JP3674736B2 - Method for producing plate-like single crystal - Google Patents

Method for producing plate-like single crystal Download PDF

Info

Publication number
JP3674736B2
JP3674736B2 JP12498397A JP12498397A JP3674736B2 JP 3674736 B2 JP3674736 B2 JP 3674736B2 JP 12498397 A JP12498397 A JP 12498397A JP 12498397 A JP12498397 A JP 12498397A JP 3674736 B2 JP3674736 B2 JP 3674736B2
Authority
JP
Japan
Prior art keywords
single crystal
plate
growth
dislocation
dislocations
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12498397A
Other languages
Japanese (ja)
Other versions
JPH10298000A (en
Inventor
武晴 山村
栄二 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP12498397A priority Critical patent/JP3674736B2/en
Publication of JPH10298000A publication Critical patent/JPH10298000A/en
Application granted granted Critical
Publication of JP3674736B2 publication Critical patent/JP3674736B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は金属半導体および化合物半導体を材料として転位の発生を抑制した板状単結晶およびその製造方法に関する。
【0002】
【従来の技術】
集積回路等を用途とするシリコンやゲルマニウム等の金属半導体あるいはGaAs、GaP、InP、InAs等の化合物半導体材料による単結晶は、従来より、気相成長法、溶液法、融液法等による単結晶成長手段によってつくられており、そのバルク単結晶については、融液からの単結晶引上げ、あるいは封管内での融液の温度傾斜凝固等単結晶を円柱状に成長させる手段によってつくられている。
【0003】
このようなバルク単結晶としては、少数キャリアの電子や正孔の移動を妨げ半導体特性を劣化させる欠陥即ち転位のない単結晶体が必要とされ、単結晶成長時の温度勾配による熱歪の発生を極力抑制するようにしており、また、シード(種結晶)を利用して大径のバルク単結晶を成長させる引上げ法等の場合、シードからの刃状転位の伝播を防ぐため、単結晶の成長過程において細径のネッキング域を設けて結晶表面において刃状転位を解放させるようにしている。
【0004】
【発明が解決しようとする課題】
しかしながら、このように円柱状に単結晶を成長させる手段においては、図4において、ネッキング11aにより解放されなかった転位やその後成長中に発生した転位は除去できない。また、バルク単結晶域11bは大径となるため、発生したこの刃状転位12は結晶体の表面で解放されるまでの成長距離が長く、その間に新たな転位が分岐的に増殖する可能性が大きく、バルク単結晶11の有効域が制限されるという問題があった。
【0005】
即ち、従来の大径のバルク単結晶を成長させる技術においては、次のような問題点があった。
(1)単結晶の成長時、熱歪によって刃状転位が発生し、且つ、この刃状転位が増殖し易いこと。
(2)シードからの刃状転位の伝播を防ぐため、ネッキング形成を必要とすること。
(3)発生した刃状転位を結晶表面において解放させるまでに、通常長い単結晶成長距離を必要とし、また、その間に刃状転位が増殖しやすいこと。
【0006】
本発明は、このような従来技術の問題点に鑑み、発生刃状転位を短い成長距離で結晶表面に解放させることにより刃状転位の伝播を極力抑制し、結果として刃状転位が少なく利用効率の高い単結晶体を得ることを目的とするものである。
【0007】
【課題を解決するための手段】
上記の目的を達成するため、本発明は、単結晶を板状に成長させて製造する方法であって、板状単結晶の成長方向に対して斜め方向に発生した転位を該板状単結晶の表面に解放して消滅させ、板面と平行でない転位の密度を100個/cm2以下とすることを特徴とする板状単結晶の製造方法を、また、前記板状単結晶の転位の密度が単結晶の(100)面に平行でない転位の密度とすることを特徴とする板状単結晶の製造方法を、さらに、前記板状単結晶が金属半導体又は化合物半導体であることを特徴とする板状単結晶の製造方法を、またさらに、前記板状単結晶がGaAs半導体であることを特徴とする板状単結晶の製造方法を、そしてまた、長方形断面の直方体の空間をスリットで分割したスペースを備える鋳型を用いて単結晶を板状に成長させることを特徴とする板状単結晶の製造方法を提供するものである。
【0008】
【発明の実施の形態】
板状のバルク単結晶を成長させる場合、転位が発生しても、板状単結晶の成長方向に平行でない角度を持つ刃状転位は、板厚が薄いほど板厚寸法に比例した短い成長距離で結晶表面に到達して解放されるので、単結晶としては殆ど転位のないものが得られる。換言すれば、バルク単結晶を板状とし、転位線の方向と板の面方位とに角度を持たせた状態で単結晶を成長させることにより、転位を短い成長距離で結晶表面に解放させることができ、結果として転位を抑制したバルク単結晶を得ることができる。
【0009】
本発明の単結晶成長手段については、従来の縦型温度傾斜凝固法(VGF法)や温度分布に段階的な勾配をもたせて融液容器を移動させる垂直または水平ブリッジマン法等の技術を利用することができるが、直方体の空間をスリットで分割したスペースを備える鋳型を用いることにより、比較的容易に板状単結晶を得ることができる。
【0010】
図1は、一部を切除して示す本発明の板状単結晶の製造装置の略斜視図である。
【0011】
この製造装置Aにおいては、鋳型1は、長方形断面の長尺の黒鉛材を組み合わせ、2つの上下方向に長い長方形断面の有底のキャビティ2を平行に形設してある。この鋳型1を収裝するるつぼ3は、円筒容器状につくられ、内部に不活性ガスを導入できるようにされており、さらに、ヒーターを備える図示しない成長炉にセットし、上下移動できるようにしてある。
【0012】
なお、鋳型1は所望の板状単結晶の材質や寸法に応じて黒鉛材その他の材料を用いて成形あるいは組立加工されるものであり、るつぼ3の材質としては成長させる板状単結晶と反応したり濡れたりせず、好ましくは熱伝導率が低いものが用いられる。るつぼ3を上下移動せず、加熱温度域を上下移動させるようにしてもよい。
【0013】
単結晶形成時には、鋳型1のキャビティ2内に予めシード4を収裝し、このシード4の上部に成長用原料5を接触状態に配置する。
【0014】
シード4は単結晶で、結晶方位は任意であり、転位はいくらあってもよい。成長用原料5としては、単結晶もしくは多結晶原料から切り出した板材をそのままシード4に接触させるように配置してもよいし、鋳型1のキャビティ2内に前記成長用原料5の融体を流し込んでシード4と馴染ませた状態に固化させたもの、または、前記成長用原料5を流し込んだ融体状態のままで利用するようにしてもよい。
【0015】
このようにシード4と成長用原料5を仕込んだ鋳型1をセットしたるつぼ3をさらに成長炉にセットし、下方向にるつぼ3を移動させるか、または、成長炉の加熱温度域を上方向に移動させるかにより、成長用原料5を融解しながら板状のバルク単結晶をシード4の単結晶にならった状態で一方向に成長させることができる。
【0016】
このような製造装置Aにより、図2に示したように、シード4に近接した転位解放域7aを介して図示矢印方向に成長した無転位域7bからなる板状のバルク単結晶6が得られる。板状単結晶においては、結晶の(100)面に平行な転位を除いて、発生転位を板状体の平面乃至側面で早期に解放し消滅させることができる。即ち、単結晶における転位の方向は、例えば、化合物半導体の単結晶においては結晶面(100)に対して35.3°の傾きを有しているように、バルク単結晶6の成長方向を規制することにより、転位方向を制御し、早期に転位を解放することができる。
【0017】
図2の転位解放域部分を拡大して示した図3において、シード4から板状のバルク単結晶6の両平面方向に角度をもって即ち斜めに成長する転位8aは、両平面に至って解放されて消滅する。両平面に平行で且つ結晶成長方向(図示矢印方向)に対して角度をもって即ち斜めに成長する転位8bについても同様に両平面の側端縁に至って解放されて消滅する。即ち、両平面方向に角度をもって成長する転位8aにおいては、その角度が直角に近い方向の転位ほど早期に結晶表面に解放され、両平面に平行に且つ結晶成長方向に対する角度をもって成長する転位8bについては、その角度が直角に近い方向の転位となるほど、早期にバルク単結晶6の側端面で解放されることになる。つまり、転位8a,8bの成長方向がバルク単結晶6の長手方向に対して直角に近いほど転位8a,8bは短い成長距離で解放されるのて効率的に無転位のバルク単結晶6を得ることができる。
【0018】
本発明の単結晶成長方法によれば、シード4に連なる成長用原料5を一方向に融解したのち、徐冷する等の方法で固化させることにより、長手方向(結晶成長方向)に関して、その融解した部分から1mm先以降の結晶の(100)面のEPD(エッチングピット検出法)による転位密度を100個/cm2 以下とすることができる。なお、このようにして得られた、バルク単結晶は、例えば、GaAs半導体の場合、(100)面を<110>方向にへき開し、チップとして使用する。
【0019】
【実施例1】
図1に示した装置を用いた。鋳型1は日本カーボン製ヒドロカーボンで作製し、2つのキャビティ2の寸法はそれぞれ縦1mm、横10mmおよび深さ100mmとした。前記鋳型1の底部には、予め、EPDによる転位密度が10万個/cm2 で、結晶面(100)、成長方位<110>、厚さ1mm、幅10mmおよび長さ20mmのGaAs単結晶によるシードをセットした。そして、シードを含めた全体長さが100mmになるまで、成長用原料としてGaAs融液を流し込み、次いで、るつぼ3の上部を1300℃に、且つ、底部を1200℃に加熱し、シード部の20mmを残し、成長用原料の80mmを融解した後、10℃/cmの温度勾配中を10mm/時の速度でるつぼ3を下動して融液を固化させた。
【0020】
得られたバルク単結晶板材について、EPDにより転位密度を測定した。その結果、融解しなかった部分の転位密度は変わらなかったが、融解した部分から、長手方向に1mm先以降の結晶の(100)面について、転位密度は100個/cm2 以下であった。
【0021】
【実施例2】
実施例1と同様に鋳型を作製してるつぼ内にセットし、同様のGaAs単結晶板をシードとしてセットし、成長用原料としてGaAs融液を流し込んだ。また同様にシード上部の成長用原料を長手方向に80mm融解した後、るつぼを10℃/時の速度で移動し融液を冷却して固化させた。
【0022】
得られたバルク単結晶板材についてEPDにより転位密度を測定した。その結果、融解しなかったシード部分の転位密度は変わらなかったが、融解した部分から、長手方向に1mm先以降の結晶の(100)面については転位密度は100個/cm2 以下になった。
【0023】
【実施例3】
実施例1と同様に鋳型を作製した。鋳型に、シードを用いずに、転位密度10万個/cm2 で、結晶面(100)、成長方位<110>、長さ100mm、幅10mm、厚さ1mmのGaAs単結晶板をセットした。鋳型を前記ヒドロカーボン製のるつぼにセットし、るつぼの上部を1300℃に、底部を1200℃に加熱して下部の20mmを残し、上部の80mmを融解した後、10℃/cmの温度勾配中を10mm/時の速度でるつぼを下動して融液を固化させた。
【0024】
得られたバルク単結晶板材についてEPDによる転位密度を測定した。その結果、融解しなかった部分の転位密度は変わらなかったが、融解した部分から長手方向に1mm先以降の結晶の(100)面について転位密度は100個/cm2 以下になった。
【0025】
【実施例4】
実施例3と同様に鋳型を作製し、同様のGaAs単結晶板をセットし、シードを用いず、同様の加熱により、下部の20mmを残し、上部を長手方向に80mmを融解したのち10℃/時の速度で冷却して元の形に固化させた。
【0026】
得られたバルク単結晶板材についてEPDによる転位密度を測定した。その結果、融解しなかった部分の転位密度は変わらなかったが、融解した部分から長手方向に1mm先以降の結晶の(100)面について転位密度は100個/cm2 以下になった。
【0027】
【発明の効果】
以上に説明したように、本発明によれば、従来の円柱状バルク単結晶の場合のようにネッキングを必要とせず、転位の発生があっても極めて短い成長距離で消滅させることができるので、効率的に無転位のバルク単結晶を得ることができる。本発明は、金属半導体又は化合物半導体に効果的に適用でき、特に、GaAs半導体の場合において的確に適用できるという効果を奏する。長方形断面のキャビティを備える鋳型を用いることにより単結晶を板状に成長させることが容易になるという効果を奏する。
【図面の簡単な説明】
【図1】本発明による板状単結晶の製造装置を示す部分切除斜視図である。
【図2】図1の製造装置による板状のバルク単結晶の略斜視図である。
【図3】図2の要部拡大斜視図である。
【図4】従来の製造装置によるバルク単結晶の略斜視図である。
【符号の説明】
A 製造装置
1 鋳型
2 キャビティ
3 るつぼ
4 シード
5 成長用原料
6 バルク単結晶
7a 転位解放域
7b 無転位域
8a,8b 転位
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a plate-like single crystal in which dislocation generation is suppressed using a metal semiconductor and a compound semiconductor as materials, and a method for producing the same.
[0002]
[Prior art]
Single crystals made of metal semiconductors such as silicon and germanium or compound semiconductor materials such as GaAs, GaP, InP, and InAs for use in integrated circuits have been conventionally produced by vapor deposition, solution methods, melt methods, etc. The bulk single crystal is formed by means for growing a single crystal from a melt, or by means of growing a single crystal in a cylindrical shape, such as temperature gradient solidification of the melt in a sealed tube.
[0003]
Such bulk single crystals require defects or dislocation-free single crystals that hinder the movement of minority carrier electrons and holes and degrade semiconductor properties, and generate thermal strain due to temperature gradient during single crystal growth. In addition, in the case of a pulling method for growing a bulk single crystal having a large diameter using a seed (seed crystal), in order to prevent propagation of edge dislocation from the seed, In the growth process, a narrow necking region is provided to release edge dislocations on the crystal surface.
[0004]
[Problems to be solved by the invention]
However, in such a means for growing a single crystal in a columnar shape, dislocations not released by the necking 11a in FIG. 4 and dislocations generated during the subsequent growth cannot be removed. Further, since the bulk single crystal region 11b has a large diameter, the generated edge dislocations 12 have a long growth distance until they are released on the surface of the crystal body, and new dislocations may proliferate in a branched manner during that time. There is a problem that the effective area of the bulk single crystal 11 is limited.
[0005]
That is, the conventional technique for growing large-diameter bulk single crystals has the following problems.
(1) When a single crystal is grown, edge dislocations are generated due to thermal strain, and the edge dislocations are easily proliferated.
(2) Necking must be formed to prevent propagation of edge dislocations from the seed.
(3) A long single crystal growth distance is usually required before the generated edge dislocations are released on the crystal surface, and the edge dislocations tend to proliferate during that time.
[0006]
In view of such problems of the prior art, the present invention suppresses the propagation of edge dislocations as much as possible by releasing the generated edge dislocations on the crystal surface at a short growth distance, resulting in less utilization of edge dislocations. It aims at obtaining a single crystal body with high.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a method for producing a single crystal by growing it into a plate shape, wherein dislocations generated in an oblique direction with respect to the growth direction of the plate single crystal are produced. A method for producing a plate-like single crystal characterized in that the density of dislocations not released in parallel to the plate surface is reduced to 100 pieces / cm 2 or less, and the dislocation of the plate-like single crystal is also eliminated. A method for producing a plate-like single crystal characterized in that the density is a dislocation density not parallel to the (100) plane of the single crystal, and the plate-like single crystal is a metal semiconductor or a compound semiconductor, A method for producing a plate-like single crystal, a method for producing a plate-like single crystal characterized in that the plate-like single crystal is a GaAs semiconductor, and also dividing a rectangular parallelepiped space with slits A single crystal using a mold with a fixed space There is provided a method of manufacturing a plate-like single crystal, characterized in that grown.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
When growing a plate-like bulk single crystal, even if dislocations occur, edge dislocations with an angle that is not parallel to the growth direction of the plate-like single crystal have a shorter growth distance proportional to the plate thickness as the plate thickness decreases. Thus, a single crystal having almost no dislocations can be obtained. In other words, dislocations can be released to the crystal surface at a short growth distance by making the bulk single crystal into a plate shape and growing the single crystal with an angle between the direction of the dislocation line and the plane orientation of the plate. As a result, a bulk single crystal in which dislocation is suppressed can be obtained.
[0009]
For the single crystal growth means of the present invention, the conventional vertical temperature gradient solidification method (VGF method) or the vertical or horizontal Bridgman method for moving the melt vessel with a stepwise gradient in temperature distribution is used. However, a plate-shaped single crystal can be obtained relatively easily by using a mold having a space in which a rectangular parallelepiped space is divided by slits.
[0010]
FIG. 1 is a schematic perspective view of an apparatus for producing a plate-like single crystal according to the present invention, partially cut away.
[0011]
In this manufacturing apparatus A, a mold 1 is formed by combining long graphite materials having a rectangular cross section and two parallel bottomed cavities 2 having a long rectangular cross section in the vertical direction. The crucible 3 for converging the mold 1 is made in the shape of a cylindrical container so that an inert gas can be introduced into the crucible 3 and set in a growth furnace (not shown) equipped with a heater so that it can be moved up and down. It is.
[0012]
The mold 1 is molded or assembled using a graphite material or other materials according to the desired material and dimensions of the plate-like single crystal. The material of the crucible 3 is a reaction with the plate-like single crystal to be grown. It is preferable that a material having a low thermal conductivity is used. The heating temperature range may be moved up and down without moving the crucible 3 up and down.
[0013]
When the single crystal is formed, the seed 4 is preliminarily converged in the cavity 2 of the mold 1, and the growth raw material 5 is placed in contact with the seed 4.
[0014]
The seed 4 is a single crystal, the crystal orientation is arbitrary, and there can be any number of dislocations. As the growth raw material 5, a plate material cut from a single crystal or polycrystalline raw material may be arranged so as to contact the seed 4 as it is, or the melt of the growth raw material 5 is poured into the cavity 2 of the mold 1. It may be used in a state of being solidified in a state in which the seed 4 is blended with, or in a molten state in which the growth raw material 5 is poured.
[0015]
The crucible 3 in which the mold 1 charged with the seed 4 and the growth raw material 5 is set in this way is further set in the growth furnace, and the crucible 3 is moved downward, or the growth temperature range of the growth furnace is increased upward. Depending on the movement, it is possible to grow the plate-like bulk single crystal in one direction in a state of becoming the single crystal of the seed 4 while melting the growth raw material 5.
[0016]
With such a manufacturing apparatus A, as shown in FIG. 2, a plate-like bulk single crystal 6 comprising a dislocation-free region 7b grown in the direction indicated by the arrow through a dislocation release region 7a close to the seed 4 is obtained. . In a plate-like single crystal, the generated dislocations can be released and eliminated at an early stage on the plane or side of the plate-like body, except for dislocations parallel to the (100) plane of the crystal. That is, the direction of dislocation in the single crystal is regulated, for example, so that the single crystal of the compound semiconductor has an inclination of 35.3 ° with respect to the crystal plane (100). By doing so, it is possible to control the dislocation direction and release the dislocation at an early stage.
[0017]
In FIG. 3, which is an enlarged view of the dislocation release region of FIG. 2, the dislocation 8a that grows at an angle, that is, obliquely, from the seed 4 to both plane directions of the plate-like bulk single crystal 6 is released to both planes. Disappear. Dislocations 8b that grow parallel to both planes and at an angle with respect to the crystal growth direction (arrow direction in the figure), that is, obliquely, are released to the side edges of both planes and disappear. That is, in the dislocation 8a that grows at an angle in both plane directions, the dislocation 8b that is released to the crystal surface earlier as the angle is closer to the right angle, and grows parallel to both planes and at an angle with respect to the crystal growth direction. Is released at the side end face of the bulk single crystal 6 earlier as the angle becomes a dislocation in a direction close to a right angle. That is, the dislocations 8a and 8b are released at a shorter growth distance as the growth direction of the dislocations 8a and 8b is closer to the longitudinal direction of the bulk single crystal 6, so that the dislocation-free bulk single crystal 6 is efficiently obtained. be able to.
[0018]
According to the single crystal growth method of the present invention, the growth raw material 5 connected to the seed 4 is melted in one direction and then solidified by a method such as slow cooling, so that the melting in the longitudinal direction (crystal growth direction) is achieved. The dislocation density by EPD (etching pit detection method) of the (100) plane of the crystal after 1 mm from the formed portion can be set to 100 pieces / cm 2 or less. For example, in the case of a GaAs semiconductor, the bulk single crystal obtained in this way is used as a chip by cleaving the (100) plane in the <110> direction.
[0019]
[Example 1]
The apparatus shown in FIG. 1 was used. The mold 1 was made of Nippon Carbon Hydrocarbon, and the dimensions of the two cavities 2 were 1 mm in length, 10 mm in width, and 100 mm in depth, respectively. At the bottom of the mold 1, a dislocation density by EPD of 100,000 pcs / cm 2 is preliminarily formed of a GaAs single crystal having a crystal plane (100), a growth orientation <110>, a thickness of 1 mm, a width of 10 mm, and a length of 20 mm. Set seeds. Then, a GaAs melt is poured as a growth raw material until the total length including the seed reaches 100 mm, then the top of the crucible 3 is heated to 1300 ° C. and the bottom is heated to 1200 ° C. After melting 80 mm of the raw material for growth, the crucible 3 was moved down at a speed of 10 mm / hour in a temperature gradient of 10 ° C./cm to solidify the melt.
[0020]
About the obtained bulk single crystal plate material, the dislocation density was measured by EPD. As a result, the dislocation density of the part that was not melted did not change, but from the melted part, the dislocation density was 100 pieces / cm 2 or less for the (100) plane of the crystal 1 mm ahead in the longitudinal direction.
[0021]
[Example 2]
A template was prepared in the same manner as in Example 1, set in a crucible, a similar GaAs single crystal plate was set as a seed, and a GaAs melt was poured as a growth material. Similarly, the raw material for growth above the seed was melted 80 mm in the longitudinal direction, and then the crucible was moved at a rate of 10 ° C./hour to cool and solidify the melt.
[0022]
The resulting bulk single crystal plate material was measured for dislocation density by EPD. As a result, the dislocation density of the seed portion that was not melted did not change, but from the melted portion, the dislocation density was 100 pieces / cm 2 or less for the (100) plane of the crystal 1 mm ahead in the longitudinal direction. .
[0023]
[Example 3]
A template was prepared in the same manner as in Example 1. A GaAs single crystal plate having a dislocation density of 100,000 pieces / cm 2 , a crystal plane (100), a growth orientation <110>, a length of 100 mm, a width of 10 mm, and a thickness of 1 mm was set as a mold without using a seed. The mold is set in the above-mentioned hydrocarbon crucible, the upper part of the crucible is heated to 1300 ° C., the bottom part is heated to 1200 ° C., leaving the lower 20 mm, and the upper 80 mm is melted, and then in a temperature gradient of 10 ° C./cm The crucible was moved down at a speed of 10 mm / hour to solidify the melt.
[0024]
The resulting bulk single crystal plate was measured for dislocation density by EPD. As a result, the dislocation density in the part that was not melted did not change, but the dislocation density was 100 or less per cm 2 on the (100) plane of the crystal 1 mm and beyond in the longitudinal direction from the melted part.
[0025]
[Example 4]
A template was prepared in the same manner as in Example 3, a similar GaAs single crystal plate was set, and by using the same heating without using a seed, the lower 20 mm was left, and the upper was melted 80 mm in the longitudinal direction. It was cooled at the speed of time and solidified into its original shape.
[0026]
The resulting bulk single crystal plate was measured for dislocation density by EPD. As a result, the dislocation density in the part that was not melted did not change, but the dislocation density was 100 or less per cm 2 on the (100) plane of the crystal 1 mm and beyond in the longitudinal direction from the melted part.
[0027]
【The invention's effect】
As explained above, according to the present invention, necking is not required as in the case of a conventional cylindrical bulk single crystal, and even if dislocation occurs, it can be extinguished with a very short growth distance. A dislocation-free bulk single crystal can be obtained efficiently. The present invention can be effectively applied to a metal semiconductor or a compound semiconductor, and in particular, has an effect that it can be accurately applied in the case of a GaAs semiconductor. By using a mold having a cavity with a rectangular cross section, it is possible to easily grow a single crystal into a plate shape.
[Brief description of the drawings]
FIG. 1 is a partially cut perspective view showing an apparatus for producing a plate-like single crystal according to the present invention.
FIG. 2 is a schematic perspective view of a plate-like bulk single crystal produced by the production apparatus of FIG.
FIG. 3 is an enlarged perspective view of a main part of FIG. 2;
FIG. 4 is a schematic perspective view of a bulk single crystal produced by a conventional manufacturing apparatus.
[Explanation of symbols]
A Manufacturing apparatus 1 Mold 2 Cavity 3 Crucible 4 Seed 5 Growth raw material 6 Bulk single crystal 7a Dislocation release region 7b Dislocation free region 8a, 8b Dislocation

Claims (5)

単結晶を板状に成長させて製造する方法であって、板状単結晶の成長方向に対して斜め方向に発生した転位を該板状単結晶の表面に解放して消滅させ、板面と平行でない転位の密度を100個/cm2以下とすることを特徴とする板状単結晶の製造方法。A method for producing a single crystal by growing it into a plate shape, wherein dislocations generated in an oblique direction with respect to the growth direction of the plate single crystal are released to the surface of the plate single crystal and eliminated, A method for producing a plate-like single crystal, wherein the density of non-parallel dislocations is 100 pieces / cm 2 or less. 前記板状単結晶の転位の密度が単結晶の(100)面に平行でない転位の密度とすることを特徴とする請求項1記載の板状単結晶の製造方法。2. The method for producing a plate-like single crystal according to claim 1, wherein the density of dislocations in the plate-like single crystal is a dislocation density not parallel to the (100) plane of the single crystal. 前記板状単結晶が金属半導体又は化合物半導体であることを特徴とする請求項1又は2記載の板状単結晶の製造方法。The method for producing a plate-like single crystal according to claim 1 or 2, wherein the plate-like single crystal is a metal semiconductor or a compound semiconductor. 前記板状単結晶がGaAs半導体であることを特徴とする請求項1〜3のいずれかに記載の板状単結晶の製造方法。The method for producing a plate-like single crystal according to any one of claims 1 to 3, wherein the plate-like single crystal is a GaAs semiconductor. 長方形断面の直方体の空間をスリットで分割したスペースを備える鋳型を用いて単結晶を板状に成長させることを特徴とする請求項1〜4のいずれかに記載の板状単結晶の製造方法。The method for producing a plate-like single crystal according to any one of claims 1 to 4, wherein the single crystal is grown into a plate shape using a mold having a space obtained by dividing a rectangular parallelepiped space with slits.
JP12498397A 1997-04-28 1997-04-28 Method for producing plate-like single crystal Expired - Fee Related JP3674736B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12498397A JP3674736B2 (en) 1997-04-28 1997-04-28 Method for producing plate-like single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12498397A JP3674736B2 (en) 1997-04-28 1997-04-28 Method for producing plate-like single crystal

Publications (2)

Publication Number Publication Date
JPH10298000A JPH10298000A (en) 1998-11-10
JP3674736B2 true JP3674736B2 (en) 2005-07-20

Family

ID=14899031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12498397A Expired - Fee Related JP3674736B2 (en) 1997-04-28 1997-04-28 Method for producing plate-like single crystal

Country Status (1)

Country Link
JP (1) JP3674736B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022728A (en) * 2016-07-12 2018-03-06 기초과학연구원 Single crystal metal foil, and method of manufacturing the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018012864A1 (en) * 2016-07-12 2018-01-18 기초과학연구원 Mono-crystalline metal foil and manufacturing method therefor
KR102396215B1 (en) * 2017-11-28 2022-05-10 기초과학연구원 Single crystal metal foil, and method of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5262200A (en) * 1975-11-17 1977-05-23 Sumitomo Electric Ind Ltd Single crystal of gallium arsenide without dislocation
JPH03159998A (en) * 1989-08-03 1991-07-09 Shin Etsu Handotai Co Ltd In-doped dislocatioin-free pulled gallium arsenide single crystal
JPH04132677A (en) * 1990-09-25 1992-05-06 Union Material Kk Production of thin plate-shaped single crystal by melt-pressure method
JPH04243168A (en) * 1991-01-17 1992-08-31 Mitsubishi Electric Corp Manufacture of solar cell substrate
JP3391503B2 (en) * 1993-04-13 2003-03-31 同和鉱業株式会社 Method for manufacturing compound semiconductor single crystal by vertical boat method
JP3624295B2 (en) * 1994-12-07 2005-03-02 同和鉱業株式会社 Single crystal manufacturing method and manufacturing apparatus thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180022728A (en) * 2016-07-12 2018-03-06 기초과학연구원 Single crystal metal foil, and method of manufacturing the same
KR101878465B1 (en) * 2016-07-12 2018-07-13 기초과학연구원 Single crystal metal foil, and method of manufacturing the same
KR101997545B1 (en) 2016-07-12 2019-07-09 기초과학연구원 Single crystal metal foil, and method of manufacturing the same

Also Published As

Publication number Publication date
JPH10298000A (en) 1998-11-10

Similar Documents

Publication Publication Date Title
Ciszek Techniques for the crystal growth of silicon ingots and ribbons
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
JPS60261130A (en) Method of producing foil of semiconductor and device therefor
US7601618B2 (en) Method for producing semi-conditioning material wafers by moulding and directional crystallization
US4243471A (en) Method for directional solidification of silicon
Ciszek et al. Directionally solidified solar-grade silicon using carbon crucibles
JP3674736B2 (en) Method for producing plate-like single crystal
JP4060106B2 (en) Unidirectionally solidified silicon ingot, manufacturing method thereof, silicon plate, solar cell substrate and sputtering target material
JP2018012632A (en) Method for producing polycrystalline silicon ingot
US4561930A (en) Process for the production of coarsely crystalline silicon
TWI281520B (en) InP single crystal, GaAs single crystal, and method for producing thereof
JP4344021B2 (en) Method for producing InP single crystal
JP2003267717A (en) Manufacturing equipment and manufacturing method for silicon ingot
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0380180A (en) Device for producing single crystal
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JP2017178741A (en) Mold for manufacturing silicon ingot
JPH0474788A (en) Production of compound semiconductor single crystal
JPS5939897B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JP2781857B2 (en) Single crystal manufacturing method
JPH05319973A (en) Single crystal production unit
JP2004307227A (en) Production method for compound semiconductor single crystal
JPH0380181A (en) Device for producing single crystal
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JP2773441B2 (en) Method for producing GaAs single crystal

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040206

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20040318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050419

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050420

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090513

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100513

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110513

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120513

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130513

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees