JP3042168B2 - Single crystal manufacturing equipment - Google Patents

Single crystal manufacturing equipment

Info

Publication number
JP3042168B2
JP3042168B2 JP4128889A JP12888992A JP3042168B2 JP 3042168 B2 JP3042168 B2 JP 3042168B2 JP 4128889 A JP4128889 A JP 4128889A JP 12888992 A JP12888992 A JP 12888992A JP 3042168 B2 JP3042168 B2 JP 3042168B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
crucible
crystal growth
susceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4128889A
Other languages
Japanese (ja)
Other versions
JPH05319972A (en
Inventor
英夫 岡田
真 斉藤
治 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP4128889A priority Critical patent/JP3042168B2/en
Publication of JPH05319972A publication Critical patent/JPH05319972A/en
Application granted granted Critical
Publication of JP3042168B2 publication Critical patent/JP3042168B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、単結晶を製造する装置
に関し、より詳しくはブリッジマン法を用いた半導体製
造に好適な単結晶を製造する装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an apparatus for producing a single crystal, and more particularly to an apparatus for producing a single crystal suitable for producing a semiconductor using the Bridgman method.

【0002】[0002]

【従来の技術】電界効果トランジスタ、ショットキーバ
リアダイオード、集積回路(IC)等の各種半導体素子
類の基板として用いられる半導体単結晶の製造法として
は融液からの結晶成長法が主力である。融液からの結晶
成長法においては結晶成長面(固液界面)の形状を結晶
成長の開始時から終了時まで精密に制御することが要求
される。融液からの結晶成長法の1つである引上法では
るつぼの回転速度や結晶の回転速度の制御、引上速度の
制御等により結晶成長面の制御を行なっている。しか
し、このような引上法では、温度勾配が大きく転位密度
が低減できない。
2. Description of the Related Art As a method of manufacturing a semiconductor single crystal used as a substrate for various semiconductor elements such as a field effect transistor, a Schottky barrier diode, an integrated circuit (IC), a crystal growth method from a melt is a mainstay. In the crystal growth method from the melt, it is required to precisely control the shape of the crystal growth surface (solid-liquid interface) from the start to the end of the crystal growth. In the pulling method, which is one of the methods for growing crystals from the melt, the crystal growth surface is controlled by controlling the rotation speed of the crucible, the rotation speed of the crystal, and the pulling speed. However, such a pulling method has a large temperature gradient and cannot reduce the dislocation density.

【0003】低温度勾配下で定径な低転位密度結晶作成
法としては直径制御不要なボート法が適している。ボー
ト法には横型と縦型とあるが、大口径化にはるつぼ内で
融液をそのまま固化させ、単結晶を得る垂直ボート成長
法が有力である。垂直ボート成長法には垂直ブリッジマ
ン法(VB法)及び温度勾配凝固法(VGF法)があ
る。前者のVB法は主ヒーターと、るつぼとの相対的位
置を機械的に変化させて単結晶を成長させる方法であ
り、後者のVGF法はヒーターと、るつぼの位置関係を
変化させずにヒーターの温度分布を変化させて単結晶を
成長させる方法である。この垂直ブリッジマン法あるい
はVGF法は大口径円形ウエハの製造に適している。し
かしながらこのボート法は、成長中の結晶を回転させな
がら融液から引上げ、固化させるという引上法と比べ、
静的な状態変化を特徴とするため、上記回転速度の制御
等による結晶成長面の制御は不可能であり、ホットゾー
ン構造の工夫により結晶成長面の制御を行なっていた。
[0003] As a method for producing a low-dislocation-density crystal having a constant diameter under a low temperature gradient, a boat method requiring no diameter control is suitable. There are a horizontal type and a vertical type in the boat method, but a vertical boat growth method in which a melt is solidified in a crucible as it is to obtain a single crystal is effective for increasing the diameter. The vertical boat growth method includes a vertical Bridgman method (VB method) and a temperature gradient solidification method (VGF method). The former VB method is a method of growing a single crystal by mechanically changing the relative position of the main heater and the crucible, while the latter VGF method is a method of heating the heater without changing the positional relationship between the heater and the crucible. This is a method of growing a single crystal by changing the temperature distribution. This vertical Bridgman method or VGF method is suitable for manufacturing large-diameter circular wafers. However, this boat method is different from the pulling method in which the growing crystal is pulled from the melt while rotating and solidified.
Because of the feature of the static state change, it is impossible to control the crystal growth surface by controlling the rotation speed or the like, and the crystal growth surface is controlled by devising a hot zone structure.

【0004】図3にその一例を示す(W.A.Gaul
t et.al.J.C.G 74(1986)491
〜506頁)。図3においてるつぼ3内に原料融液8を
作製し、るつぼ底部に収容した種結晶6より上方に向か
って周期律表III b族およびVb族元素からなる無機化
合物半導体(以下「III −V族化合物半導体」という)
の単結晶を固化させる(結晶7)結晶成長方法(例えば
垂直ブリッジマン法等)において、るつぼ3を保持する
サセプター4に溝14を形成し、サセプター4近傍の熱
環境および熱流の制御を試みた例である。図4(a)、
(b)中の矢印はそれぞれ結晶成長の初期および後期の
熱流を示したものである。溝14を設けたサセプター4
を用いることにより、結晶成長の初期において結晶から
の熱の散逸を制御することができる。
FIG. 3 shows an example (WA Gaul).
t et. al. J. C. G 74 (1986) 491
506). In FIG. 3, a raw material melt 8 is prepared in the crucible 3 and an inorganic compound semiconductor (hereinafter, referred to as “III-V group”) composed of Group IIIb and Vb elements of the Periodic Table upward from the seed crystal 6 accommodated in the bottom of the crucible. Compound semiconductor)
In a crystal growth method (for example, a vertical Bridgman method, etc.) for solidifying the single crystal (crystal 7), a groove 14 was formed in the susceptor 4 holding the crucible 3, and an attempt was made to control the thermal environment and heat flow near the susceptor 4. It is an example. FIG. 4 (a),
Arrows in (b) indicate the heat flow in the initial and late stages of crystal growth, respectively. Susceptor 4 provided with groove 14
Can control the dissipation of heat from the crystal in the early stage of crystal growth.

【0005】すなわち、サセプターに断熱部となる溝を
設けることによりサセプターを通る熱流のうち横方向へ
の熱流を抑制し、結晶の横方向への熱流を制御し得る。
しかしながら、溝を設けたこのようなサセプターで熱流
を制御する方法では、その効果は当然サセプター近傍に
限られ、サセプターから離れた場所では著しく小さくな
る。図4(b)に示すように、サセプターから離れた、
結晶成長の後期においては、図4(a)と比べ溝14を
設けたサセプターの効果はほとんど無く、横方向にも大
きな熱流が存在し、結晶成長の初期と後期で結晶成長面
を通る熱流に大きな差異が生じている。
That is, by providing a groove serving as a heat insulating portion in the susceptor, the heat flow in the horizontal direction among the heat flows passing through the susceptor can be suppressed, and the heat flow in the horizontal direction of the crystal can be controlled.
However, in the method of controlling the heat flow with such a susceptor having a groove, the effect is naturally limited to the vicinity of the susceptor, and the effect is significantly reduced at a place away from the susceptor. As shown in FIG. 4 (b),
In the latter stage of the crystal growth, there is almost no effect of the susceptor provided with the groove 14 as compared with FIG. 4A, and there is a large heat flow in the lateral direction. There is a big difference.

【0006】ところで、融液からの結晶成長において、
結晶成長面の形状は結晶成長面近傍の熱流に大きく依存
しており、結晶成長面の形状を制御するためには、結晶
成長全体にわたって熱流も制御することが必要である。
上記方法による結晶成長では結晶成長後期における熱流
の制御が困難であり、結晶の品質向上のため結晶成長全
体にわたった熱流の制御方法が強く望まれている。そし
てかかる課題を解決すべく、特開平3−80181号公
報では、補助発熱体を用いることも記載されているが、
エネルギー効率等を考えると無駄の多い方法であった。
By the way, in crystal growth from a melt,
The shape of the crystal growth surface largely depends on the heat flow in the vicinity of the crystal growth surface. In order to control the shape of the crystal growth surface, it is necessary to control the heat flow throughout the entire crystal growth.
In the crystal growth by the above method, it is difficult to control the heat flow in the latter stage of the crystal growth, and a method of controlling the heat flow over the entire crystal growth is strongly desired for improving the quality of the crystal. In order to solve such a problem, Japanese Patent Laying-Open No. 3-80181 discloses that an auxiliary heating element is used.
It was a wasteful method considering energy efficiency.

【0007】[0007]

【発明が解決しようとする課題】融液からの結晶成長に
おいては、結晶の成長面を結晶成長全体にわたって精密
に制御することが、均一で高品質な結晶を得るために不
可欠であり、そのためには結晶を通る熱流、特に結晶成
長面(固液界面)近傍を通る熱流を精密に制御すること
が必要である。
In crystal growth from a melt, it is essential to precisely control the crystal growth surface over the entire crystal growth in order to obtain a uniform and high-quality crystal. It is necessary to precisely control the heat flow through the crystal, especially the heat flow near the crystal growth surface (solid-liquid interface).

【0008】[0008]

【課題を解決するための手段】そこで本発明者らは、か
かる課題を解決すべく鋭意検討の結果、サセプターウォ
ールの固液界面近傍にヒーターの輻射熱をとりこむため
の断熱率を減じた部分を設けることにより、かかる課題
が解決することを見出し、本発明に到達した。すなわち
本発明の目的は結晶成長中の熱の流れを、新たにエネル
ギーを用いることなく制御しうる方法を提供することに
あり、かかる目的は、垂直に配置されたるつぼの一端に
単結晶である種結晶を配置し、るつぼ内部に原料を充填
し、該原料を加熱、溶融し、固化して該種結晶を成長さ
せ、単結晶を得る単結晶製造装置において、固液界面近
傍のサセプターウォールの断熱率を減じてあることを特
徴とする単結晶製造装置、により容易に達成される。
The inventors of the present invention have made intensive studies to solve the above-mentioned problems, and as a result, provided a portion near the solid-liquid interface of the susceptor wall with a reduced heat insulation rate for taking in the radiant heat of the heater. As a result, they have found that such a problem can be solved, and have reached the present invention. That is, an object of the present invention is to provide a method capable of controlling the heat flow during crystal growth without newly using energy, and such an object is to provide a single crystal at one end of a vertically arranged crucible. A seed crystal is placed, a crucible is filled with a raw material, and the raw material is heated, melted, solidified to grow the seed crystal, and a single crystal manufacturing apparatus for obtaining a single crystal is provided with a susceptor wall near a solid-liquid interface. It is easily attained by a single crystal manufacturing apparatus characterized in that the heat insulation rate is reduced.

【0009】以下本発明をより詳細に説明する。図1は
本発明の一実施態様を示す図である。装置の基本的な構
造は従来用いられているものを用いればよい。装置全体
の簡単な説明をすると、単結晶製造装置は気密容器1の
中に入っており、そのすぐ内側には保温材2がある。そ
してその内側には発熱体3がサセプター4に保持された
るつぼ5の周囲を囲んで配置されている。るつぼ5の内
部には種結晶6、種結晶6より成長した単結晶7、原料
融液8、そして封止剤9が入れられている。固液界面は
10である。サセプターベース4は支持棒11に接続さ
れ、この支持棒11を上下動させることにより、固液界
面10を一定の位置に保つ。サセプターウォール13
は、保温材2又は気密容器1に固定されるつぼ5が移動
しても移動しない構造になっている。かかる装置は従来
用いられている単結晶製造装置をそのまま用いればよ
い。
Hereinafter, the present invention will be described in more detail. FIG. 1 is a diagram showing one embodiment of the present invention. The basic structure of the device may be a conventional one. Briefly describing the entire apparatus, the single crystal manufacturing apparatus is housed in an airtight container 1 and a heat insulating material 2 is provided immediately inside the container. A heating element 3 is disposed inside the heating element 3 so as to surround the crucible 5 held by the susceptor 4. The crucible 5 contains a seed crystal 6, a single crystal 7 grown from the seed crystal 6, a raw material melt 8, and a sealant 9. The solid-liquid interface is 10. The susceptor base 4 is connected to a support rod 11, and the solid-liquid interface 10 is maintained at a fixed position by moving the support rod 11 up and down. Susceptor wall 13
Has a structure that does not move even if the crucible 5 fixed to the heat insulating material 2 or the airtight container 1 moves. As such an apparatus, a conventionally used single crystal manufacturing apparatus may be used as it is.

【0010】本発明の特徴はサセプターウォール13の
固液界面10付近に相当する側面の断熱率を減じた部分
12を設けたことにある。この部分を以下、便宜上減厚
部12と称する。この減厚部12を設けたことにより、
るつぼ内壁付近の融液からの固化が発生しにくくなり単
結晶の乱れが生じ難くなる。この減厚部12の面積及び
減じる厚さは、成長中の単結晶の直径、材質による潜熱
の量と、その熱の流れやすさ、ヒーターの出力、断熱材
の熱伝導率等を考慮し、当業者が任意に設定してよい。
又減厚部12の形状は、単純に減厚部12全体を薄くし
てもよいが例えば固液界面に相当する部分で最も厚さが
薄くなり、あとは連続的に厚さを変化させる等の工夫を
行うのがより好ましい。又、断熱材の種類を変えること
によって断熱率を下げてもよく、更には例えば断熱材に
小さな穴を設けてもよい。窓を開けてしまうという方法
も考えられる。この中で最も好ましいのは簡単に実施し
うる断熱材に窓を開ける方法である。
The feature of the present invention resides in that a portion 12 of the susceptor wall 13 is provided near the solid-liquid interface 10 in the vicinity of the solid-liquid interface 10 and has a reduced heat insulation rate. This portion is hereinafter referred to as a reduced thickness portion 12 for convenience. By providing this reduced thickness portion 12,
Solidification from the melt near the inner wall of the crucible is less likely to occur, and the single crystal is less likely to be disturbed. The area of the reduced thickness portion 12 and the thickness to be reduced are determined in consideration of the diameter of the growing single crystal, the amount of latent heat depending on the material, the ease with which the heat flows, the output of the heater, the thermal conductivity of the heat insulating material, and the like. Those skilled in the art may arbitrarily set the values.
The shape of the thinned portion 12 may be simply reduced as a whole, but, for example, the thickness becomes thinnest at a portion corresponding to the solid-liquid interface, and thereafter the thickness is continuously changed. It is more preferable to carry out the contrivance. Further, the heat insulation rate may be reduced by changing the type of the heat insulating material, and further, for example, a small hole may be provided in the heat insulating material. A method of opening the window is also conceivable. The most preferred of these is a method of opening a window in a heat insulating material that can be easily implemented.

【0011】[0011]

【実施例】以下本発明の実施例をGaAs単結晶の場合
を例にして説明する。φ3インチのBNるつぼにGaA
s多結晶1500g、B2 3 400gを原料としてチ
ャージした。種結晶は<100>方位を使用した。雰囲
気ガスは窒素で7気圧である。サセプターウォールの固
液近傍に高さ25mm、幅24mmの穴を開けた。るつぼ回
転数は3rpm とした。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below by taking a GaAs single crystal as an example. GaAs in BN crucible of φ3 inch
It was charged using 1500 g of s polycrystal and 400 g of B 2 O 3 as raw materials. The seed crystal used <100> orientation. The atmosphere gas is nitrogen and 7 atm. A hole having a height of 25 mm and a width of 24 mm was formed near the solid-liquid of the susceptor wall. The crucible rotation speed was 3 rpm.

【0012】長さ8cmにわたって単結晶が作成できた。
得られた単結晶を引上げ軸に垂直に(100)で切断し
て390℃、10分間KOHエッチング行った。この結
果を図2に示す。比較のため窓あき加工を行っていない
従来のサセプターウォールを用いて行った結果を示す。
従来法では平均EPDが11000/cm 2 と高く、特に
周辺部で増加していた。一方本発明による方法では平均
EPD6700/cm2 と低く、また、結晶周辺部でEP
Dが著しく増加することがなかった。さらにリネージも
全くなかった。
A single crystal was formed over a length of 8 cm.
The obtained single crystal is cut at (100) perpendicular to the pulling axis.
At 390 ° C. for 10 minutes. This result
The results are shown in FIG. No window drilling for comparison
The result performed using the conventional susceptor wall is shown.
In the conventional method, the average EPD is 11000 / cm TwoAnd high, especially
It was increasing in the periphery. On the other hand, in the method according to the present invention, the average
EPD6700 / cmTwoAnd low around the crystal
D did not increase significantly. In addition, lineage
Not at all.

【0013】[0013]

【発明の効果】本発明によれば、るつぼ壁からの半導体
融液の固化が発生しにくくなるため、単結晶成長が順調
に行なわれる。また、EPDの均一化がはかられる。さ
らに多結晶化を阻止することが可能となり、生産性の向
上が実現できる。
According to the present invention, since the solidification of the semiconductor melt from the crucible wall is less likely to occur, single crystal growth is smoothly performed. Further, the EPD can be made uniform. Further, polycrystallization can be prevented, and improvement in productivity can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、本発明の単結晶製造装置の一例を示す
説明図である。
FIG. 1 is an explanatory view showing one example of a single crystal manufacturing apparatus of the present invention.

【図2】図2は、本発明の単結晶製造装置と従来型の単
結晶製造装置により製造した単結晶の結晶欠陥の密度
を、EPDを用いて比較した図である。
FIG. 2 is a diagram comparing density of crystal defects of a single crystal manufactured by a single crystal manufacturing apparatus of the present invention and a single crystal manufactured by a conventional single crystal manufacturing apparatus by using EPD.

【図3】図3は、従来結晶成長面の形状改善のために用
いられていた単結晶製造装置の一例を示す説明図であ
る。
FIG. 3 is an explanatory view showing an example of a single crystal manufacturing apparatus conventionally used for improving the shape of a crystal growth surface.

【図4】図4は、従来型の単結晶製造装置における単結
晶成長中の熱の流れを示した説明図である。
FIG. 4 is an explanatory diagram showing a heat flow during single crystal growth in a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 気密容器 2 保温材 3 発熱体 4 サセプター 5 るつぼ 6 種結晶 7 単結晶 8 原料融液 9 封止材 10 固液界面 11 支持棒 12 減厚部 13 サセプターウォール 14 溝 REFERENCE SIGNS LIST 1 airtight container 2 heat insulating material 3 heating element 4 susceptor 5 crucible 6 seed crystal 7 single crystal 8 raw material melt 9 sealing material 10 solid-liquid interface 11 support rod 12 reduced thickness portion 13 susceptor wall 14 groove

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平3−80180(JP,A) 特開 昭58−2290(JP,A) (58)調査した分野(Int.Cl.7,DB名) C30B 1/00 - 35/00 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-3-80180 (JP, A) JP-A-58-2290 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) C30B 1/00-35/00

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 垂直に配置されたるつぼの一端に単結晶
である種結晶を配置し、るつぼ内部に原料を充填し、該
原料を加熱、溶融し、固化して該種結晶を成長させ、単
結晶を得る単結晶製造装置において、固液界面近傍のサ
セプターウォールの断熱率を減じてあることを特徴とす
る単結晶製造装置。
Claims 1. A crucible vertically arranged has a single crystal at one end, and a seed crystal, which is a single crystal, is placed inside the crucible, and the raw material is heated, melted, and solidified to grow the seed crystal. A single crystal manufacturing apparatus for obtaining a single crystal, wherein a heat insulation rate of a susceptor wall near a solid-liquid interface is reduced.
JP4128889A 1992-05-21 1992-05-21 Single crystal manufacturing equipment Expired - Fee Related JP3042168B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4128889A JP3042168B2 (en) 1992-05-21 1992-05-21 Single crystal manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4128889A JP3042168B2 (en) 1992-05-21 1992-05-21 Single crystal manufacturing equipment

Publications (2)

Publication Number Publication Date
JPH05319972A JPH05319972A (en) 1993-12-03
JP3042168B2 true JP3042168B2 (en) 2000-05-15

Family

ID=14995861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4128889A Expired - Fee Related JP3042168B2 (en) 1992-05-21 1992-05-21 Single crystal manufacturing equipment

Country Status (1)

Country Link
JP (1) JP3042168B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07291777A (en) * 1994-04-21 1995-11-07 Toshiba Corp Apparatus and method for producing semiconductor single crystal

Also Published As

Publication number Publication date
JPH05319972A (en) 1993-12-03

Similar Documents

Publication Publication Date Title
JPH03122097A (en) Preparation of single crystal ii-vi group or iii-v group compound and product made of it
JP2688137B2 (en) Method of pulling silicon single crystal
JP3042168B2 (en) Single crystal manufacturing equipment
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP3018738B2 (en) Single crystal manufacturing equipment
JP2850581B2 (en) Semiconductor crystal manufacturing method and apparatus
US4824520A (en) Liquid encapsulated crystal growth
JP2553485B2 (en) Method for producing gallium arsenide single crystal
JP2758038B2 (en) Single crystal manufacturing equipment
JPH05194073A (en) Growth of compound semiconductor single crystal
JP2977297B2 (en) Crystal manufacturing method
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JP3806793B2 (en) Method for producing compound semiconductor single crystal
JPS62223088A (en) Method for growing compound single crystal
JPH0380180A (en) Device for producing single crystal
JPH10212192A (en) Method for growing bulk crystal
JPH0764670B2 (en) Single crystal growth method and growth apparatus
JP2610034B2 (en) Single crystal growth method
KR920007335B1 (en) Manufacturing apparatus of gaas single crystalline structure
JPH0367996B2 (en)
JPS60122792A (en) Method and device for producing semiconductor crystal
JPS60122791A (en) Pulling up method of crystal under liquid sealing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees