Within Hitachi Chemical Co., Ltd.Tsukuba Development Laboratory Co., Ltd. (56) References JP-A-60-90897 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原料を入れたるつぼを加熱して融液とし、
るつぼ内の融液に種結晶を接触させ、種結晶を引き上げ
ることにより種結晶にさらに単結晶を成長させる単結晶
の育成方法において、単結晶の育成により成長した単結
晶がるつぼ壁に到達する前に種結晶の引き上げを途中で
停止し、その後はるつぼの温度をゆるやかに下げ、成長
単結晶をるつぼ壁まで到達させ、さらにるつぼ内の全て
の原料融液を単結晶化させることを特徴とする単結晶の
育成方法。
1. A crucible containing raw materials is heated to form a melt,
In a single crystal growing method in which a seed crystal is brought into contact with a melt in a crucible and a single crystal is further grown on the seed crystal by pulling up the seed crystal, before the single crystal grown by growing the single crystal reaches the crucible wall. The pulling of the seed crystal is stopped halfway, then the temperature of the crucible is slowly lowered, the grown single crystal is allowed to reach the crucible wall, and all the material melts in the crucible are single crystallized. How to grow a single crystal.
JP63275823A 1988-10-31 1988-10-31 Single crystal growth method Expired - Lifetime JP2622274B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63275823A JP2622274B2 (en) 1988-10-31 1988-10-31 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63275823A JP2622274B2 (en) 1988-10-31 1988-10-31 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH02124792A JPH02124792A (en) 1990-05-14
JP2622274B2 true JP2622274B2 (en) 1997-06-18

Family

ID=17560922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63275823A Expired - Lifetime JP2622274B2 (en) 1988-10-31 1988-10-31 Single crystal growth method

Country Status (1)

Country Link
JP (1) JP2622274B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115985B2 (en) * 1990-06-29 1995-12-13 日立化成工業株式会社 Single crystal growth method
CN117626407B (en) * 2024-01-26 2024-04-09 常州臻晶半导体有限公司 System for efficiently growing silicon carbide single crystal by liquid phase method and working method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6090897A (en) * 1983-10-25 1985-05-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for manufacturing compound semiconductor single crystal

Also Published As

Publication number Publication date
JPH02124792A (en) 1990-05-14

Similar Documents

Publication Publication Date Title
JP2622274B2 (en) Single crystal growth method
JPS598695A (en) Crystal growth apparatus
JPH0742196B2 (en) Single crystal growth method
JP2542434B2 (en) Compound semiconductor crystal manufacturing method and manufacturing apparatus
JPH07115985B2 (en) Single crystal growth method
JPH0465389A (en) Growing method for single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JP2834558B2 (en) Compound semiconductor single crystal growth method
JP2814657B2 (en) Method for growing compound semiconductor single crystal
JPH05319973A (en) Single crystal production unit
JPH10212192A (en) Method for growing bulk crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JPH09309791A (en) Method for producing semiconducting single crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
CA1047897A (en) Monocrystalline silicates and method of growth
JP2922039B2 (en) Single crystal growth method
JPS63190794A (en) Method and device for producing single crystal
JP2810975B2 (en) Single crystal manufacturing method
JPS62223088A (en) Method for growing compound single crystal
RU2105831C1 (en) Method of growing semiconductor compound crystals
JPS63147891A (en) Method and device for growing single crystal
JPH02248399A (en) Method for growing mixed crystal-type compound semiconductor
JPH0367996B2 (en)
JPS62143898A (en) Production of iii-v compound semiconductor single crystal
JPH02217393A (en) Production of compound semiconductor single crystal