JP2850581B2 - Semiconductor crystal manufacturing method and apparatus - Google Patents

Semiconductor crystal manufacturing method and apparatus

Info

Publication number
JP2850581B2
JP2850581B2 JP17835291A JP17835291A JP2850581B2 JP 2850581 B2 JP2850581 B2 JP 2850581B2 JP 17835291 A JP17835291 A JP 17835291A JP 17835291 A JP17835291 A JP 17835291A JP 2850581 B2 JP2850581 B2 JP 2850581B2
Authority
JP
Japan
Prior art keywords
crystal
semiconductor
seed crystal
melt
crucible
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17835291A
Other languages
Japanese (ja)
Other versions
JPH0524965A (en
Inventor
真佐知 柴田
知己 稲田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP17835291A priority Critical patent/JP2850581B2/en
Publication of JPH0524965A publication Critical patent/JPH0524965A/en
Application granted granted Critical
Publication of JP2850581B2 publication Critical patent/JP2850581B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は半導体融液をルツボ内で
下方から上方に向けて徐々に固化させて結晶を成長する
半導体結晶の製造方法およびその装置に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method and an apparatus for manufacturing a semiconductor crystal for growing a crystal by gradually solidifying a semiconductor melt from below in a crucible upward.

【0002】[0002]

【従来の技術】半導体融液をルツボ内で下部から上方に
向けて徐々に固化させることにより単結晶を成長する縦
型成長法、すなわち縦型徐冷法(VGF法)あるいは縦
型ブリッジマン法(VB法)等では、比較的大口径で、
かつ結晶中の転位密度の低い単結晶を作成できることか
ら、半導体結晶、特にIII −V族化合物半導体結晶の成
長法として注目されている。
2. Description of the Related Art A vertical growth method for growing a single crystal by gradually solidifying a semiconductor melt from a lower portion to an upper portion in a crucible, that is, a vertical slow cooling method (VGF method) or a vertical Bridgman method (VB method) Method), etc., have a relatively large diameter,
In addition, since a single crystal having a low dislocation density in a crystal can be formed, it is attracting attention as a method for growing a semiconductor crystal, particularly, a III-V compound semiconductor crystal.

【0003】以下に従来のVGF法によるIII −V族化
合物半導体結晶成長を図3に示したVGF炉を例にとっ
て説明する。
A conventional III-V compound semiconductor crystal growth by the VGF method will be described below with reference to a VGF furnace shown in FIG.

【0004】pBN製のルツボ3の下端に種結晶9を配
置し、さらにルツボ3内にIII −V族化合物の多結晶を
収容する。そして、このルツボ3を成長容器2内のルツ
ボ支持台4上に設置する。ルツボ支持台4の下方には、
成長容器2内をV族元素雰囲気に保つ目的で、V族元素
10を設ける。成長容器2の上部開口は、容器内圧が外
圧と同じになるように隙間1aを設けた蓋1で閉じる。
成長容器2の外側には、下方が上方よりも低温となるよ
うな温度勾配をもつ融液加熱用ヒータ5と、V族元素を
気化、蒸発させるためのV族元素加熱用ヒータ6が設置
されている。
A seed crystal 9 is disposed at the lower end of a crucible 3 made of pBN, and a polycrystal of a group III-V compound is accommodated in the crucible 3. Then, the crucible 3 is set on the crucible support 4 in the growth vessel 2. Below the crucible support 4,
A group V element 10 is provided for the purpose of keeping the inside of the growth vessel 2 in a group V element atmosphere. The upper opening of the growth vessel 2 is closed with a lid 1 provided with a gap 1a so that the pressure inside the vessel becomes equal to the external pressure.
Outside the growth vessel 2, a heater 5 for heating the melt having a temperature gradient such that the lower portion is lower than the upper portion, and a heater 6 for heating the group V element for vaporizing and evaporating the group V element are provided. ing.

【0005】結晶成長は、まずヒータ5でルツボ3内の
多結晶を融解してIII −V族化合物の融液7を作り、そ
の後ヒータ5を徐々に冷却することにより、ルツボ3内
で種結晶9と同じ方位をもったIII −V族化合物の単結
晶8を下方から上方に向けて固化成長させていくことに
より行われる。
The crystal growth is performed by first melting the polycrystal in the crucible 3 by the heater 5 to form a melt 7 of a III-V compound, and then gradually cooling the heater 5 to form a seed crystal in the crucible 3. This is performed by solidifying and growing a single crystal 8 of a group III-V compound having the same orientation as 9 upward from below.

【0006】[0006]

【発明が解決しようとする課題】VGF法やVB法等の
縦型成長法で結晶成長を行う場合、結晶が成長中に多結
晶化することが最大の問題である。縦型成長法の場合、
他の成長法例えば液体封止引上法(LEC法)や横形ボ
ート法(HB法)に比較して結晶からの熱拡散が少ない
ため、融液温度を下げることで、結晶を成長させなけれ
ばならない。このため結晶の固液界面に近い位置での融
液内径方向温度勾配は、図4に示すようなルツボ壁で温
度が低い分布を示す。この傾向は、成長初期のシード付
けや、肩部形成時に特に甚だしい。結晶は、融液の温度
が低いほど早く成長するため、図4の様な温度分布の融
液内では、結晶の固液界面形状が融液に向って凹型にな
ってしまう。すなわち、融液温度が周辺から早く下がる
ため、熱の流れは図5の矢印で示すようになる。固液界
面は熱の流れに対して垂直になろうとするため、必然的
に固液界面形状は凹型となる。固液界面形状が凹型をし
ていると、成長とともに結晶中を伝播する転位が結晶の
中心部に集積しやすく、高密度に集積した場合はその位
置から結晶が多結晶化してしまう。単結晶を得るために
は、固液界面形状が平坦であるか、又は融液に向ってや
や凸であることが望ましいが、そのようにすることは上
記の理由から従来の縦型成長法やその装置では難しい。
When a crystal is grown by a vertical growth method such as the VGF method or the VB method, the biggest problem is that the crystal is polycrystallized during the growth. For the vertical growth method,
Since the heat diffusion from the crystal is smaller than other growth methods such as the liquid sealing pulling method (LEC method) and the horizontal boat method (HB method), the crystal must be grown by lowering the melt temperature. No. Therefore, the temperature gradient in the inner diameter direction of the melt at a position near the solid-liquid interface of the crystal has a low temperature distribution on the crucible wall as shown in FIG. This tendency is particularly severe during seeding at the beginning of growth and during shoulder formation. Since the crystal grows faster as the temperature of the melt is lower, the solid-liquid interface shape of the crystal becomes concave toward the melt in the melt having a temperature distribution as shown in FIG. That is, since the temperature of the melt drops quickly from the periphery, the flow of heat is as indicated by the arrow in FIG. Since the solid-liquid interface tends to be perpendicular to the flow of heat, the shape of the solid-liquid interface is necessarily concave. If the shape of the solid-liquid interface is concave, dislocations that propagate in the crystal as it grows are likely to accumulate at the center of the crystal, and if it is densely integrated, the crystal will be polycrystallized from that position. In order to obtain a single crystal, it is desirable that the solid-liquid interface shape be flat or slightly convex toward the melt.However, for such reasons, the conventional vertical growth method or Difficult with that device.

【0007】また、縦型成長装置ではその構造上、原料
多結晶を融解する際に加熱により種結晶が融解してしま
って成長が不能になることがあった。
Further, in the vertical growth apparatus, the seed crystal may be melted by heating when melting the raw material polycrystal due to its structure, so that the growth may become impossible.

【0008】本発明の目的は、前記した従来技術におけ
る固液界面形状の凹面化を防止し、高品質の結晶を再現
性よく製造することのできる新規な半導体結晶の製造方
法およびその装置を提供することにある。
An object of the present invention is to provide a novel semiconductor crystal manufacturing method and apparatus capable of preventing a concave-convex shape of a solid-liquid interface shape in the prior art and manufacturing a high-quality crystal with good reproducibility. Is to do.

【0009】[0009]

【課題を解決するための手段】本発明の半導体結晶の製
造方法は、ルツボ底部に種結晶を配置し、ルツボ内に収
容した半導体融液を種結晶に接触させて、下方から上方
に向けて徐々に固化させることにより単結晶を製造する
半導体結晶の製造方法において、結晶と半導体融液との
固液界面形状を平坦又は融液に向って凸型になるように
種結晶部分を強制的に冷却するようにしたものである。
According to the method of manufacturing a semiconductor crystal of the present invention, a seed crystal is arranged at the bottom of a crucible, and a semiconductor melt contained in the crucible is brought into contact with the seed crystal and is moved upward from below. In a method of manufacturing a semiconductor crystal in which a single crystal is manufactured by gradually solidifying, a seed crystal portion is forcibly forced so that a solid-liquid interface shape between the crystal and the semiconductor melt is flat or convex toward the melt. It is intended to be cooled.

【0010】また、本発明の半導体結晶の製造装置は、
底部に種結晶を配置する種結晶配置部を有し、その上部
に半導体融液を収容するルツボと、このルツボの外側に
下方が上方よりも低温となるような温度勾配を形成する
融液加熱手段とを備え、種結晶に接触した半導体融液を
下方から上方に向けて固化させることにより結晶を製造
する半導体結晶の製造装置において、上記ルツボ底部の
種結晶配置部の外周部に冷媒通路を有して、これに液体
を流すことにより種結晶配置部を冷却する冷却手段を設
けたものである。
[0010] The apparatus for manufacturing a semiconductor crystal according to the present invention comprises:
A crucible that has a seed crystal disposing part for disposing a seed crystal at the bottom and contains a semiconductor melt at the top, and a melt heating that forms a temperature gradient outside the crucible such that the lower part is lower than the upper part. Means for producing a crystal by solidifying a semiconductor melt in contact with a seed crystal upward from below, wherein a refrigerant passage is provided around the outer periphery of the seed crystal arrangement portion at the bottom of the crucible. And a cooling means for cooling the seed crystal disposing portion by flowing a liquid through the cooling device.

【0011】さらに、本発明の半導体結晶の製造装置
は、上記ルツボ底部の種結晶配置部の外周部に、放熱フ
ィンを有する冷媒通路を有して、これに気体を流すこと
により種結晶配置部を冷却する冷却手段を設けたもので
ある。
Further, the apparatus for manufacturing a semiconductor crystal according to the present invention has a coolant passage having radiating fins on an outer peripheral portion of the seed crystal disposing portion at the bottom of the crucible. Is provided with a cooling means for cooling the water.

【0012】半導体結晶の製造方法としてはVGF法の
他に、VB法や、縦型に配したヒータ中を原料を収容し
たルツボを降下させることによって結晶の固化を行う炉
体移動法(Traveling Furnace (TF)法)にも適用が
可能である。
As a method for producing a semiconductor crystal, in addition to the VGF method, a VB method or a furnace moving method for solidifying a crystal by lowering a crucible containing raw materials in a vertically arranged heater (Traveling Furnace). (TF) method).

【0013】また、種結晶の冷却に使用する冷媒として
は、液体であれば水、気体であれば空気がもっとも簡易
かつ確実であるが、これ以外であってもよく、例えばフ
ロン、フレオン等の媒質を使用することも可能である。
As the refrigerant used for cooling the seed crystal, water is the simplest and most reliable liquid if it is a liquid, but other refrigerants such as Freon and Freon can be used. It is also possible to use a medium.

【0014】本発明に適用できる半導体材料は、GaA
s、InAs、GaSb、InSb、GaP、InP等
のIII −V族化合物、CdTe、ZnSe、ZnS、H
gTe等のII−VI族化合物、またはSi、GeのIV族
元素、さらにこれらを1種類以上含む混晶結晶である。
The semiconductor material applicable to the present invention is GaAs.
III-V compounds such as s, InAs, GaSb, InSb, GaP, InP, CdTe, ZnSe, ZnS, H
A group II-VI compound such as gTe, or a group IV element of Si or Ge, and a mixed crystal containing at least one of these.

【0015】[0015]

【作用】融液温度が周辺から早く下がると、必然的に固
液界面形状は凹型となる。しかし、本発明のように種結
晶を強制的に冷却するようにすると、融液よりも結晶か
らの熱放散量が増大する。固液界面が熱の流れに対して
垂直になろうとするため、融液側から結晶側へ向って流
れる熱放散量が増加すると、固液界面は平坦化もしくは
融液に向って凸化する。これにより転位の集積が起こり
にくくなり、高品質の結晶が得られる。また、原料多結
晶を融解する際に種結晶が融解してしまうことがなくな
る。
When the temperature of the melt drops rapidly from the periphery, the shape of the solid-liquid interface necessarily becomes concave. However, when the seed crystal is forcibly cooled as in the present invention, the amount of heat dissipation from the crystal is larger than that of the melt. Since the solid-liquid interface tends to be perpendicular to the flow of heat, if the amount of heat dissipation flowing from the melt side to the crystal side increases, the solid-liquid interface becomes flat or convex toward the melt. Thereby, accumulation of dislocations is less likely to occur, and a high-quality crystal can be obtained. Further, the seed crystal does not melt when the raw material polycrystal is melted.

【0016】[0016]

【実施例】以下、本発明の実施例を図面を用いて説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0017】実施例1 図1に示す、種結晶を水冷する構造を有するVGF装置
を用いてGaAs単結晶成長を行った。本装置は従来例
で説明した図3と基本的には同じ構成で、異なる点は、
ルツボ3下端に設けた種結晶配置部3aの周囲を取り巻
くように、ルツボ支持台4の内部に冷却水路11を設け
たことである。この水路に22℃、10l/minの冷
却水を流しながら成長を行った。使用したルツボは、直
径φ55mm、全長250mm、GaAs多結晶のチャ
ージ量は1700gである。結晶は種結晶から結晶終端
部まで全長155mmに亘って完全な単結晶が得られ
た。この結晶を縦に切断し、エッチングを施して固液界
面形状15を調べたところ、結晶全域に亘って凸型にな
っていることが確認できた。
Example 1 A GaAs single crystal was grown using a VGF apparatus having a structure for cooling a seed crystal with water as shown in FIG. This apparatus has basically the same configuration as that of FIG. 3 described in the conventional example.
The cooling water passage 11 is provided inside the crucible support 4 so as to surround the seed crystal disposing portion 3 a provided at the lower end of the crucible 3. The growth was carried out while flowing cooling water at 22 ° C. and 10 l / min through this channel. The crucible used was 55 mm in diameter and 250 mm in total length, and the charge amount of GaAs polycrystal was 1700 g. As a crystal, a complete single crystal was obtained over a total length of 155 mm from the seed crystal to the terminal end of the crystal. The crystal was cut vertically, etched, and the solid-liquid interface shape 15 was examined. As a result, it was confirmed that the crystal had a convex shape over the entire region.

【0018】実施例2 種結晶をガス冷却する方法でGaAsの単結晶成長を行
った。使用した装置の横断面図を図2に示す。本装置も
従来例で説明した図3と基本的には同じ構成で、異なる
点は、ルツボ支持台4を中空にして冷媒通路12を構成
し、その通路12に種結晶冷却用のガス出入口12aを
設け、種結晶配置部3aの周囲にガスを流すことで、種
結晶9を冷却できるようにしたことである。種結晶9の
冷却効率を高めるために、冷媒通路12内部の種結晶配
置部3aの周囲に放熱用フィン13を設けた。冷却用ガ
スには乾燥空気を用い、成長中に18℃のガスを20l
/min流した。その他の成長条件は実施例1と同一で
ある。これにより得られた結晶も、実施例1と同じく完
全な単結晶であった。固液界面形状を観察した結果も、
結晶全域に亘って凸型であることが確認できた。
Example 2 A single crystal of GaAs was grown by gas cooling the seed crystal. FIG. 2 shows a cross-sectional view of the used apparatus. This apparatus also has basically the same configuration as that of FIG. 3 described in the conventional example, except that the crucible support 4 is hollow to form a refrigerant passage 12, and the passage 12 has a gas inlet / outlet 12a for cooling a seed crystal. Is provided to allow the seed crystal 9 to be cooled by flowing gas around the seed crystal disposing portion 3a. In order to increase the cooling efficiency of the seed crystal 9, a radiating fin 13 is provided around the seed crystal arrangement portion 3 a inside the refrigerant passage 12. Use dry air as a cooling gas, and add 20 l of gas at 18 ° C during growth.
/ Min. Other growth conditions are the same as in the first embodiment. The crystal thus obtained was a complete single crystal as in Example 1. Observation of the solid-liquid interface shape
It was confirmed that the crystal was convex over the entire area of the crystal.

【0019】比較例1 図3に示す従来のVGF法による装置を使い、実施例1
と同一条件でGaAsの結晶成長を行った。成長した結
晶は成長途中で多結晶化してしまった。結晶を縦に切断
し、多結晶化の起点を調べたところ、種結晶から40m
mの場所で、結晶の中央部から多結晶化が始っていた。
エッチング観察の結果、固液界面形状は凹型になってお
り多結晶化の起点には転位が高密度に集積していること
が確認された。
COMPARATIVE EXAMPLE 1 Using the conventional apparatus according to the VGF method shown in FIG.
A GaAs crystal was grown under the same conditions as described above. The grown crystal was polycrystallized during the growth. When the crystal was cut vertically and the starting point of polycrystallization was examined, 40 m from the seed crystal
At position m, polycrystallization had begun from the center of the crystal.
As a result of etching observation, it was confirmed that the shape of the solid-liquid interface was concave, and that dislocations were accumulated at a high density at the starting point of polycrystallization.

【0020】実施例の効果 本実施例によれば、固液界面形状を凸化させることで、
成長に伴い界面に垂直に伝播する転位が局所的に集積す
るのを防止できる。このため、成長した結晶から切り出
したウェハ面内の均一性が向上する。これは欠陥(転
位)分布の均一性のみならず、転位上に析出する不純物
の分布も均一になることから、電気特性のウェハ面内分
布の均一性向上にも効果がある。
[0020] According to the present embodiment example, the solid-liquid interface shape that is Totsuka,
Dislocations propagating perpendicularly to the interface during the growth can be prevented from locally accumulating. For this reason, the uniformity in the wafer surface cut out from the grown crystal is improved. This is effective not only in the uniformity of the distribution of defects (dislocations) but also in the distribution of impurities deposited on the dislocations.

【0021】また、転位が局所的に集積するのを防止で
きるため、転位が線状に連なって形成される欠陥(リネ
ージ)の低減ができ、また転位が高密度に集積するこに
よって発生する多結晶化を有効に防止できる。
Further, since dislocations can be prevented from locally accumulating, defects (lineage) in which dislocations are formed in a continuous line can be reduced, and a large number of dislocations can be generated due to a high density of dislocations. Crystallization can be effectively prevented.

【0022】そして、結晶の多結晶化を防止できるた
め、生産性が大幅に向上し、特性不良や多結晶化による
不良結晶が減るため、経済性が向上するばかりでなく、
結晶成長途中での多結晶化が防止できるため、より長尺
な結晶を製造することも可能である。さらに、原料多結
晶を融解する際に加熱により種結晶が融解してしまって
成長が不能になることがあるが、種結晶を冷却すること
により、この様な事故を防止することができる。
Further, since the polycrystallization of the crystal can be prevented, productivity is greatly improved, and defective crystals due to characteristic failure and polycrystallization are reduced, so that not only economic efficiency is improved, but also
Since polycrystallization during crystal growth can be prevented, a longer crystal can be manufactured. Further, when the seed polycrystal is melted, the seed crystal may be melted by heating to make growth impossible, but such an accident can be prevented by cooling the seed crystal.

【0023】このように本発明によれば、種々の効果が
あるが、特に廉価で大型GaAs結晶の製造方法として
知られるVGFを採用すればその効果は大である。な
お、本発明は多結晶合成装置にも適用できる。
As described above, according to the present invention, various effects are obtained, but the effect is particularly large when VGF which is known as a method of manufacturing a large GaAs crystal at low cost is employed. Note that the present invention can be applied to a polycrystalline synthesis apparatus.

【0024】[0024]

【発明の効果】本発明によれば次の効果を発揮する。According to the present invention, the following effects are exhibited.

【0025】(1)本発明方法によれば、固液界面形状
の凹面化を防止できるので、結晶の多結晶化を防止して
高品質の単結晶を再現性よく製造することができる。
(1) According to the method of the present invention, since the concave-convex shape of the solid-liquid interface shape can be prevented, high-quality single crystals can be produced with good reproducibility by preventing polycrystallization of the crystals.

【0026】(2)本装置によれば、従来装置に冷却手
段を付加するという僅かな変更を加えるだけで、高品質
の結晶を製造することができる。
(2) According to the present apparatus, a high-quality crystal can be manufactured by making only a slight change of adding a cooling means to the conventional apparatus.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体結晶の製造装置による一実施例
を示す水冷機構を備えたVGF炉の横断面図。
FIG. 1 is a cross-sectional view of a VGF furnace equipped with a water cooling mechanism, showing one embodiment of a semiconductor crystal manufacturing apparatus according to the present invention.

【図2】本発明の半導体結晶の製造装置による一実施例
を示すガス冷却機構を備えたVGF炉の横断面図。
FIG. 2 is a cross-sectional view of a VGF furnace provided with a gas cooling mechanism showing one embodiment of the semiconductor crystal manufacturing apparatus of the present invention.

【図3】従来のIII −V族化合物結晶に用いるVGF炉
の横断面図。
FIG. 3 is a cross-sectional view of a conventional VGF furnace used for a group III-V compound crystal.

【図4】VGF法で結晶成長を行った場合の固液界面近
傍における融液内径方向の温度分布を表わした特性図。
FIG. 4 is a characteristic diagram showing a temperature distribution in a melt inner diameter direction near a solid-liquid interface when crystal growth is performed by a VGF method.

【図5】従来例を実施した場合の固液界面における熱の
流れを模式的に示した説明図。
FIG. 5 is an explanatory view schematically showing the flow of heat at a solid-liquid interface when a conventional example is implemented.

【図6】本発明を実施した場合の固液界面における熱の
流れを模式的に示した説明図。
FIG. 6 is an explanatory diagram schematically showing the flow of heat at the solid-liquid interface when the present invention is implemented.

【符号の説明】[Explanation of symbols]

1 蓋 2 成長容器 3 ルツボ 3a 種結晶配置部 4 ルツボ支持台 5 融液加熱用ヒータ 6 V族元素加熱用ヒータ 7 融液 8 結晶 9 種結晶 10 V族元素 11 冷却水路 12 冷媒通路 12a ガス出入口 13 放熱フィン 15 固液界面形状 DESCRIPTION OF SYMBOLS 1 Cover 2 Growth container 3 Crucible 3a Seed crystal placement part 4 Crucible support 5 Heater for melt heating 6 Heater for group V element heating 7 Melt 8 Crystal 9 seed crystal 10 V group element 11 Cooling channel 12 Refrigerant channel 12a Gas inlet / outlet 13 Heat radiation fin 15 Solid-liquid interface shape

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C30B 1/00 - 35/00 H01L 21/208──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int. Cl. 6 , DB name) C30B 1/00-35/00 H01L 21/208

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】ルツボ内に収容した半導体融液を上記ルツ
ボの底部に設けられた種結晶配置部に配置した種結晶と
接触させた状態で、該種結晶側から上方に向けて上記半
導体融液を徐々に固化させる半導体結晶の製造方法にお
いて、上記種結晶配置部の外周に上記種結晶を強制的に
冷却するための冷却手段を設けて、上記半導体結晶と上
記半導体融液との間の固液界面形状を平坦又は上記半導
体融液側に向かって凸型に制御することを特徴とする半
導体結晶の製造方法。
1. A crucible containing a semiconductor melt contained in a crucible.
A seed crystal arranged at the seed crystal arrangement part provided at the bottom of
In the contact state, the above half
A method for manufacturing semiconductor crystals that gradually solidifies a conductor melt
And forcibly place the seed crystal around the seed crystal arrangement part.
A cooling means for cooling is provided so that the semiconductor crystal and the
Flatten the solid-liquid interface between the semiconductor melt and the semiconductor
A method of manufacturing a semiconductor crystal, wherein the semiconductor crystal is controlled to be convex toward a body melt side .
【請求項2】底部に種結晶を配置する種結晶配置部を有
すると共に上部に半導体融液を収容するためのルツボ
と、該ルツボの下に設けられたルツボ支持台と、上記ル
ツボの外側に設けられて下方が上方よりも低温となる
度勾配を形成する融液加熱手段とを備え、上記半導体融
液を上記種結晶と接触させた状態で、該種結晶側から上
方に向けて上記半導体融液を徐々に固化させる半導体結
晶の製造装置において、上記ルツボ支持台の内部に、冷
媒通路からなる種結晶冷却手段が設けられ、上記冷媒通
路に液体を流して上記種結晶を強制冷却することを特徴
とする半導体結晶の製造装置。
2. A seed crystal disposing portion for disposing a seed crystal at a bottom portion.
A crucible for accommodating a semiconductor melt at the top and a crucible support provided below the crucible;
Provided outside the pot and a melt heating means downwardly to form a temperature <br/> degree gradient becomes cooler than the upper, the semiconductor melt
With the liquid in contact with the seed crystal,
In a semiconductor crystal manufacturing apparatus for gradually solidifying the semiconductor melt toward the direction, the inside of the crucible support is cooled.
A seed crystal cooling means including a medium passage is provided.
An apparatus for manufacturing a semiconductor crystal, wherein a liquid is flowed in a passage to forcibly cool the seed crystal .
【請求項3】底部に種結晶を配置する種結晶配置部を有
すると共に上部に半導体融液を収容するためのルツボ
と、該ルツボの下に設けられたルツボ支持台と、上記ル
ツボの外側に設けられて下方が上方よりも低温となる
度勾配を形成する融液加熱手段とを備え、上記半導体融
液を上記種結晶と接触させた状態で、該種結晶側から上
方に向けて上記半導体融液を徐々に固化させる半導体結
晶の製造装置において、上記ルツボ支持台の内部に、内
側に放熱フィンを有する冷媒通路からなる種結晶冷却手
段が設けられ、上記冷媒通路に気体を流して上記種結晶
を強制冷却することを特徴とする半導体結晶の製造装
置。
3. A seed crystal disposing portion for disposing a seed crystal at a bottom portion.
A crucible for accommodating a semiconductor melt at the top and a crucible support provided below the crucible;
Provided outside the pot and a melt heating means downwardly to form a temperature <br/> degree gradient becomes cooler than the upper, the semiconductor melt
With the liquid in contact with the seed crystal,
In a semiconductor crystal manufacturing apparatus for gradually solidifying the semiconductor melt toward the direction, the inside of the crucible support is
Seed crystal cooling hand consisting of a refrigerant passage with radiating fins on the side
A step is provided, and a gas is caused to flow through the refrigerant passage so that the seed crystal is formed.
A semiconductor crystal manufacturing apparatus characterized in that a semiconductor crystal is forcibly cooled .
JP17835291A 1991-07-18 1991-07-18 Semiconductor crystal manufacturing method and apparatus Expired - Fee Related JP2850581B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17835291A JP2850581B2 (en) 1991-07-18 1991-07-18 Semiconductor crystal manufacturing method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17835291A JP2850581B2 (en) 1991-07-18 1991-07-18 Semiconductor crystal manufacturing method and apparatus

Publications (2)

Publication Number Publication Date
JPH0524965A JPH0524965A (en) 1993-02-02
JP2850581B2 true JP2850581B2 (en) 1999-01-27

Family

ID=16046991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17835291A Expired - Fee Related JP2850581B2 (en) 1991-07-18 1991-07-18 Semiconductor crystal manufacturing method and apparatus

Country Status (1)

Country Link
JP (1) JP2850581B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100428699B1 (en) * 2001-03-06 2004-04-27 주식회사 사파이어테크놀로지 Large Crystal Growing Apparatus Having Vertical and Horizontal Temperature Gradients and Growing Method thereof
CN100510199C (en) 2004-11-16 2009-07-08 日本电信电话株式会社 Apparatus for crystal production
CN108360060B (en) * 2017-12-08 2019-07-09 中国电子科技集团公司第十三研究所 Vertical temperature gradient crystal growing apparatus is rotated after a kind of synthesis of compound crystal
CN108360061B (en) * 2017-12-08 2019-07-09 中国电子科技集团公司第十三研究所 The method of continuous VGF crystal growth is rotated after a kind of horizontal injection synthesis
CN109252220A (en) * 2018-12-04 2019-01-22 中国电子科技集团公司第四十六研究所 A kind of VGF/VB arsenide gallium monocrystal furnace structure and growing method
CN115216831A (en) * 2022-07-15 2022-10-21 中国电子科技集团公司第十三研究所 Crystal growth device and method capable of controlling temperature gradient

Also Published As

Publication number Publication date
JPH0524965A (en) 1993-02-02

Similar Documents

Publication Publication Date Title
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
US4075055A (en) Method and apparatus for forming an elongated silicon crystalline body using a &lt;110&gt;{211}orientated seed crystal
US7314518B2 (en) Furnace for growing compound semiconductor single crystal and method of growing the same by using the furnace
JP2850581B2 (en) Semiconductor crystal manufacturing method and apparatus
US5342475A (en) Method of growing single crystal of compound semiconductor
US4923561A (en) Crystal growth method
JP3806791B2 (en) Method for producing compound semiconductor single crystal
TWI595124B (en) Manufacturing method of polysilicon ingot
US7175705B2 (en) Process for producing compound semiconductor single crystal
JP3509556B2 (en) Single crystal manufacturing method and manufacturing apparatus
JPH05194073A (en) Growth of compound semiconductor single crystal
JP4344021B2 (en) Method for producing InP single crystal
JP2690419B2 (en) Single crystal growing method and apparatus
JP3042168B2 (en) Single crystal manufacturing equipment
JP3831913B2 (en) Method for producing compound semiconductor single crystal
JP2834558B2 (en) Compound semiconductor single crystal growth method
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
JP2814796B2 (en) Method and apparatus for producing single crystal
JP3624295B2 (en) Single crystal manufacturing method and manufacturing apparatus thereof
JP3806793B2 (en) Method for producing compound semiconductor single crystal
Steinbach et al. Microstructural analysis of the crystallization of silicon ribbons produced by the RGS process
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JPH03193689A (en) Production of compound semiconductor crystal
JPH09295887A (en) Growing of crystal and crucible for growing
JPH07291781A (en) Method for growing single crystal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees