JPH04243168A - Manufacture of solar cell substrate - Google Patents

Manufacture of solar cell substrate

Info

Publication number
JPH04243168A
JPH04243168A JP3003853A JP385391A JPH04243168A JP H04243168 A JPH04243168 A JP H04243168A JP 3003853 A JP3003853 A JP 3003853A JP 385391 A JP385391 A JP 385391A JP H04243168 A JPH04243168 A JP H04243168A
Authority
JP
Japan
Prior art keywords
plate
solar cell
heat
cell substrate
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3003853A
Other languages
Japanese (ja)
Inventor
Hajime Sasaki
肇 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3003853A priority Critical patent/JPH04243168A/en
Publication of JPH04243168A publication Critical patent/JPH04243168A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide a solar cell substrate in which crystalline azimuths are uniform. CONSTITUTION:A sapphire plate 3 is used as part of a heat resistant casting mold 2. When an Si material 1 filled in a space of the mold 2 is heated to be melted and its crystal is grown by gradual cooling, it is grown with the plate 3 as nuclei, and hence a solar cell substrate in which its crystalline azimuths are uniform and grain size of the crystal is large, is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、安価な太陽電池基板の
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing inexpensive solar cell substrates.

【0002】0002

【従来の技術】図4は従来の太陽電池基板を作製する耐
熱性鋳型の斜視断面構造図であり、この図で、1はSi
原料、2はSiの融点(1414℃)に耐える耐熱性鋳
型で、前記Si原料1が充填されている。4は溶融した
Siと耐熱性鋳型2が融着しないように耐熱性鋳型2の
内側表面に塗布された離型剤である。
2. Description of the Related Art FIG. 4 is a perspective cross-sectional structural view of a heat-resistant mold for manufacturing a conventional solar cell substrate.
The raw material 2 is a heat-resistant mold that can withstand the melting point of Si (1414° C.), and is filled with the Si raw material 1. Reference numeral 4 denotes a mold release agent applied to the inner surface of the heat-resistant mold 2 to prevent fusion between the molten Si and the heat-resistant mold 2.

【0003】次に、太陽電池基板の製造方法について説
明する。耐熱性鋳型2はSiの融点温度に耐えるような
窒化ホウソ,石英,炭素,窒化珪素,炭化珪素などの耐
熱材料で作られている。耐熱性鋳型2は組立式になって
おり、組立てたときに内部に板状の空間部ができるよう
に設計しておく。耐熱性鋳型2を組立てる際にその空間
部に粉末状になったSi原料1を仕込んでおく。耐熱性
鋳型2の内側表面には溶融したSiと耐熱性鋳型2が融
着しないように離型剤4を塗布しておく。この離型剤4
の効果は、例えばT.Saito が15th IEE
E Pho−tovoltaic Specialis
ts Conference 1981 p.576 
で述べているように、この離型剤4によって耐熱性鋳型
2と溶融Siが接触しなくなる。
Next, a method for manufacturing a solar cell substrate will be explained. The heat-resistant mold 2 is made of a heat-resistant material such as borax nitride, quartz, carbon, silicon nitride, and silicon carbide that can withstand the melting point temperature of Si. The heat-resistant mold 2 is of an assembly type, and is designed so that a plate-shaped space is created inside when assembled. When assembling the heat-resistant mold 2, powdered Si raw material 1 is charged into the space. A mold release agent 4 is applied to the inner surface of the heat-resistant mold 2 so that molten Si and the heat-resistant mold 2 do not fuse together. This mold release agent 4
For example, the effect of T. Saito is the 15th IEE
E Pho-tovoltaic Specialis
ts Conference 1981 p. 576
As described above, the mold release agent 4 prevents the heat-resistant mold 2 from coming into contact with molten Si.

【0004】耐熱性鋳型2にSi原料1を仕込んで組立
てを終えた後に、高温炉(図示せず)に入れ、Siの融
点以上の高温に加熱しSi原料1を溶融する。Siが溶
融した後に徐々に温度を下げSiを凝固させる。Siが
凝固した後に炉から耐熱性鋳型2を取り出し、これを分
解して板状になったSi板を取り出す。その後、この基
板にSiのエピタキシャル成長や不純物拡散などの一般
的な太陽電池製造手段を施し太陽電池とする。
[0004] After the Si raw material 1 is charged into the heat-resistant mold 2 and the assembly is completed, the mold is placed in a high temperature furnace (not shown) and heated to a high temperature higher than the melting point of Si to melt the Si raw material 1. After the Si is melted, the temperature is gradually lowered to solidify the Si. After the Si has solidified, the heat-resistant mold 2 is taken out from the furnace, and it is disassembled to take out the Si plate. Thereafter, this substrate is subjected to common solar cell manufacturing methods such as Si epitaxial growth and impurity diffusion to form a solar cell.

【0005】このような太陽電池基板の作製方法は、例
えばProceeding of 3rd Photo
volt−aic Science and Engi
neering Conference in Jap
an,1982;Japanese Journal 
ofApplied Physics,Vol.21(
1982)Supplement 21−2 p.35
でT.Saito が報告している。
[0005] A method for manufacturing such a solar cell substrate is, for example, Proceedings of 3rd Photo.
volt-aic Science and Engineering
Neering Conference in Japan
an, 1982; Japanese Journal
of Applied Physics, Vol. 21(
1982) Supplement 21-2 p. 35
And T. Reported by Saito.

【0006】[0006]

【発明が解決しようとする課題】従来の太陽電池基板の
製造方法は以上のように行われているので、Siが凝固
するときに、結晶成長の“核”となるものがないため、
Siの結晶方位が定まらず、また、凝固を始める場所も
定まらないために、結晶方位がばらばらで結晶粒径の小
さな多結晶のSi板になってしまうという問題点があっ
た。
[Problems to be Solved by the Invention] Since the conventional manufacturing method for solar cell substrates is carried out as described above, when Si solidifies, there is no "nucleus" for crystal growth.
Since the crystal orientation of Si is not determined and the place where solidification starts is also not determined, there is a problem that a polycrystalline Si plate with scattered crystal orientations and small crystal grain size is obtained.

【0007】本発明は、上記のような問題点を解消する
ためになされたもので、単結晶Siインゴットの引き上
げのようなコストのかかる方法を使わずに、結晶方位の
揃った結晶粒径の大きい太陽電池基板を安価に、しかも
簡単に製造することを目的とする。
The present invention was made to solve the above-mentioned problems, and it is possible to obtain crystal grains with uniform crystal orientation without using a costly method such as pulling a single-crystal Si ingot. The purpose is to inexpensively and easily manufacture a large solar cell substrate.

【0008】[0008]

【課題を解決するための手段】本発明にかかる太陽電池
基板の製造方法は、耐熱性鋳型の一部分にサファイア板
を用いることによって、このサファイア板を核としてS
iを結晶成長させるものである。
[Means for Solving the Problems] The method of manufacturing a solar cell substrate according to the present invention uses a sapphire plate as a part of a heat-resistant mold, and uses this sapphire plate as a core to produce a solar cell substrate.
This is to grow crystals of i.

【0009】[0009]

【作用】本発明におけるサファイア板は、Siの結晶成
長の核となり、Si板の結晶方位を揃え、結晶方位の揃
った大きな結晶粒径のSi板を形成する。
[Operation] The sapphire plate in the present invention serves as a nucleus for Si crystal growth, aligning the crystal orientation of the Si plate, and forming a Si plate with large crystal grain size and uniform crystal orientation.

【0010】0010

【実施例】以下、本発明の一実施例を図について説明す
る。図1は本発明の太陽電池基板の製造方法の一実施例
を説明するための断面構造を示す斜視図である。この図
において、3はサファイア板で、耐熱性鋳型2の端部に
設けられており、その他の図4と同一符号は同一構成部
分を示すとともに、同様な機能を有している。なお、離
型剤4としては、実験の結果離型効果が最も優れている
窒化ホウ素を用いた。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a cross-sectional structure for explaining one embodiment of the method for manufacturing a solar cell substrate of the present invention. In this figure, 3 is a sapphire plate, which is provided at the end of the heat-resistant mold 2, and the same reference numerals as in FIG. 4 indicate the same components and have the same functions. As the mold release agent 4, boron nitride, which has the best mold release effect as a result of experiments, was used.

【0011】次に、図1により太陽電池基板の製造方法
を説明する。耐熱性鋳型2の空間部にSi原料1を仕込
んで組立をする。この時、耐熱性鋳型2の一部分にサフ
ァイア板3を用いる。サファイア板3部分には離型剤は
塗布しない。このサファイア板3のSiに接触する面の
結晶方位をSiの格子間隔に等しくなるように選んでお
く。耐熱性鋳型2を高温炉に入れSiの融点以上の約1
500℃に加熱しSi原料1を溶融する。耐熱性鋳型2
の一部分に用いたサファイア板3の融点は2040℃な
ので、1500℃ではサファイア板3が溶けることはな
い。Siが溶融した後に徐々に温度を下げSiを凝固さ
せる。Siが凝固する場合、サファイア板3と接した部
分ではサファイアとSiの格子間隔が同じであるために
、サファイア板3の結晶方位に揃うようにSiがエピタ
キシャル成長する。この時、サファイア板3部分の温度
を他の部分よりも低温にしておくと、Siの凝固がサフ
ァイア板3部分から始まるために、Si板全体にわたっ
て結晶方位の揃ったSi板5を作製することができる。 Siが凝固した後に炉から耐熱性鋳型2を取り出しこれ
を分解して板状になったSi板5を取り出す。
Next, a method for manufacturing a solar cell substrate will be explained with reference to FIG. The Si raw material 1 is charged into the space of the heat-resistant mold 2, and the mold is assembled. At this time, a sapphire plate 3 is used as a part of the heat-resistant mold 2. No mold release agent is applied to the 3 portions of the sapphire plate. The crystal orientation of the surface of this sapphire plate 3 in contact with Si is selected so as to be equal to the lattice spacing of Si. The heat-resistant mold 2 is placed in a high-temperature furnace at a temperature of approximately 1
The Si raw material 1 is melted by heating to 500°C. Heat resistant mold 2
Since the melting point of the sapphire plate 3 used as a part of is 2040°C, the sapphire plate 3 will not melt at 1500°C. After the Si is melted, the temperature is gradually lowered to solidify the Si. When Si solidifies, since the lattice spacing of sapphire and Si are the same in the portion in contact with the sapphire plate 3, the Si epitaxially grows in alignment with the crystal orientation of the sapphire plate 3. At this time, if the temperature of the sapphire plate 3 is kept lower than other parts, the solidification of Si will start from the sapphire plate 3, so that the Si plate 5 with uniform crystal orientation throughout the Si plate can be produced. Can be done. After the Si has solidified, the heat-resistant mold 2 is taken out from the furnace and disassembled to take out the Si plate 5 in the form of a plate.

【0012】本発明によるSi板5は従来の場合と異な
り、耐熱性鋳型2を外した状態では図2(a)に示すよ
うに端面がサファイア板3と融着している。これはSi
がサファイア板3から結晶成長したためである。そこで
、サファイア板3とSi板5を切り離すために切断部分
6に力をかけて図2(b)に示すようにSi板5を切断
する。切断部分6は他の部分に比べ薄くなっているので
簡単に折ることができる。切断部分6がなくてもSi板
5は薄いので容易に切断することはできるが、切断面が
きれいな直線になるためには切断部分6があったほうが
好ましい。こうして図2(b)のように、Si板5とS
i板5の一部が融着したサファイア板3が得られる。 Si板5は従来と同様にSiのエピタキシャル成長や不
純物拡散などの一般的な太陽電池製造手段が施され太陽
電池が形成される。サファイア板3はそのまま再度耐熱
性鋳型2の一部として用いる。サファイア板3に残った
Siは高温になることによって一旦溶けるが、凝固する
ときに再びサファイア板3からエピタキシャル成長をす
る。このように、サファイア板3は当初少しコストが高
くても何度も繰り返して使用することができるため割安
になる。
Unlike the conventional case, the Si plate 5 according to the present invention has an end face fused to the sapphire plate 3 when the heat-resistant mold 2 is removed, as shown in FIG. 2(a). This is Si
This is because crystals were grown from the sapphire plate 3. Therefore, in order to separate the sapphire plate 3 and the Si plate 5, force is applied to the cutting portion 6 to cut the Si plate 5 as shown in FIG. 2(b). Since the cut portion 6 is thinner than other portions, it can be easily folded. Although the Si plate 5 is thin and can be easily cut without the cutting portion 6, it is preferable to have the cutting portion 6 so that the cut surface becomes a clean straight line. In this way, as shown in FIG. 2(b), the Si plate 5 and the S
A sapphire plate 3 with a part of the i-plate 5 fused is obtained. The Si plate 5 is subjected to common solar cell manufacturing methods such as Si epitaxial growth and impurity diffusion to form a solar cell as in the past. The sapphire plate 3 is used again as a part of the heat-resistant mold 2 as it is. The Si remaining on the sapphire plate 3 is once melted due to the high temperature, but when it solidifies, it epitaxially grows from the sapphire plate 3 again. In this way, even if the sapphire plate 3 is initially a little expensive, it can be used many times, making it cheaper.

【0013】次に、この耐熱性鋳型2を用いて太陽電池
基板を大量に、かつ安価に作製できる方法について述べ
る。
Next, a method for manufacturing solar cell substrates in large quantities and at low cost using this heat-resistant mold 2 will be described.

【0014】図3は一時に大量に太陽電池基板を作製す
ることができる装置を示す構成図である。図3において
、8は装置内部をSiの融点以上に加熱できるような高
温炉で、内部に低温部分を作るための低温板7が複数個
設けられている。この低温板7は強制冷却しなくても、
そのままで熱伝導により外部に熱が逃げるために低温に
なるが、より低温を望むときや温度制御が必要なときに
は冷却水や冷却ガスを流すことができる。これにより、
装置内部には曲線Aで示すような温度分布が生ずる。こ
の低温板7に本発明の耐熱性鋳型2をサファイア板3部
分が低温部になるようにセットする。同様にして耐熱性
鋳型2を複数個装置内にセットした後、装置内部全体を
1414℃以上に加熱しSi原料1を融解する。 このとき、低温板7部分も1414℃以上になるように
し、仕込んだSi原料1をすべて融解しなければならな
い。融解後、徐々に装置内部の温度を下げると、まず、
低温板7に近いサファイア板3部分のSiが凝固を始め
る。その後、徐々にサファイア板3部分から順に凝固し
ていく。装置内部が室温になった後、耐熱性鋳型2を取
り出しこれを分解してSi板5を取り出す。この方法で
は、温度を上げるだけの簡単な装置で、狭い空間の中に
高密度に耐熱性鋳型2をセットすることができるため、
一度に多量の結晶方位の揃ったSi板5を作製すること
ができる。
FIG. 3 is a block diagram showing an apparatus capable of manufacturing solar cell substrates in large quantities at one time. In FIG. 3, reference numeral 8 denotes a high-temperature furnace capable of heating the inside of the device to a temperature higher than the melting point of Si, and a plurality of low-temperature plates 7 are provided therein to create a low-temperature portion. This low temperature plate 7 does not need to be forcedly cooled.
If left as is, heat will escape to the outside through heat conduction, resulting in a low temperature, but when a lower temperature is desired or temperature control is required, cooling water or cooling gas can be supplied. This results in
A temperature distribution as shown by curve A occurs inside the device. The heat-resistant mold 2 of the present invention is set on this low-temperature plate 7 so that the sapphire plate 3 portion becomes the low-temperature part. After setting a plurality of heat-resistant molds 2 in the apparatus in the same manner, the entire inside of the apparatus is heated to 1414° C. or higher to melt the Si raw material 1. At this time, the temperature of the low temperature plate 7 portion must also be kept at 1414° C. or higher to melt all of the charged Si raw material 1. After melting, when the temperature inside the device is gradually lowered,
Si in a portion of the sapphire plate 3 near the low temperature plate 7 begins to solidify. Thereafter, the sapphire plate is gradually solidified starting from the third portion. After the inside of the apparatus reaches room temperature, the heat-resistant mold 2 is taken out and disassembled, and the Si plate 5 is taken out. With this method, the heat-resistant molds 2 can be set at high density in a narrow space with a simple device that only raises the temperature.
A large amount of Si plates 5 with uniform crystal orientation can be produced at one time.

【0015】なお、上記実施例では太陽電池基板への適
用について述べたが、一般にSiが凝固するときに結晶
方位を揃えたいときなどに適用できる。例えば、酸化膜
上の薄膜多結晶をレ−ザやランプで融解するときなど、
結晶方位を揃えるのに応用できる。
[0015] In the above embodiment, application to a solar cell substrate has been described, but it can also be applied generally when it is desired to align the crystal orientation when solidifying Si. For example, when melting a thin polycrystalline film on an oxide film using a laser or lamp,
It can be applied to align crystal orientation.

【0016】[0016]

【発明の効果】以上説明したように、本発明は、耐熱性
鋳型の一部にサファイア板を用いたため、簡単にSi板
の結晶方位を揃えることができ、良質の太陽電池基板を
安価に作製することができる。また、温度を上げるだけ
の簡単な装置で一度に大量にSi板を作製することがで
きる。
[Effects of the Invention] As explained above, the present invention uses a sapphire plate as a part of the heat-resistant mold, so the crystal orientation of the Si plate can be easily aligned, and high-quality solar cell substrates can be produced at low cost. can do. Furthermore, a large amount of Si plates can be produced at once using a simple device that only requires raising the temperature.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】図1は本発明の一実施例による太陽電池基板の
製造方法の耐熱性鋳型部分の斜視断面図である。
FIG. 1 is a perspective cross-sectional view of a heat-resistant mold portion of a method for manufacturing a solar cell substrate according to an embodiment of the present invention.

【図2】図2は取り出した状態のSi板と、このSi板
をサファイア板から分離した状態を示す説明図である。
FIG. 2 is an explanatory diagram showing the Si plate taken out and the Si plate separated from the sapphire plate.

【図3】図3は本発明の原理を用い、簡単に一度に大量
の太陽電池基板を作製することができる基板作製装置を
示す構成斜視図である。
FIG. 3 is a perspective view showing the structure of a substrate manufacturing apparatus that can easily manufacture a large number of solar cell substrates at once using the principles of the present invention.

【図4】図4は従来の太陽電池基板を作製する耐熱性鋳
型の斜視断面構造図である。
FIG. 4 is a perspective cross-sectional structural view of a heat-resistant mold for manufacturing a conventional solar cell substrate.

【符号の説明】[Explanation of symbols]

1  Si原料 2  耐熱性鋳型 3  サファイア板 4  離型剤 5  Si板 6  切断部 7  低温板 8  高温炉 A  温度分布を示す曲線 1 Si raw material 2 Heat-resistant mold 3 Sapphire plate 4 Mold release agent 5 Si board 6 Cutting section 7 Low temperature plate 8 High temperature furnace A Curve showing temperature distribution

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  Si原料を耐熱性鋳型に仕込み、前記
Si原料を加熱溶解して太陽電池基板を作製する方法に
おいて、前記耐熱性鋳型の一部分にサファイア板を用い
、このサファイア板側から結晶成長させてSiの結晶成
長方位を揃えることを特徴とする太陽電池基板の製造方
法。
1. In a method of preparing a solar cell substrate by charging a Si raw material into a heat-resistant mold and heating and melting the Si raw material, a sapphire plate is used as a part of the heat-resistant mold, and crystal growth is performed from the side of the sapphire plate. A method for manufacturing a solar cell substrate, characterized in that the crystal growth direction of Si is aligned by aligning the Si crystal growth direction.
JP3003853A 1991-01-17 1991-01-17 Manufacture of solar cell substrate Pending JPH04243168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3003853A JPH04243168A (en) 1991-01-17 1991-01-17 Manufacture of solar cell substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3003853A JPH04243168A (en) 1991-01-17 1991-01-17 Manufacture of solar cell substrate

Publications (1)

Publication Number Publication Date
JPH04243168A true JPH04243168A (en) 1992-08-31

Family

ID=11568744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3003853A Pending JPH04243168A (en) 1991-01-17 1991-01-17 Manufacture of solar cell substrate

Country Status (1)

Country Link
JP (1) JPH04243168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936403A (en) * 1995-07-17 1997-02-07 Canon Inc Production of basic body and solar cell employing it
JPH10298000A (en) * 1997-04-28 1998-11-10 Dowa Mining Co Ltd Plate single crystal and its production

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0936403A (en) * 1995-07-17 1997-02-07 Canon Inc Production of basic body and solar cell employing it
JPH10298000A (en) * 1997-04-28 1998-11-10 Dowa Mining Co Ltd Plate single crystal and its production

Similar Documents

Publication Publication Date Title
JP4203603B2 (en) Method for producing semiconductor bulk polycrystal
US4382838A (en) Novel silicon crystals and process for their preparation
US8187563B2 (en) Method for producing Si bulk polycrystal ingot
JPS6358669B2 (en)
JP4054873B2 (en) Method for producing Si-based crystal
US20090139445A1 (en) Device for Fabricating a Ribbon of Silicon or Other Crystalline Materials and Method of Fabrication
JP6286514B2 (en) Method for producing polycrystalline silicon ingot
JPH04243168A (en) Manufacture of solar cell substrate
JP6401051B2 (en) Method for producing polycrystalline silicon ingot
JP4726454B2 (en) Method for casting polycrystalline silicon ingot, polycrystalline silicon ingot using the same, polycrystalline silicon substrate, and solar cell element
JP4292300B2 (en) Method for producing semiconductor bulk crystal
JPH1192284A (en) Production of silicon ingot having polycrystal structure solidified in one direction
JPH11116386A (en) Production of silicon ingot having polycrystal structure coagulated in one direction
JP3674736B2 (en) Method for producing plate-like single crystal
EP1085112A2 (en) Method of fabricating a single crystal
JP4077712B2 (en) Silicon casting method
JP5701287B2 (en) Dopant material, semiconductor substrate, solar cell element, and method for producing dopant material
JPS63185885A (en) Crystal growing device of horizontal type
JP2006272373A (en) Mold and casting apparatus using the same, and method for producing polycrystalline silicon
JPH0725533B2 (en) Method for producing silicon polycrystalline ingot
JPS5939897B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JPS62278173A (en) Manufacture of polycrystal silicon ingot
JPS609656B2 (en) Method for manufacturing polycrystalline silicon semiconductor
JPH05270813A (en) Production of polycrystalline silicon substrate
JPS59141488A (en) Device for growing single crystal