TWI595124B - Manufacturing method of polysilicon ingot - Google Patents

Manufacturing method of polysilicon ingot Download PDF

Info

Publication number
TWI595124B
TWI595124B TW105122566A TW105122566A TWI595124B TW I595124 B TWI595124 B TW I595124B TW 105122566 A TW105122566 A TW 105122566A TW 105122566 A TW105122566 A TW 105122566A TW I595124 B TWI595124 B TW I595124B
Authority
TW
Taiwan
Prior art keywords
release layer
polycrystalline
seed crystals
ingot
layer
Prior art date
Application number
TW105122566A
Other languages
Chinese (zh)
Other versions
TW201804031A (en
Inventor
朱仁璿
黃呂明
劉俊毅
陳冠元
鄭鉦耀
Original Assignee
綠能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綠能科技股份有限公司 filed Critical 綠能科技股份有限公司
Priority to TW105122566A priority Critical patent/TWI595124B/en
Priority to JP2016230354A priority patent/JP6286514B2/en
Application granted granted Critical
Publication of TWI595124B publication Critical patent/TWI595124B/en
Publication of TW201804031A publication Critical patent/TW201804031A/en

Links

Description

多晶矽鑄錠的製造方法Method for manufacturing polycrystalline germanium ingot

本發明是有關於一種鑄錠的製造方法,且特別是有關於一種多晶矽鑄錠的製造方法。This invention relates to a method of making an ingot, and more particularly to a method of making a polycrystalline ingot.

矽晶圓在半導體產業中扮演著關鍵的角色。若矽晶圓的品質不良,則會對應用所述矽晶圓的半導體元件的效率或電性表現造成負面影響。以太陽能電池為例,太陽能電池的光電轉換效率會受到矽晶圓品質的限制。依據所採用的鑄錠的不同,目前的太陽能電池主要包括單晶矽太陽能電池與多晶矽太陽能電池。相較於單晶矽太陽能電池,多晶矽太陽能電池所使用的多晶矽鑄錠具有成長速率快以及方便裁切等優勢。惟目前多晶矽鑄錠的製造方法無法有效降低多晶矽鑄錠中的缺陷比例,導致多晶矽鑄錠的切片良率不佳,且後續製成的太陽能電池的光電轉換效率不佳。是以,如何製造出低缺陷比例的多晶矽鑄錠,便成為研發人員所關注的議題之一。Silicon wafers play a key role in the semiconductor industry. If the quality of the germanium wafer is poor, the efficiency or electrical performance of the semiconductor device to which the germanium wafer is applied may be adversely affected. Taking solar cells as an example, the photoelectric conversion efficiency of solar cells is limited by the quality of germanium wafers. Depending on the ingot used, current solar cells mainly include single crystal germanium solar cells and polycrystalline germanium solar cells. Compared with single crystal germanium solar cells, the polycrystalline germanium ingots used in polycrystalline germanium solar cells have the advantages of fast growth rate and convenient cutting. However, the current manufacturing method of the polycrystalline tantalum ingot cannot effectively reduce the proportion of defects in the polycrystalline tantalum ingot, resulting in poor slicing yield of the polycrystalline tantalum ingot, and the photoelectric conversion efficiency of the subsequently produced solar cell is not good. Therefore, how to make a polycrystalline niobium ingot with a low defect ratio has become one of the topics of concern to researchers.

本發明提供一種多晶矽鑄錠的製造方法,其可製造出低缺陷比例的多晶矽鑄錠。The present invention provides a method of producing a polycrystalline tantalum ingot which can produce a polycrystalline tantalum ingot having a low defect ratio.

本發明的一種多晶矽鑄錠的製造方法,其包括以下步驟。於成長容器的底面上形成成核層,其中成核層包括多個晶種以及第一脫膜層,晶種配置在底面上,且第一脫膜層覆蓋晶種以及被晶種暴露出來的底面。於成長容器中裝入矽原料,且矽原料位於成核層上。加熱成長容器,使矽原料全部熔化成矽熔湯,且使覆蓋晶種的第一脫膜層受熱熔化,而使得各晶種被第一脫膜層局部裸露出來,且晶種被裸露出來的部分與矽熔湯接觸。冷卻成長容器的底部,使多個矽晶粒在晶種被裸露出來的部分上成核且沿成長方向成長。持續冷卻成長容器的底部,直至矽熔湯全部凝固,而形成多晶矽鑄錠。A method of producing a polycrystalline germanium ingot according to the present invention comprises the following steps. Forming a nucleation layer on the bottom surface of the growth vessel, wherein the nucleation layer comprises a plurality of seed crystals and a first release layer, the seed crystal is disposed on the bottom surface, and the first release layer covers the seed crystal and is exposed by the seed crystal Bottom surface. The raw material is placed in the growth vessel, and the raw material is placed on the nucleation layer. Heating the growing container to melt all the raw materials of the crucible into a crucible melt, and melting the first stripping layer covering the seed crystal by heat, so that each seed crystal is partially exposed by the first stripping layer, and the seed crystal is exposed. Partially in contact with the broth. The bottom of the growth vessel is cooled, and a plurality of tantalum crystal grains are nucleated on the exposed portion of the seed crystal and grow in the growth direction. The bottom of the growing container is continuously cooled until the crucible is completely solidified to form a polycrystalline ingot.

基於上述,由於晶種能夠提供密集的成核點,而有助於大量降低形成於多晶矽鑄錠的底部的大尺寸矽晶粒的分佈比例,因此本發明的多晶矽鑄錠的製造方法可製造出矽晶粒的平均晶粒尺寸從底面朝頂面遞增的多晶矽鑄錠。在長晶過程中,晶粒成長是由小而大,在此長晶方法的控制下,有助於晶粒朝單一方向成長,並抑制較差的晶界缺陷形成。是以,本發明的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠可具有低缺陷比例。Based on the above, since the seed crystal can provide a dense nucleation point and contributes to a large reduction in the distribution ratio of the large-sized niobium crystal grains formed at the bottom of the polycrystalline niobium ingot, the manufacturing method of the polycrystalline niobium ingot of the present invention can be manufactured. A polycrystalline germanium ingot in which the average grain size of the germanium grains increases from the bottom surface toward the top surface. In the crystal growth process, the grain growth is small and large, and under the control of the crystal growth method, the crystal grains are grown in a single direction and the formation of poor grain boundary defects is suppressed. Therefore, the polycrystalline tantalum ingot produced by the method for producing a polycrystalline tantalum ingot of the present invention can have a low defect ratio.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A至圖1F是依照本發明的一實施例的一種多晶矽鑄錠的製造流程的示意圖。請參照圖1A,於成長容器100的底面SB’上形成成核層110。成長容器100例如是石英坩堝,但不以此為限。成核層110包括多個晶種112以及第一脫膜層114。晶種112配置在底面SB’上,其適於提供後續長晶時的成核點。第一脫膜層114覆蓋晶種112以及被晶種112暴露出來的底面SB’,且第一脫膜層114的最大厚度約等於晶種112的最大厚度。進一步而言,覆蓋於晶種112上的第一脫膜層114的厚度須夠薄,使得在後續升溫製程中,覆蓋於晶種112上的第一脫膜層114能夠受熱熔化而暴露出各晶種112的局部區域,從而提供所需的成核點。1A to 1F are schematic views showing a manufacturing process of a polycrystalline germanium ingot according to an embodiment of the present invention. Referring to FIG. 1A, a nucleation layer 110 is formed on the bottom surface SB' of the growth vessel 100. The growth container 100 is, for example, a quartz crucible, but is not limited thereto. The nucleation layer 110 includes a plurality of seed crystals 112 and a first release layer 114. The seed crystal 112 is disposed on the bottom surface SB', which is adapted to provide a nucleation point for subsequent crystal growth. The first release layer 114 covers the seed crystal 112 and the bottom surface SB' exposed by the seed crystal 112, and the maximum thickness of the first release layer 114 is approximately equal to the maximum thickness of the seed crystal 112. Further, the thickness of the first release layer 114 covering the seed crystal 112 must be thin enough that the first release layer 114 covering the seed crystal 112 can be melted by heat to expose each of the subsequent heating processes. A localized area of seed crystal 112 provides the desired nucleation sites.

於成長容器100的底面SB’上形成成核層110的方法可包括以下步驟。首先,於底面SB’上形成晶種112。其次,於晶種112以及被晶種112暴露出來的底面SB’上形成(例如噴塗)脫膜材料,以形成第一脫膜層114。或者,於成長容器100的底面SB’上形成成核層110的方法也可包括以下步驟。首先,將晶種112混入脫膜材料(未繪示)中。舉例而言,可將100克至200克的晶種112、150克至200克的脫膜材料、0克至80克的矽溶膠以及150克至300克的水混合在一起,再將上述混合物形成(例如噴塗)於成長容器100的底面SB’上。晶種112的材質例如包括二氧化矽,且晶種112的平均尺寸例如介於0.05mm至50mm之間,以提供密集的成核點,來大量降低形成於多晶矽鑄錠的底部的大尺寸矽晶粒的分佈比例。第一脫膜層114的材質例如包括氮化矽(Si 3N 4),但不以此為限。 The method of forming the nucleation layer 110 on the bottom surface SB' of the growth vessel 100 may include the following steps. First, a seed crystal 112 is formed on the bottom surface SB'. Next, a release material is formed (e.g., sprayed) on the seed crystal 112 and the bottom surface SB' exposed by the seed crystal 112 to form the first release layer 114. Alternatively, the method of forming the nucleation layer 110 on the bottom surface SB' of the growth vessel 100 may also include the following steps. First, the seed crystal 112 is mixed into a release material (not shown). For example, 100 to 200 grams of seed crystal 112, 150 to 200 grams of release material, 0 to 80 grams of cerium sol, and 150 to 300 grams of water may be mixed together, and the mixture is further mixed It is formed (for example, sprayed) on the bottom surface SB' of the growth vessel 100. The material of the seed crystal 112 includes, for example, cerium oxide, and the average size of the seed crystal 112 is, for example, between 0.05 mm and 50 mm to provide a dense nucleation point, and the ruthenium greatly reduces the large size formed on the bottom of the polycrystalline ruthenium ingot. The distribution ratio of crystal grains. The material of the first release layer 114 includes, for example, tantalum nitride (Si 3 N 4 ), but is not limited thereto.

在本實施例中,在裝入矽原料之前,還可進一步於成長容器100的側壁面SS’上形成第二脫膜層114’。如此,在後續脫模時,有助於多晶矽鑄錠的側壁面從成長容器100分離。此外,第二脫膜層114’還可具有阻絕雜質的作用,避免矽熔湯在長晶過程中吸附成長容器100中的雜質而影響多晶矽鑄錠的品質。第二脫膜層114’的材質例如包括氮化矽,但不以此為限。在一較佳實施例中,第二脫膜層114’的厚度大於第一脫膜層114的厚度,以保持第二脫膜層114’在後續升溫製程時的完整性。在又一實施例中,第二脫膜層114’可採用熔點高於第一脫膜層114的熔點的材質。In the present embodiment, the second release layer 114' may be further formed on the side wall surface SS' of the growth vessel 100 before the crucible material is loaded. Thus, at the time of subsequent demolding, the side wall surface of the polycrystalline ingot is facilitated to be separated from the growth vessel 100. In addition, the second release layer 114' may also have the function of blocking impurities, thereby preventing the bismuth melt from adsorbing impurities in the growth vessel 100 during the crystal growth process and affecting the quality of the polycrystalline silicon ingot. The material of the second release layer 114' includes, for example, tantalum nitride, but is not limited thereto. In a preferred embodiment, the thickness of the second release layer 114' is greater than the thickness of the first release layer 114 to maintain the integrity of the second release layer 114' during subsequent heating processes. In still another embodiment, the second release layer 114' may be made of a material having a higher melting point than the melting point of the first release layer 114.

請參照圖1B,於成長容器100中裝入矽原料120,其中矽原料120位於成核層110上,且矽原料120的熔點例如低於第二脫膜層114’、第一脫膜層114及晶種112的熔點。矽原料120可包括多個矽塊。矽塊可包括大尺寸矽塊及小尺寸矽塊。Referring to FIG. 1B, a crucible raw material 120 is placed in the growth vessel 100, wherein the crucible raw material 120 is located on the nucleation layer 110, and the melting point of the crucible raw material 120 is lower than, for example, the second release layer 114' and the first release layer 114. And the melting point of the seed crystal 112. The crucible material 120 can include a plurality of crucible blocks. The block may include a large size block and a small size block.

接著,將裝入矽原料120的成長容器100放置於定向凝固系統(Directional Solidification System, DSS)10中,以進行後續升溫製程。定向凝固系統10例如包括爐體11、絕熱室12、氣體導管13、加熱器14以及導熱塊15。絕熱室12配置於爐體11中,且絕熱室12包括絕熱罩12A以及絕熱板12B。絕熱罩12A以及絕熱板12B適於組裝在一起。氣體導管13由貫穿爐體11以及絕熱室12,以提供製程所需的氣體,如惰性氣體。加熱器14配置於絕熱室12中且鄰近成長容器100設置,以便加熱成長容器100。導熱塊15配置於絕熱室12中且承載成長容器100。導熱塊15與成長容器100直接或間接接觸,而可藉由熱傳導的方式將成長容器100的熱導出。導熱塊15的材質可包括石墨,但不以此為限。Next, the growth vessel 100 loaded with the crucible material 120 is placed in a Directional Solidification System (DSS) 10 for a subsequent heating process. The directional solidification system 10 includes, for example, a furnace body 11, an adiabatic chamber 12, a gas conduit 13, a heater 14, and a heat transfer block 15. The heat insulating chamber 12 is disposed in the furnace body 11, and the heat insulating chamber 12 includes a heat insulating cover 12A and a heat insulating plate 12B. The heat insulating cover 12A and the heat insulating plate 12B are adapted to be assembled together. The gas conduit 13 is passed through the furnace body 11 and the adiabatic chamber 12 to provide a gas, such as an inert gas, required for the process. The heater 14 is disposed in the heat insulating chamber 12 and disposed adjacent to the growth vessel 100 to heat the growth vessel 100. The heat conducting block 15 is disposed in the heat insulating chamber 12 and carries the growth container 100. The heat conducting block 15 is in direct or indirect contact with the growth vessel 100, and the heat of the growth vessel 100 can be derived by heat conduction. The material of the heat conductive block 15 may include graphite, but is not limited thereto.

請參照圖1C,加熱成長容器100,使圖1B的矽原料120全部熔化成矽熔湯130,且使覆蓋晶種112的第一脫膜層114受熱熔化,而使得各晶種112被第一脫膜層114局部裸露出來,且晶種112被裸露出來的部分與矽熔湯130接觸。在此步驟中,成長容器100被加熱至一溫度,所述溫度高於矽原料120的熔點且低於第二脫膜層114’、第一脫膜層114以及晶種112的熔點。在本實施例中,雖然第一脫膜層114與第二脫膜層114’採用相同的材質,惟因覆蓋晶種112的第一脫膜層114的厚度甚薄,因此覆蓋晶種112的第一脫膜層114在未達到其熔點的情況下亦受熱熔化,而使得各晶種112被第一脫膜層114局部裸露出來。另一方面,覆蓋晶種112以外區域的第一脫膜層114因厚度較厚,所以能保持其完整性,且可避免矽熔湯在長晶過程中吸附成長容器100中的雜質而影響多晶矽鑄錠的品質。Referring to FIG. 1C, the growth vessel 100 is heated to completely melt the crucible raw material 120 of FIG. 1B into the crucible melt 130, and the first release layer 114 covering the seed crystal 112 is melted by heat, so that each of the seed crystals 112 is first. The release layer 114 is partially exposed, and the exposed portion of the seed crystal 112 is in contact with the crucible soup 130. In this step, the growth vessel 100 is heated to a temperature higher than the melting point of the crucible material 120 and lower than the melting points of the second release layer 114', the first release layer 114, and the seed crystal 112. In the present embodiment, although the first stripping layer 114 and the second stripping layer 114' are made of the same material, since the thickness of the first stripping layer 114 covering the seed crystal 112 is very thin, the seed crystal 112 is covered. The first release layer 114 is also thermally melted without reaching its melting point, so that each of the seed crystals 112 is partially exposed by the first release layer 114. On the other hand, the first release layer 114 covering the region other than the seed crystal 112 can maintain its integrity because of its thick thickness, and can prevent the impurities in the container 100 from being adsorbed and grown in the crystal growth process during the crystal growth process to affect the polysilicon. The quality of the ingot.

為避免第一脫膜層114完全熔化,還可選擇性地分離絕熱罩12A以及絕熱板12B,以形成些微縫隙,讓絕熱室12中的熱H以熱對流的方式透過縫隙導出至爐體11,使位在縫隙旁的導熱塊15因此降溫。由於成長容器100的底部與導熱塊15接觸,故成長容器100的底部會隨著導熱塊15降溫,從而降低位於成長容器100底部的晶種112以及第一脫膜層114的溫度,使晶種112以及第一脫膜層114不至於受熱而熔化。In order to prevent the first release layer 114 from being completely melted, the heat insulating cover 12A and the heat insulating plate 12B may be selectively separated to form a micro slit, and the heat H in the heat insulating chamber 12 is led to the furnace body 11 through the slit in a heat convection manner. The heat conducting block 15 located beside the slit is thus cooled. Since the bottom of the growth container 100 is in contact with the heat transfer block 15, the bottom of the growth container 100 is cooled with the heat transfer block 15, thereby lowering the temperature of the seed crystal 112 and the first release layer 114 at the bottom of the growth container 100, so that the seed crystal 112 and the first release layer 114 are not melted by heat.

請參照圖1D,基於方向性凝固製程,控制成長方向D上的溫度場。利用加熱器14維持矽熔湯130的溫度,但冷卻成長容器100的底部,例如使絕熱罩12A以及絕熱板12B進一步分離(加大縫隙),使更多的熱H透過縫隙導出至爐體11,從而讓縫隙旁的導熱塊15進一步降溫。藉由使成長容器100底部的溫度低於矽原料120的熔點,則可讓多個矽晶粒210在晶種112被裸露出來的部分上成核且沿成長方向D成長。藉由控制固液介面(矽晶粒210與矽熔湯130的介面)的溫度梯度,可降低熱應力,從而減少缺陷的產生。Referring to FIG. 1D, the temperature field in the growth direction D is controlled based on the directional solidification process. The temperature of the crucible melter 130 is maintained by the heater 14, but the bottom of the growth vessel 100 is cooled, for example, the heat insulating cover 12A and the heat insulating plate 12B are further separated (enlarged slit), and more heat H is transmitted through the slit to the furnace body 11. Thereby, the heat conducting block 15 next to the slit is further cooled. By making the temperature of the bottom of the growth vessel 100 lower than the melting point of the tantalum raw material 120, the plurality of tantalum crystal grains 210 can be nucleated at the portion where the seed crystal 112 is exposed and grow in the growth direction D. By controlling the temperature gradient of the solid-liquid interface (the interface between the germanium die 210 and the tantalum melt 130), thermal stress can be reduced, thereby reducing the occurrence of defects.

請參照圖1E,持續冷卻成長容器100的底部,直至圖1D的矽熔湯130全部凝固,而形成多晶矽鑄錠200。多晶矽鑄錠200具有底面SB、側壁面SS以及頂面ST。底面SB與頂面ST彼此相對,且側壁面SS連接底面SB與頂面ST。多晶矽鑄錠200包括多個矽晶粒210。矽晶粒210從底面SB沿成長方向D成長,且矽晶粒210的平均晶粒尺寸從底面SB沿成長方向D遞增。所述成長方向D平行於側壁面SS且從底面SB指向頂面ST。Referring to FIG. 1E, the bottom of the growth vessel 100 is continuously cooled until the crucible melt 130 of FIG. 1D is completely solidified to form a polycrystalline ingot casting 200. The polycrystalline silicon ingot 200 has a bottom surface SB, a side wall surface SS, and a top surface ST. The bottom surface SB and the top surface ST are opposed to each other, and the side wall surface SS is connected to the bottom surface SB and the top surface ST. The polycrystalline germanium ingot 200 includes a plurality of germanium grains 210. The germanium crystal grain 210 grows from the bottom surface SB in the growth direction D, and the average grain size of the germanium crystal grain 210 increases from the bottom surface SB in the growth direction D. The growth direction D is parallel to the side wall surface SS and points from the bottom surface SB to the top surface ST.

請參照圖1E及圖1F,在矽熔湯130(參見圖1D)全部凝固之後,可接續脫膜製程。在脫膜前,多晶矽鑄錠200的底面SB與成核層110接觸,且多晶矽鑄錠200的側壁面SS與第二脫膜層114’接觸。在脫膜的過程中,多晶矽鑄錠200的側壁面SS與第二脫膜層114’分離,而多晶矽鑄錠200的底部例如沿圖1E的放大圖中的虛線處斷裂,而使多晶矽鑄錠200的底面SB與成核層110分離。由於斷裂面的面積甚小,對於多晶矽鑄錠200的底面SB的表面粗糙度(Ra)的影響甚微,因此多晶矽鑄錠200的底面SB的表面粗糙度的大小主要由成核層110的第一脫膜層114決定。在第一脫膜層114與第二脫膜層114’採用相同材質的情況下,多晶矽鑄錠200的底面SB與側壁面SS的表面粗糙度會相近。Referring to FIG. 1E and FIG. 1F, after the crucible melt 130 (see FIG. 1D) is completely solidified, the stripping process can be continued. Before the film is released, the bottom surface SB of the polycrystalline silicon ingot 200 is in contact with the nucleation layer 110, and the side wall surface SS of the polycrystalline silicon ingot 200 is in contact with the second release layer 114'. During the stripping process, the sidewall surface SS of the polycrystalline silicon ingot 200 is separated from the second stripping layer 114', and the bottom of the polycrystalline tantalum ingot 200 is broken, for example, along the broken line in the enlarged view of FIG. 1E, so that the polycrystalline tantalum ingot is ingot. The bottom surface SB of 200 is separated from the nucleation layer 110. Since the area of the fracture surface is very small, the surface roughness (Ra) of the bottom surface SB of the polycrystalline silicon ingot 200 is little affected, so the surface roughness of the bottom surface SB of the polycrystalline silicon ingot 200 is mainly caused by the nucleation layer 110. A release layer 114 is determined. When the first material release layer 114 and the second release film layer 114' are made of the same material, the surface roughness of the bottom surface SB of the polycrystalline silicon ingot 200 and the side wall surface SS may be similar.

以下通過圖2A至圖5說明依照本發明及先前技術的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠的差異。圖2A至圖2C分別是晶片外觀照片,用以顯示依照本發明的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在靠近頂面的部分、中間部分及靠近底面的部分的矽晶粒尺寸。圖3A至圖3C分別是晶片外觀照片,用以顯示依照先前技術的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在靠近頂面的部分、中間部分及靠近底面的部分的矽晶粒尺寸。圖4是一高度-平均晶粒尺寸的關係圖,用以比較本發明(標示為鑄錠A)及先前技術(標示為鑄錠B)的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在不同高度下的平均晶粒尺寸。圖6是一高度-缺陷比例的關係圖,用以比較本發明(標示為鑄錠A)及先前技術(標示為鑄錠B)的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在不同高度下的缺陷比例。The difference in the polycrystalline germanium ingot produced by the method for producing a polycrystalline germanium ingot according to the present invention and the prior art will be described below with reference to Figs. 2A to 5 . 2A to 2C are photographs of the appearance of the wafer, respectively, for showing the grain size of the germanium ingot produced in the method for manufacturing the polycrystalline silicon ingot according to the present invention, the portion near the top surface, the middle portion, and the portion near the bottom surface. . 3A to 3C are photographs of the appearance of the wafer, respectively, for showing the grain size of the germanium ingot produced in the method of manufacturing the polycrystalline germanium ingot according to the prior art, in the portion near the top surface, the middle portion, and the portion near the bottom surface. . Figure 4 is a graph of height-average grain size for comparing polycrystalline tantalum ingots produced by the method of manufacturing a polycrystalline tantalum ingot of the present invention (indicated as ingot A) and prior art (indicated as ingot B). Average grain size at different heights. Figure 6 is a graph of height-to-defect ratio for comparing polycrystalline tantalum ingots produced by the method of manufacturing the polycrystalline tantalum ingot of the present invention (labeled as ingot A) and prior art (indicated as ingot B). The proportion of defects at height.

請參照圖2A至圖2C、圖4及圖5,本發明的一實施例的多晶矽鑄錠(標示為鑄錠A)在高度約50mm至100mm之間的一切片的平均晶粒尺寸介於5mm至9mm之間;在高度約100mm至150mm之間的一切片的平均晶粒尺寸介於9mm至12mm之間;在高度約150mm至200mm之間的一切片的平均晶粒尺寸介於12mm至16mm之間;在高度約200mm至250mm之間的一切片的平均晶粒尺寸介於16mm至20mm之間。換句話說,在本發明的一實施例的多晶矽鑄錠中,矽晶粒的平均晶粒尺寸從底面沿成長方向遞增。此外,在高度約50mm至100mm之間的一切片的缺陷比例小於3%;在高度約100mm至150mm之間的一切片的缺陷比例小於5%;在高度約150mm至200mm之間的一切片的缺陷比例小於7%;在高度約200mm至250mm之間的一切片的缺陷比例小於9%。Referring to FIGS. 2A-2C, 4 and 5, the average grain size of a slice of a polycrystalline germanium ingot (labeled as ingot A) between about 50 mm and 100 mm in height is between 5 mm. Between 9mm; the average grain size of a slice between about 100mm and 150mm in height is between 9mm and 12mm; the average grain size of a slice between about 150mm and 200mm in height is between 12mm and 16mm Between; a slice having a height between about 200 mm and 250 mm has an average grain size between 16 mm and 20 mm. In other words, in the polycrystalline germanium ingot of one embodiment of the present invention, the average grain size of the germanium crystal grains increases from the bottom surface in the growth direction. Further, a defect ratio of a slice between a height of about 50 mm to 100 mm is less than 3%; a defect ratio of a slice between a height of about 100 mm to 150 mm is less than 5%; and a slice of a height of between 150 mm and 200 mm is between The defect ratio is less than 7%; the defect ratio of a slice between about 200 mm and 250 mm in height is less than 9%.

從圖3A至圖3C的金相照片以及圖4及圖5的關係圖可知,習知技術的多晶矽鑄錠(標示為鑄錠B)在成長容器的底部成長為大晶粒且成為缺陷比例較低的區域。隨著高度的增加,矽晶粒的平均晶粒尺寸降低,但多晶矽鑄錠中的缺陷比例快速增加,致使多晶矽鑄錠整體品質變差。From the metallographic photographs of FIGS. 3A to 3C and the relationship diagrams of FIGS. 4 and 5, it is known that the polycrystalline tantalum ingot (indicated as ingot B) of the prior art grows into a large crystal grain at the bottom of the growth vessel and becomes a defect ratio. Low area. As the height increases, the average grain size of the germanium crystal grains decreases, but the proportion of defects in the polycrystalline germanium ingot rapidly increases, resulting in deterioration of the overall quality of the polycrystalline germanium ingot.

相較之下,本發明的一實施例的多晶矽鑄錠的製造方法利用晶種提供密集的成核點,在成核時,能提供大量的成核點來使晶粒快速長出,而有助於大量降低形成於多晶矽鑄錠的底部的大尺寸矽晶粒的分佈比例,因此可製造出矽晶粒的平均晶粒尺寸從底面朝頂面遞增的多晶矽鑄錠(標示為鑄錠A)。在長晶過程中,晶粒尺寸是由小而大,在此長晶方法的控制下,有助於晶粒朝單一方向成長,並抑制較差的晶界缺陷形成。是以,本發明的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠可具有低缺陷比例,而後續製成的半導體元件(如太陽能電池元件,但不以此為限)也可具有較佳的效率或電性表現。在一實施例中,還可藉由高純度的晶種進一步降低缺陷比例以及提升多晶矽鑄錠的品質。In contrast, the method for fabricating a polycrystalline germanium ingot according to an embodiment of the present invention utilizes a seed crystal to provide a dense nucleation site, and when nucleating, can provide a large number of nucleation sites to rapidly grow crystal grains, and Helps to greatly reduce the distribution ratio of large-sized germanium crystal grains formed at the bottom of the polycrystalline germanium ingot, thereby producing a polycrystalline germanium ingot (indicated as ingot A) in which the average grain size of the germanium crystal grains is increased from the bottom surface toward the top surface. . In the crystal growth process, the grain size is small and large, and under the control of the crystal growth method, the crystal grains are grown in a single direction and the formation of poor grain boundary defects is suppressed. Therefore, the polycrystalline germanium ingot produced by the method for producing a polycrystalline germanium ingot of the present invention may have a low defect ratio, and the subsequently fabricated semiconductor element (such as, but not limited to, a solar cell element) may also have a better ratio. Efficiency or electrical performance. In one embodiment, the defect ratio can be further reduced by high purity seed crystals and the quality of the polycrystalline germanium ingot can be improved.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧定向凝固系統10‧‧‧Directional solidification system

11‧‧‧爐體11‧‧‧ furnace body

12‧‧‧絕熱室12‧‧‧Insulation room

12A‧‧‧絕熱罩12A‧‧‧Insulation cover

12B‧‧‧絕熱板12B‧‧‧Insulation board

13‧‧‧氣體導管13‧‧‧ gas conduit

14‧‧‧加熱器14‧‧‧heater

15‧‧‧導熱塊15‧‧‧thermal block

100‧‧‧成長容器100‧‧‧ growing containers

110‧‧‧成核層110‧‧‧Nuclear layer

112‧‧‧晶種112‧‧‧ seed crystal

114‧‧‧第一脫膜層114‧‧‧First release layer

114’‧‧‧第二脫膜層114’‧‧‧Second release layer

120‧‧‧矽原料120‧‧‧矽Materials

130‧‧‧矽熔湯130‧‧‧矽 molten soup

210‧‧‧矽晶粒210‧‧‧矽 grain

200‧‧‧多晶矽鑄錠200‧‧‧Polycrystalline ingots

D‧‧‧成長方向D‧‧‧ Growth direction

H‧‧‧熱H‧‧‧Hot

SB、SB’‧‧‧底面SB, SB’‧‧‧ bottom

SS、SS’‧‧‧側壁面SS, SS’‧‧‧ side wall

ST‧‧‧頂面ST‧‧‧ top surface

圖1A至圖1F是依照本發明的一實施例的一種多晶矽鑄錠的製造流程的示意圖。 圖2A至圖2C分別是晶片外觀照片,用以顯示依照本發明的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在靠近頂面的部分、中間部分及靠近底面的部分的矽晶粒尺寸。 圖3A至圖3C分別是晶片外觀照片,用以顯示依照先前技術的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在靠近頂面的部分、中間部分及靠近底面的部分的矽晶粒尺寸。 圖4是一高度-平均晶粒尺寸的關係圖,用以比較本發明及先前技術的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在不同高度下的平均晶粒尺寸。 圖5是一高度-缺陷比例的關係圖,用以比較本發明及先前技術的多晶矽鑄錠的製造方法所製造出的多晶矽鑄錠在不同高度下的缺陷比例。1A to 1F are schematic views showing a manufacturing process of a polycrystalline germanium ingot according to an embodiment of the present invention. 2A to 2C are photographs of the appearance of the wafer, respectively, for showing the grain size of the germanium ingot produced in the method for manufacturing the polycrystalline silicon ingot according to the present invention, the portion near the top surface, the middle portion, and the portion near the bottom surface. . 3A to 3C are photographs of the appearance of the wafer, respectively, for showing the grain size of the germanium ingot produced in the method of manufacturing the polycrystalline germanium ingot according to the prior art, in the portion near the top surface, the middle portion, and the portion near the bottom surface. . Figure 4 is a graph of height-average grain size for comparing the average grain size of polycrystalline tantalum ingots produced by the method of the present invention and prior art polycrystalline tantalum ingots at different heights. Figure 5 is a graph of height-to-defect ratio for comparing the defect ratios of polycrystalline tantalum ingots produced by the method of the present invention and prior art polycrystalline tantalum ingots at different heights.

10‧‧‧定向凝固系統 10‧‧‧Directional solidification system

11‧‧‧爐體 11‧‧‧ furnace body

12‧‧‧絕熱室 12‧‧‧Insulation room

12A‧‧‧絕熱罩 12A‧‧‧Insulation cover

12B‧‧‧絕熱板 12B‧‧‧Insulation board

13‧‧‧氣體導管 13‧‧‧ gas conduit

14‧‧‧加熱器 14‧‧‧heater

15‧‧‧導熱塊 15‧‧‧thermal block

100‧‧‧成長容器 100‧‧‧ growing containers

110‧‧‧成核層 110‧‧‧Nuclear layer

112‧‧‧晶種 112‧‧‧ seed crystal

114‧‧‧第一脫膜層 114‧‧‧First release layer

114’‧‧‧第二脫膜層 114’‧‧‧Second release layer

130‧‧‧矽熔湯 130‧‧‧矽 molten soup

210‧‧‧矽晶粒 210‧‧‧矽 grain

D‧‧‧成長方向 D‧‧‧ Growth direction

H‧‧‧熱 H‧‧‧Hot

SB’‧‧‧底面 SB’‧‧‧ bottom

Claims (9)

一種多晶矽鑄錠的製造方法,包括:於一成長容器的一底面上形成一成核層,其中該成核層包括多個晶種以及一第一脫膜層,該些晶種配置在該底面上,且該第一脫膜層覆蓋該些晶種以及被該些晶種暴露出來的該底面,其中該些晶種的重量為100克至200克,該第一脫膜層的脫膜材料重量為150克至200克,且該些晶種的材質包括二氧化矽,該第一脫膜層的材質包括氮化矽;於該成長容器中裝入一矽原料,且該矽原料位於該成核層上;加熱該成長容器,使該矽原料全部熔化成一矽熔湯,且使覆蓋該些晶種的該第一脫膜層受熱熔化,而使得各該晶種被該第一脫膜層局部裸露出來,且該些晶種被裸露出來的部分與該矽熔湯接觸;冷卻該成長容器的底部,使多個矽晶粒在該些晶種被裸露出來的部分上成核且沿一成長方向成長;以及持續冷卻該成長容器的底部,直至該矽熔湯全部凝固,而形成該多晶矽鑄錠。 A method for manufacturing a polycrystalline tantalum ingot, comprising: forming a nucleation layer on a bottom surface of a growth vessel, wherein the nucleation layer comprises a plurality of seed crystals and a first release layer, wherein the seed crystals are disposed on the bottom surface And the first release layer covers the seed crystals and the bottom surface exposed by the seed crystals, wherein the seed crystals have a weight of 100 g to 200 g, and the release material of the first release layer The material of the seed crystals includes ceria, the material of the first release layer comprises tantalum nitride; the growth container is filled with a raw material, and the material is located in the On the nucleation layer; heating the growth vessel to completely melt the crucible material into a crucible melt, and melting the first release layer covering the seed crystals by heat, so that each of the crystal seeds is removed by the first release film The layer is partially exposed, and the exposed portion of the seed crystal is in contact with the crucible melt; the bottom of the growth vessel is cooled, and a plurality of germanium crystal grains are nucleated on a portion where the seed crystals are exposed and along Growing in a growing direction; and continuously cooling the bottom of the growing container, straight The entire molten metal solidification silicon, the polycrystalline silicon ingot is formed. 如申請專利範圍第1項所述的多晶矽鑄錠的製造方法,其中於該成長容器的該底面上形成該成核層的方法包括:於該底面上形成該些晶種;以及於該些晶種以及被該些晶種暴露出來的該底面上形成該第一脫膜層。 The method for producing a polycrystalline germanium ingot according to claim 1, wherein the method of forming the nucleation layer on the bottom surface of the growth vessel comprises: forming the seed crystals on the bottom surface; and the crystals And forming the first release layer on the bottom surface exposed by the seed crystals. 如申請專利範圍第1項所述的多晶矽鑄錠的製造方法,其中於該成長容器的該底面上形成該成核層的方法包括:將該些晶種混入該脫膜材料中;以及將混有該些晶種的該脫膜材料形成於該成長容器的該底面上。 The method for producing a polycrystalline germanium ingot according to claim 1, wherein the method of forming the nucleation layer on the bottom surface of the growth vessel comprises: mixing the seed crystals into the release material; The release material having the seed crystals is formed on the bottom surface of the growth vessel. 如申請專利範圍第1項所述的多晶矽鑄錠的製造方法,其中該些晶種的平均尺寸介於0.05mm至50mm之間。 The method for producing a polycrystalline germanium ingot according to claim 1, wherein the seed crystals have an average size of between 0.05 mm and 50 mm. 如申請專利範圍第1項所述的多晶矽鑄錠的製造方法,更包括:在裝入該矽原料之前,於該成長容器的一側壁面上形成一第二脫膜層。 The method for producing a polycrystalline germanium ingot according to claim 1, further comprising: forming a second release layer on a side wall surface of the growth vessel before loading the crucible material. 如申請專利範圍第5項所述的多晶矽鑄錠的製造方法,其中該第二脫膜層的厚度大於該第一脫膜層的厚度。 The method for producing a polycrystalline silicon ingot according to claim 5, wherein the thickness of the second release layer is greater than the thickness of the first release layer. 如申請專利範圍第5項所述的多晶矽鑄錠的製造方法,其中該第二脫膜層的熔點大於該第一脫膜層的熔點。 The method for producing a polycrystalline silicon ingot according to claim 5, wherein a melting point of the second release layer is greater than a melting point of the first release layer. 如申請專利範圍第5項所述的多晶矽鑄錠的製造方法,更包括:在該矽熔湯全部凝固之後,使該多晶矽鑄錠的側壁面與該第二脫膜層分離,且使該多晶矽鑄錠的底面與該成核層分離。 The method for manufacturing a polycrystalline germanium ingot according to claim 5, further comprising: separating the sidewall surface of the polycrystalline germanium ingot from the second stripping layer after the solid melting of the crucible melt is completely solidified, and disposing the polycrystalline crucible The bottom surface of the ingot is separated from the nucleation layer. 如申請專利範圍第1項所述的多晶矽鑄錠的製造方法,其中該些晶種以及該第一脫膜層的熔點大於該矽原料的熔點。 The method for producing a polycrystalline tantalum ingot according to claim 1, wherein the seed crystals and the first release layer have a melting point greater than a melting point of the niobium material.
TW105122566A 2016-07-18 2016-07-18 Manufacturing method of polysilicon ingot TWI595124B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105122566A TWI595124B (en) 2016-07-18 2016-07-18 Manufacturing method of polysilicon ingot
JP2016230354A JP6286514B2 (en) 2016-07-18 2016-11-28 Method for producing polycrystalline silicon ingot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105122566A TWI595124B (en) 2016-07-18 2016-07-18 Manufacturing method of polysilicon ingot

Publications (2)

Publication Number Publication Date
TWI595124B true TWI595124B (en) 2017-08-11
TW201804031A TW201804031A (en) 2018-02-01

Family

ID=60189317

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105122566A TWI595124B (en) 2016-07-18 2016-07-18 Manufacturing method of polysilicon ingot

Country Status (2)

Country Link
JP (1) JP6286514B2 (en)
TW (1) TWI595124B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108914203B (en) * 2018-07-18 2020-02-07 成都斯力康科技股份有限公司 Deep impurity removal method for refining metallic silicon
CN109680331A (en) * 2019-01-21 2019-04-26 安徽华顺半导体发展有限公司 A kind of casting ingot method of low defect polysilicon
CN110983438B (en) * 2019-12-25 2022-03-22 天合光能(常州)科技有限公司 Low-oxygen low-impurity polycrystalline silicon ingot casting method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102776554A (en) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 Polycrystalline silicon ingot, preparation method of polycrystalline silicon ingot and polycrystalline silicon slice
TW201534777A (en) * 2011-11-28 2015-09-16 Sino American Silicon Prod Inc Method of fabricating crystalline silicon ingot
TW201617489A (en) * 2014-11-12 2016-05-16 中美矽晶製品股份有限公司 Method of producing an ingot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4508922B2 (en) * 2005-03-28 2010-07-21 京セラ株式会社 Manufacturing method of semiconductor ingot
JP6096653B2 (en) * 2012-12-28 2017-03-15 京セラ株式会社 Silicon casting mold and manufacturing method thereof
JP6401051B2 (en) * 2014-12-26 2018-10-03 京セラ株式会社 Method for producing polycrystalline silicon ingot
JP6562415B2 (en) * 2015-10-01 2019-08-21 国立大学法人名古屋大学 Silicon ingot and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201534777A (en) * 2011-11-28 2015-09-16 Sino American Silicon Prod Inc Method of fabricating crystalline silicon ingot
CN102776554A (en) * 2012-04-01 2012-11-14 江西赛维Ldk太阳能高科技有限公司 Polycrystalline silicon ingot, preparation method of polycrystalline silicon ingot and polycrystalline silicon slice
TW201617489A (en) * 2014-11-12 2016-05-16 中美矽晶製品股份有限公司 Method of producing an ingot

Also Published As

Publication number Publication date
JP2018012632A (en) 2018-01-25
TW201804031A (en) 2018-02-01
JP6286514B2 (en) 2018-02-28

Similar Documents

Publication Publication Date Title
TWI534307B (en) Method of manufacturing crystalline silicon ingot
CN102268724B (en) Polycrystalline silicon ingot and manufacturing method thereof as well as solar cell
TWI441962B (en) Crystalline silicon ingot and method of fabricating the same
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
KR20110038040A (en) Systems and methods for growing monocrystalline silicon ingots by directional solidification
JP5496674B2 (en) Method for refining metallic silicon by directional solidification
CN102277618B (en) Polysilicon ingot, manufacturing method and growing furnace thereof, as well as bottom plate and solar cell of growing furnace
JP2011528308A (en) Method and apparatus for producing cast silicon from seed crystals
TWI541394B (en) Method of fabricating crystalline silicon ingot
TWI620838B (en) Crystalline silicon ingot including nucleation promotion particles and method of fabricating the same
JP5425421B2 (en) Method for manufacturing a wafer of semiconductor material by molding and directional crystallization
TWI595124B (en) Manufacturing method of polysilicon ingot
WO2014056157A1 (en) Polycrystalline silicon ingot, method for producing the same, and crucible
JP2006335582A (en) Crystalline silicon manufacturing unit and its manufacturing method
TWI451008B (en) Apparatus for manufacturing semiconductor or metal oxide ingot
US20100148403A1 (en) Systems and Methods For Manufacturing Cast Silicon
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
TWI451007B (en) Method for producing silicon ingots
JP5572661B2 (en) Crystal growth equipment
KR101954785B1 (en) Method for producing multicrystalline silicon
TWI452184B (en) Method of manufacturing crystalline silicon ingot
TWM545789U (en) Polysilicon ingot device and polysilicon ingot
JP3208216U (en) Polycrystalline silicon ingot
JP2004322195A (en) Unidirectionally solidified silicon ingot and method for manufacturing the same, and silicon plate and substrate for solar battery
TWI642819B (en) Method of manufacturing semiconductor sheet and manufacture equipment implementing such method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees