JPS58176193A - Preparation of single crystal of inorganic compound - Google Patents

Preparation of single crystal of inorganic compound

Info

Publication number
JPS58176193A
JPS58176193A JP5900882A JP5900882A JPS58176193A JP S58176193 A JPS58176193 A JP S58176193A JP 5900882 A JP5900882 A JP 5900882A JP 5900882 A JP5900882 A JP 5900882A JP S58176193 A JPS58176193 A JP S58176193A
Authority
JP
Japan
Prior art keywords
temperature
single crystal
boat
group
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5900882A
Other languages
Japanese (ja)
Other versions
JPS5938186B2 (en
Inventor
Hisashi Higure
日暮 久司
Fumio Orito
文夫 折戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Polytec Co
Original Assignee
Mitsubishi Monsanto Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Monsanto Chemical Co filed Critical Mitsubishi Monsanto Chemical Co
Priority to JP5900882A priority Critical patent/JPS5938186B2/en
Publication of JPS58176193A publication Critical patent/JPS58176193A/en
Publication of JPS5938186B2 publication Critical patent/JPS5938186B2/en
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B11/00Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
    • C30B11/04Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt
    • C30B11/06Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method adding crystallising materials or reactants forming it in situ to the melt at least one but not all components of the crystal composition being added

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To obtain a single crystal of good quality with a few crystal defects of a specific inorganic compound, by preparing the single crystal of the inorganic compound with a boat for growing the single crystal at a specified temperature by the gradient freezing (GF) method. CONSTITUTION:A seed crystal of a compound of Groups III-V and a polycrystal or an element to be a raw material of Group III are introduced into a boat for growing single crystal and a corresponding element of Group V are sealed up in a sealed tube to generate the vapor pressure of the element of Group Vcorresponding to the dissociation pressure near the melting point of the compound of Groups III-V. In case the element of Group III is contained in the boat for growing the single crystal, the element is reacted with the element of Group V in the process of growing the single crystal to form a compound of Groups III-V and produce a melt thereof. For growing the single crystal, the temperature of the boat is set to be not lower than the temperature range within 15 deg.C on the low temperature side from the melting point of the above-mentioned inorganic compound and give within 20 deg.C temperature difference between the high and low temperature parts of the boat.

Description

【発明の詳細な説明】 本発明は、周期律表4曹族元素及び第V族元素からなる
無機化合物(以下r i−v族化合物」という。)単結
晶の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a single crystal of an inorganic compound (hereinafter referred to as an RI-V group compound) consisting of elements of group 4 and group V of the periodic table.

ひ化ガリウム(CaA@)、ひ化インジウム(InAs
 )、りん化ガリウム(GaP )等の■−V族化合物
単結晶は、発光ダイオード、半導体レーザー、高周波(
主として、UHF 、 SHF帯)用のFET 、ガン
ダイオード等の素子の製造に広く用いられている。
Gallium arsenide (CaA@), indium arsenide (InAs)
), gallium phosphide (GaP), and other ■-V group compound single crystals are used in light-emitting diodes, semiconductor lasers, and high-frequency (
It is mainly used for manufacturing elements such as FETs and Gunn diodes for UHF and SHF bands.

これらIff −V族化合物単結晶は、温度傾斜法(G
F法)、水平ブリッジマン法(HB法)等のボート成長
法により製造される場合が多い。
These Iff-V group compound single crystals were prepared by temperature gradient method (G
F method), horizontal Bridgman method (HB method), and other boat growth methods are often used.

これは、ボート成長法によると、11%6・拳・・・・
・・拳・拳e・・・−引上法(CZ法)に比較して一定
形状の単結晶か得られるからである。特に、GF法は、
HB法と異なり加熱炉を移動させる必要がないので大型
の単結晶の製造に適している。GF法は、ボート成長法
の一種であるが、第1図に示すよ−うて、ボートまたは
炉を移動することなく温度勾配を移動させて単結晶を成
長させる方法である。
According to the Boat Growth Method, this is 11%6・Fist...
...Fist/Fist e...- This is because a single crystal with a fixed shape can be obtained compared to the pulling method (CZ method). In particular, the GF method
Unlike the HB method, there is no need to move the heating furnace, so it is suitable for producing large single crystals. The GF method is a type of boat growth method, and as shown in FIG. 1, a single crystal is grown by moving a temperature gradient without moving a boat or furnace.

すなわち、用1図は従来技術によるGF法における温度
分布の変化を説明する図である。
That is, FIG. 1 is a diagram illustrating changes in temperature distribution in the GF method according to the prior art.

第1図において、縦軸は温度(任意1目盛)を示す。M
、P、は[−V族化合物の融点である。横軸は、結晶成
長方向の長さく任意目盛)を示す。
In FIG. 1, the vertical axis indicates temperature (one arbitrary scale). M
, P, is the melting point of the [-V group compound. The horizontal axis indicates the length (arbitrary scale) in the crystal growth direction.

/、2及び3は温度分布を示す曲線である。ダは横軸と
同一縮尺で示した単結晶成長用ポートの縦断面図である
。Slマ、ボー)+の種結晶設置部である。
/, 2 and 3 are curves showing temperature distribution. 2 is a vertical cross-sectional view of a single crystal growth port shown on the same scale as the horizontal axis. This is the seed crystal installation part for Slma, Bo)+.

GF法により単結晶を成長させる場合、温度分布曲線を
lから3へ曲線の形を変化させずに降温させて固液界面
を移動させる。かかる温度分布を形成し、かつ、移動さ
せるには電気炉を4− A個の部分に分割してそれぞれ
の部分をシーケンス制御するのが一般的である。この場
合、温度勾配は、/ C/ cm程度が通常用いられて
いる。しかしながら、単結晶成長用ボートの全長が17
9cm以上になると、低温部と高温部の温度差が犬とな
るため結晶欠陥が発生しやすくなりまた、高温部におい
てボート材料による汚染が生じ易いことが問題となって
いた。一方、温度勾配を小さくすると、温度制御の誤差
により、該ボート全長にわたり一様に温度を低下させる
ことが困難となる。その結果、種結晶に接しない部分か
ら固化が始まり、単結晶化しない場合が多くなる。
When growing a single crystal by the GF method, the temperature distribution curve is lowered from 1 to 3 without changing the shape of the curve, and the solid-liquid interface is moved. In order to create and move such a temperature distribution, it is common to divide the electric furnace into 4-A parts and sequentially control each part. In this case, a temperature gradient of about /C/cm is usually used. However, the total length of the boat for single crystal growth is 17
When it is 9 cm or more, the difference in temperature between the low temperature part and the high temperature part becomes large, so crystal defects are likely to occur, and contamination by the boat material is likely to occur in the high temperature part, which is a problem. On the other hand, if the temperature gradient is made smaller, it becomes difficult to lower the temperature uniformly over the entire length of the boat due to errors in temperature control. As a result, solidification begins from the portions that are not in contact with the seed crystal, and there are many cases where single crystals do not form.

本発明者等は、かかる従来技術の問題点を解決すること
を目的として鋭意研究を重ねた結果、本発明に到達した
ものである。
The present inventors have conducted extensive research aimed at solving the problems of the prior art, and as a result, have arrived at the present invention.

本発明の上記の目的1ま、■−■族化合物単結晶をGF
法によって製造する方法において、単結晶成長用ポート
の温度が、上記Ill −V族化合物の融点から低温側
15℃以内の範囲の温度より低くならず、かつ、上記ボ
ートの高温部と低温部の温度差が20℃以内であること
を特徴とする方法により達せられる。
The above objects of the present invention are as follows:
In the method of manufacturing by the method, the temperature of the single crystal growth port is not lower than the temperature within 15°C on the low temperature side from the melting point of the Ill-V group compound, and the temperature of the high temperature part and the low temperature part of the boat is This is achieved by a method characterized in that the temperature difference is within 20°C.

本発明方法においては、単結晶成長用ポートにI−V族
化合物の種結晶及び−原料となる多結晶、または第■族
元素(Ga、In等)を収容し生させるために、該当す
る第■族元素とともに八 第■族元素と反応してI−V族化合物を生壷し、その融
液が生成する。
In the method of the present invention, in order to accommodate and grow a seed crystal of a group IV compound, a polycrystal serving as a raw material, or a group A group IV compound is reacted with an element of group 8 and a group 8 element, and a melt of the compound is produced.

単結晶の成長にあたってiま、種結晶の部分が該11t
−V族化合物の融点より低温側15℃以内、好ましく 
+’! / 0℃以内の範囲の、予じめ定めた温度、す
なわち下限温度または上記rt、rqh内でそれより高
い温度に設定し、ボートの他端に向って、所定の温度勾
配で上昇していくように温度分布を設定する。種結晶部
分の温度を該Ill −V族化合物の融点より73℃を
超えて低下させると温度の変化による収縮に伴なう歪に
より結晶欠陥が増加するので不適当である。温度勾配は
、0、3 ’C7cm −2C7cmが好壕しく、1℃
/(′rn〜15℃/cmがさらに好ましい。温度勾配
が一℃/cmを超えると、熱収縮により結晶欠陥が増加
し、Q、 51?: 、/Crn以下になると@度勾配
の制御が困難となるので適当でない。この場汀、高温部
の温度が所定の温度、すなわち、低温部に対して、20
℃以内高い温度、好ましくは、5〜10℃高い温度、す
なわち上限温度に達した点より先の部分(種結晶より遠
い部分)は当該温度で一定に保持する。上記温度よりも
高温に保持すると、高融点の化合物、例えばGaAg 
(融点/、23g℃)の場合、ボート材料(石英等)か
らの汚染が生じやすく、また電気炉の発熱体にSiC等
の特殊な発熱体を使用する必要が生じるので適当でない
。石英ボートの各部が所定の温度に達した後、通常のG
F法と同様に・度を降下させて結晶を成長させる。
When growing a single crystal, the seed crystal part is
- Within 15°C of the lower temperature side than the melting point of the V group compound, preferably
+'! / Set a predetermined temperature within a range of 0℃, that is, the lower limit temperature or a higher temperature within the above rt and rqh, and increase with a predetermined temperature gradient toward the other end of the boat. Set the temperature distribution as follows. It is unsuitable to lower the temperature of the seed crystal portion by more than 73° C. below the melting point of the Ill-V group compound because crystal defects will increase due to distortion caused by shrinkage due to temperature changes. The temperature gradient is preferably 0.3'C7cm -2C7cm, and 1℃
/('rn~15℃/cm is more preferable. When the temperature gradient exceeds 1℃/cm, crystal defects increase due to thermal contraction, and when it becomes less than Q, 51?: , /Crn, @ degree gradient control becomes impossible. This is not appropriate as it will be difficult.In this case, the temperature of the high temperature part is 20% higher than the predetermined temperature, that is, the temperature of the low temperature part.
The temperature higher than 5° C., preferably 5 to 10° C., that is, the portion beyond the point where the upper limit temperature is reached (the portion farther from the seed crystal) is kept constant at the temperature. When kept at a temperature higher than the above temperature, compounds with high melting points, such as GaAg
(Melting point/23 g° C.) is not suitable because contamination from the boat material (quartz, etc.) is likely to occur and it is necessary to use a special heating element such as SiC as the heating element for the electric furnace. After each part of the quartz boat reaches a predetermined temperature, normal G
Similar to the F method, crystals are grown by lowering the degree of crystal growth.

上記の結晶成長に伴なう降温の過程を図面を用いて説明
する。
The process of temperature reduction accompanying the crystal growth described above will be explained using the drawings.

第2図は、本発明方法によるGF法の温度分布の変化を
説明する図面である。第1図と同様に、第2図の縦軸は
湿度を表わ−し、M、P、は融点を示す。横軸:・マ、
結晶成長方向の長さを表わす。
FIG. 2 is a diagram illustrating changes in temperature distribution in the GF method according to the method of the present invention. Similar to FIG. 1, the vertical axis in FIG. 2 represents humidity, and M and P represent melting points. Horizontal axis: ・Ma,
Represents the length in the crystal growth direction.

また、6は横軸と同一の縮尺で表わした単結晶成長用ポ
ートの縦断面図である。7、g及び9は、温度分布を示
す曲線である。縦軸に記入し丁HTし た−及び勢は、それぞれ、予じめ定めた高温部の限界温
度(上限温度)及び低温部の限界温度(下限温度)であ
る。温度分布を曲線7で示した状態から曲線9で示した
状態へ変化させるに伴ない単結晶の伐長か行なわれる。
Further, 6 is a vertical cross-sectional view of the single crystal growth port expressed on the same scale as the horizontal axis. 7, g and 9 are curves showing temperature distribution. The letters and numbers written on the vertical axis are the predetermined limit temperature (upper limit temperature) of the high temperature portion and the predetermined limit temperature (lower limit temperature) of the low temperature portion, respectively. As the temperature distribution changes from the state shown by curve 7 to the state shown by curve 9, the single crystal is cut to length.

種結晶部分の温度は、結晶成長開始の際は、下限温度よ
1日 度が所定の上限i;清段・・に達した後もその点より先
の部分(種結晶より遠い部分)lま同様+で一定温変に
保持する。
When starting crystal growth, the temperature of the seed crystal part is determined by one day from the lower limit temperature until it reaches a predetermined upper limit i; Similarly, use + to maintain a constant temperature.

本発明方法によると、結晶什が終了した部分は長時間一
定の温度に保持されるので、アニーリング(焼なまし)
の効果があり結晶欠陥の少ない良質の単結晶が得られる
。また、GaAsのように高融点のI−V族化合物単結
晶を成長させる場合、制御が容易な温度勾配を用いても
成長末端(種結晶を設置した側とは反対側の端部)は、
lλtio−i2so℃と従来のように/300℃前後
の高温にはならないので、ボート材料である石英からの
不純物の混入が防止できる。さらに、電気炉の発熱体と
してスーパーカンタル線が使用できるので、SiCと異
なり発熱体をコイル状に巻くことができ温度制御が容易
になる。
According to the method of the present invention, the part where the crystallization has finished is kept at a constant temperature for a long time, so it is not annealed.
As a result, high-quality single crystals with few crystal defects can be obtained. Furthermore, when growing a single crystal of a high melting point IV group compound such as GaAs, even if an easily controlled temperature gradient is used, the growth end (the end opposite to the side where the seed crystal is placed)
Since the temperature is not as high as lλtio-i2so°C, which is around /300°C as in the conventional case, contamination of impurities from quartz, which is the boat material, can be prevented. Furthermore, since superkanthal wire can be used as the heating element of the electric furnace, unlike SiC, the heating element can be wound into a coil shape, making temperature control easier.

続いて、実施例及び比較例に基づいて本発明をさらに具
体的に説明する。
Next, the present invention will be explained in more detail based on Examples and Comparative Examples.

実施例1 内径30fl、全長11!;0ran、断面が半円形で
ある石英ボートにSiドープGaAs多結晶を2100
1チヤージした。種結晶を用いて成長方向を(/// 
) As  方向とした。このボートを、第3図に示す
ようにひ素(As)とともに石英製の封管中に減圧封入
して電気炉内に設fdシた。すなわち、第3図は単結晶
成長装置の縦断面図である。lθは炉心管である。1.
/−は石英製の封管である。/2はAsであってGaA
sの分解を防止するために用いられる。13は封管//
の石英ボート封入部とAs封入部とを分離する隔壁であ
って、隔壁/3は、毛管状の細孔を有し、該細孔で上記
両部会を連絡している。/Qはボートである。15はボ
ートlダを加熱する電気炉であって5個の部分に分割さ
れている。16はAs / 、2を約A10℃に加熱し
てAs圧(約l気圧)を発生させるための電気炉である
。結晶成長の開始にあたって、電気炉/6をt、io℃
に加熱し、電気炉15:ま、種結晶を設置・tしたボー
トの端部が/ 23’r’C1温便勾配乞//℃/(1
n、上限温度を/ 、2’lO℃となるようンこ加熱し
た。
Example 1 Inner diameter 30fl, total length 11! ;0ran, Si-doped GaAs polycrystal was placed in a quartz boat with a semicircular cross section.
I charged 1. The growth direction is determined using a seed crystal (///
) As direction. As shown in FIG. 3, this boat was sealed together with arsenic (As) under reduced pressure in a sealed quartz tube and placed in an electric furnace. That is, FIG. 3 is a longitudinal sectional view of the single crystal growth apparatus. lθ is the furnace tube. 1.
/- is a sealed tube made of quartz. /2 is As and GaA
Used to prevent decomposition of s. 13 is a sealed tube //
Partition wall /3 separates the quartz boat enclosing part and the As enclosing part, and the partition wall /3 has a capillary-like pore, and the above-mentioned two parts are connected through the pore. /Q is a boat. Reference numeral 15 denotes an electric furnace for heating the boat, which is divided into five parts. 16 is an electric furnace for heating As/2 to about A10° C. to generate As pressure (about 1 atmosphere). At the start of crystal growth, the electric furnace/6 was heated to t,io℃.
The end of the boat was heated to 15°C and seed crystals were placed in an electric furnace.
It was heated until the upper limit temperature reached 2'10°C.

各電気炉が所定の温度に達した後、隆昌速度06℃/h
r  で降温して結晶成長を開布した。ボートの低温側
の温度が下限温度1230℃に達した後は、その部分の
温度は一定に保持した。
After each electric furnace reaches a predetermined temperature, the lifting speed is 06℃/h.
The temperature was lowered to r to promote crystal growth. After the temperature on the low temperature side of the boat reached the lower limit temperature of 1230°C, the temperature of that part was kept constant.

33時間でGaAs単結晶の成長工程が終了した。The GaAs single crystal growth process was completed in 33 hours.

得られたGaAs結晶棒のうち、1.0%に相当する部
分が単結晶化していた。エッチ・ピット(Etch P
it )密q (EpD)及びキャリア濃度は、種結晶
側端部からgO+rrmの部分で、それぞれ、g X 
102/cd、4 x to17/ ctdでル)ツた
。同じ(、tAo配の部分でEPD乙X 102/c’
! 、キャリア濃度1 !; X 1018/ cel
lであった。
Of the obtained GaAs crystal rods, a portion corresponding to 1.0% was single crystallized. Etch P
it) density q (EpD) and carrier concentration are gX
102/cd, 4 x to17/ctd. Same (, tAo arrangement part EPD Otsu X 102/c'
! , carrier concentration 1! ;X 1018/cel
It was l.

実施例コ 内径70IIII+、全長3gOrmの断面か半円形で
ある石英ボートに3300fのSiドープGaAs多結
晶をチャージした。
EXAMPLE A quartz boat having a semicircular cross section with an inner diameter of 70III+ and a total length of 3 gOrm was charged with 3300f of Si-doped GaAs polycrystal.

実施例1と同様にしてGaAs  単結晶を成長させた
。単結晶成長に要した時間は70時間であった。
A GaAs single crystal was grown in the same manner as in Example 1. The time required for single crystal growth was 70 hours.

得られたGaAs  結晶棒のうち50%が単結晶化し
ていた。EPD及びキャリア濃度は、種結晶設置端から
ざθ闘の位置でそれぞれi 5 X / 0’/(It
50% of the obtained GaAs crystal rods were single crystallized. EPD and carrier concentration are respectively i5X/0'/(It
.

ムコx t O” / 7 s同tgorrrmでそれ
ぞれ12×to”/ cI!”、10 X / OI8
/ 7であった。
Muko x t O" / 7 s and tgorrrm each 12 x to" / cI! ”, 10X/OI8
/ It was 7.

実施例3 実施例コと同様の石英ボートに金属ガリウム/&乙01
及びクロム(Cr ) 0.22■をチャージした。ま
た、封管//のAs封入部にAsを20001封入した
Example 3 Metallic gallium/& Otsu 01 in a quartz boat similar to Example 3
and chromium (Cr) 0.22μ. In addition, 20001 As was sealed in the As-filled part of the sealed tube //.

実施例1と同様にして70時間単結晶を成長させた。得
られた結晶棒のうちSO係が単結晶化していた。EPD
は種結晶端からgθ闘の部分テ、2.S X / 03
/cd、同200rftmの部分で/1Xto3/cr
/lであった。St含有量(SIMSにより分析)は、
同tornで/2 x / 0” / crJl、同コ
0θ随で乙x t o” / crAであった。
A single crystal was grown for 70 hours in the same manner as in Example 1. Among the obtained crystal rods, the SO group was found to be single crystallized. EPD
is the part of gθ from the seed crystal edge, 2. SX/03
/cd, same 200rftm part /1Xto3/cr
/l. The St content (analyzed by SIMS) is
In the same torn, /2

実施例9 下限温度を/ / 232 ’C、上限温度を72’l
O℃、温度勾配を/S℃/crnとした以外は実施例1
と同様にl−てGaAs単結晶を成長させた。得られた
GaAs結晶棒のうち33%が単結晶化していた。種結
晶側端部からgOrunの位置でEPD 9 Xt o
 2/ 7、キャリアa度は? X / o 17/ 
ctdであった。同230市の位置でEPD7×101
7/7−、キャリア濃度a3x t o18/ crd
であった。
Example 9 The lower limit temperature is / / 232'C, the upper limit temperature is 72'L
Example 1 except that the temperature gradient was 0°C and /S°C/crn.
A GaAs single crystal was grown in the same manner as above. 33% of the obtained GaAs crystal rods were single crystallized. EPD 9 Xt o at the gOrun position from the seed crystal side end
2/7. What is your career A degree? X/o 17/
It was ctd. EPD7×101 at the same 230 city location
7/7-, carrier concentration a3x to18/ crd
Met.

比較例 温度勾配をl / 1: / Cm、降温速度を06℃
/hrとし、最初種結晶側端部の温度を/ 23’IC
に設定し、上限温度及び下限温度を設けずに従来法によ
りGaAs単結晶を成長させた。 得られた結晶棒のう
ち50%が単結晶化していた。
Comparative example: Temperature gradient: 1/1:/Cm, cooling rate: 06°C
/hr, and the temperature at the end of the initial seed crystal side is /23'IC
A GaAs single crystal was grown by the conventional method without setting an upper temperature limit or a lower limit temperature. Of the obtained crystal rods, 50% were single crystallized.

EPD及びキャリア濃度は種結晶側端部からg。EPD and carrier concentration are g from the seed crystal side end.

−の位置で、それぞれ、ti−x to3/ad、t、
 s x/ 017/ cttl 、同200rlrM
(r)位置テ、ツレツレ、コX / 03/ 7%i 
g X / 0”/ 6dであった。
- position, ti-x to3/ad, t, respectively.
s x/ 017/ cttl, same 200rlrM
(r) Position Te, Tsuretsure, KoX / 03/ 7%i
g X/0”/6d.

【図面の簡単な説明】[Brief explanation of the drawing]

qt図は、従来のGF法の温度分布を示す図である。 第2図は、本発明方法によるGF法の温度分布を示す図
である。 第3図は、GF法による結晶成長装置の縦断面模型図で
ある。 /、コ、7、g及び夕・・・温度分布曲線l/・・・封
管 特許出願人   三菱モンサン斗化成株式会社代 理 
人  弁理士 長谷用  = (ほか1名) 第 1 図
The qt diagram is a diagram showing the temperature distribution of the conventional GF method. FIG. 2 is a diagram showing the temperature distribution of the GF method according to the present invention. FIG. 3 is a vertical cross-sectional model diagram of a crystal growth apparatus using the GF method. /, ko, 7, g and evening...Temperature distribution curve l/...Sealed tube patent applicant Mitsubishi Monsan Doo Kasei Co., Ltd. Agent
Person Patent attorney Hase = (1 other person) Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)周期律表第■族元素及び第V族元素からなる無機
化合物単結晶を温度傾斜法によって製造する方法におい
て、単結晶成長11」ボートの温度が、上記無機化合物
の融点から低温側73℃以内の範囲の温度より低くなら
ず、がっ、・上記ボートの高温部と低温部の温度差が2
゜℃以内であることを特徴とする方法。
(1) In a method for producing a single crystal of an inorganic compound consisting of an element of group Ⅰ and an element of group V of the periodic table by a temperature gradient method, the temperature of the single crystal growth 11'' boat is on the lower side 73 from the melting point of the inorganic compound. The temperature does not drop below the range of ℃, but the temperature difference between the hot and cold parts of the boat is 2.
A method characterized in that the temperature is within °C.
JP5900882A 1982-04-09 1982-04-09 Method for producing inorganic compound single crystals Expired JPS5938186B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5900882A JPS5938186B2 (en) 1982-04-09 1982-04-09 Method for producing inorganic compound single crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5900882A JPS5938186B2 (en) 1982-04-09 1982-04-09 Method for producing inorganic compound single crystals

Publications (2)

Publication Number Publication Date
JPS58176193A true JPS58176193A (en) 1983-10-15
JPS5938186B2 JPS5938186B2 (en) 1984-09-14

Family

ID=13100826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5900882A Expired JPS5938186B2 (en) 1982-04-09 1982-04-09 Method for producing inorganic compound single crystals

Country Status (1)

Country Link
JP (1) JPS5938186B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287477A (en) * 1985-10-14 1987-04-21 Hitachi Cable Ltd Production of single crystal of iii-v compound semiconductor
JPS62223088A (en) * 1986-03-26 1987-10-01 Sumitomo Metal Mining Co Ltd Method for growing compound single crystal

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6287477A (en) * 1985-10-14 1987-04-21 Hitachi Cable Ltd Production of single crystal of iii-v compound semiconductor
JPS62223088A (en) * 1986-03-26 1987-10-01 Sumitomo Metal Mining Co Ltd Method for growing compound single crystal

Also Published As

Publication number Publication date
JPS5938186B2 (en) 1984-09-14

Similar Documents

Publication Publication Date Title
US3632431A (en) Method of crystallizing a binary semiconductor compound
Feigelson Crystal growth through the ages: a historical perspective
JPS58176193A (en) Preparation of single crystal of inorganic compound
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
US4865682A (en) Growth method of an organic compound single crystal and a boat used therefor
JP3216298B2 (en) Vertical container for compound semiconductor crystal growth
JP4529712B2 (en) Method for producing compound semiconductor single crystal
JP2004277266A (en) Method for manufacturing compound semiconductor single crystal
US5007979A (en) Method of fabricating GaAs single crystal
JP3132034B2 (en) Method for growing compound semiconductor crystal
JP3551406B2 (en) Growth method of mixed crystal semiconductor single crystal
JPH09295887A (en) Growing of crystal and crucible for growing
JPS6046078B2 (en) Single crystal growth method of solid solution composition of inorganic composite oxide
JP2773441B2 (en) Method for producing GaAs single crystal
JP3018429B2 (en) Method and apparatus for producing single crystal
JP2576134B2 (en) Method for growing InP crystal on Si substrate
JP2000178095A (en) Crystal growth process
JPS5938183B2 (en) Single crystal manufacturing method
JPH0631192B2 (en) Method and apparatus for manufacturing semiconductor single crystal
JPH0341440B2 (en)
JPS62207793A (en) Production of iii-v compound single crystal
JPH0684278B2 (en) Method for manufacturing compound semiconductor
JPS6287477A (en) Production of single crystal of iii-v compound semiconductor
JPH059094A (en) Method for producing compound semiconductor single crystal and apparatus therefor
JPH0645517B2 (en) Method for producing compound semiconductor single crystal