JP2704032B2 - Method for manufacturing compound semiconductor single crystal - Google Patents

Method for manufacturing compound semiconductor single crystal

Info

Publication number
JP2704032B2
JP2704032B2 JP18551590A JP18551590A JP2704032B2 JP 2704032 B2 JP2704032 B2 JP 2704032B2 JP 18551590 A JP18551590 A JP 18551590A JP 18551590 A JP18551590 A JP 18551590A JP 2704032 B2 JP2704032 B2 JP 2704032B2
Authority
JP
Japan
Prior art keywords
crystal
single crystal
diameter
compound semiconductor
seed crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18551590A
Other languages
Japanese (ja)
Other versions
JPH0474788A (en
Inventor
広 岡田
友成 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP18551590A priority Critical patent/JP2704032B2/en
Publication of JPH0474788A publication Critical patent/JPH0474788A/en
Application granted granted Critical
Publication of JP2704032B2 publication Critical patent/JP2704032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は封管式の垂直ブリッジマン法によって単結晶
を製造する方法の改良に関し、殊に大型で高品質の化合
物半導体単結晶を製造する方法に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a method for producing a single crystal by a sealed vertical Bridgman method, and in particular, to produce a large, high-quality compound semiconductor single crystal. It is about the method.

[従来の技術] GaAs等の化合物半導体単結晶の工業的製造法として
は、水平ブリッジマン法(HB法)や液体封止引き上げ法
(LEC法)等が知られている。これらの方法で得られる
単結晶の直径は、HB法で50〜75mm程度、LEC法で75〜100
mm程度である。
[Prior Art] As an industrial production method of a compound semiconductor single crystal such as GaAs, a horizontal Bridgman method (HB method), a liquid sealing pulling method (LEC method) and the like are known. The diameter of the single crystal obtained by these methods is about 50 to 75 mm by the HB method, and 75 to 100 by the LEC method.
mm.

近年、デバイス製造側からは、歩留りおよび生産性向
上という観点からウエハーの大口径化の要求が強まって
おり、その為の製造技術の開発が急務となっている。し
かしながら上記の様な工業的製造法では、単結晶直径を
更に大きくするには限界があり、上記した程度よりも大
口径の単結晶を製造するのは困難であった。即ちHB法で
は、容器として用いる石英ガラス外管を大口径とする必
要があり、その結果、該外管の熱変形が著しくなり安定
した工業的生産ができなくなる。またLEC法では、化合
物半導体単結晶の機械的強度がシリコン系半導体のそれ
と比較して低いことから、結晶直径が増大して引き上げ
結晶重量が大きくなると、引き上げ中に種子結晶部分で
破断してしまい、大口径化は困難であるとされている。
In recent years, from the viewpoint of improving yield and productivity, device manufacturers have increasingly demanded a large diameter wafer, and development of a manufacturing technique therefor is urgently required. However, in the industrial production method as described above, there is a limit to further increasing the diameter of the single crystal, and it has been difficult to produce a single crystal having a diameter larger than that described above. That is, in the HB method, a quartz glass outer tube used as a container needs to have a large diameter. As a result, thermal deformation of the outer tube becomes remarkable and stable industrial production cannot be performed. In addition, in the LEC method, the mechanical strength of the compound semiconductor single crystal is lower than that of the silicon-based semiconductor, so if the crystal diameter increases and the weight of the pulled crystal increases, the seed crystal breaks during the pulling. It is said that increasing the diameter is difficult.

一方、単結晶の製造方法としては、垂直ブリッジマン
法も知られている。この方法では化合物半導体の単結晶
化自体が困難であるとされ、これまで工業的生産方法と
しては採用されていなかった。しかし低温度勾配下での
結晶成長が可能であるという利点を有することから近年
欠陥の少ない良質結晶の製法として見直されつつあり、
様々な手段で改良されている。垂直ブリッジマン法を改
良した単結晶製造方法としては、例えば特公昭58−5007
57号や特開昭64−52693号等の技術が提案されている。
On the other hand, a vertical Bridgman method is also known as a method for producing a single crystal. According to this method, it is said that single crystallization of the compound semiconductor itself is difficult, and it has not been employed as an industrial production method until now. However, since it has the advantage of being able to grow crystals under a low temperature gradient, it is recently being reviewed as a method for producing high-quality crystals with few defects,
It has been improved in various ways. As a single crystal production method improved from the vertical Bridgman method, for example, Japanese Patent Publication No. 58-5007
No. 57 and Japanese Patent Application Laid-Open No. 64-52693 have been proposed.

第2図は垂直ブリッジマン法の基本原理を説明する為
の概略説明図であり、1は耐熱性のるつぼ,2はヒータ
ー,3は原料融液,4は成長過程の結晶(育成結晶),5は種
結晶,6はコーン部を夫々示す。この方法では外部加熱に
よって温度勾配を形成しつつ、るつぼ1を引き下げるこ
とによって、原料融液3を結晶化し種結晶5上に単結晶
を成長させるものである。
FIG. 2 is a schematic explanatory view for explaining the basic principle of the vertical Bridgman method, in which 1 is a heat-resistant crucible, 2 is a heater, 3 is a raw material melt, 4 is a crystal in the growth process (grown crystal), 5 indicates a seed crystal and 6 indicates a cone. In this method, by lowering the crucible 1 while forming a temperature gradient by external heating, the raw material melt 3 is crystallized and a single crystal is grown on the seed crystal 5.

[発明が解決しようとする課題] 垂直ブリッジマン法では、第2図に示した様に、結晶
4の全重量を耐熱性のるつぼ1によって保持できるの
で、引上げ法で述べた様な結晶重量増加による制約は少
ないと言える。しかしながら、この方法では、シーディ
ング(種付け)後、結晶4がコーン部6を通って結晶径
を広げていく過程でるつぼ1の壁から双晶が発生する確
率が高くなり、結晶直径を大きくした場合にその傾向が
より一層顕著になってくるという不都合があった。
[Problems to be Solved by the Invention] In the vertical Bridgman method, as shown in FIG. 2, since the entire weight of the crystal 4 can be held by the heat-resistant crucible 1, the crystal weight increases as described in the pulling method. Can be said to be few. However, in this method, after seeding (seed), the probability that twins are generated from the wall of the crucible 1 in the process of expanding the crystal diameter of the crystal 4 through the cone portion 6 is increased, and the crystal diameter is increased. In such a case, there is an inconvenience that the tendency becomes more remarkable.

こうしたことから種結晶5の直径を育成結晶4の直径
と同等にし、コーン部6からの双晶発生を防止する技術
も知られている。しかしながらこの様な方法では、種結
晶5の温度許容限界が小さいことに原因して、シーディ
ングが難しくなるという欠点があった。即ち、シーディ
ングの際には、極めて正確な温度制御が必要となり、一
歩間違うと種結晶5の全てを溶かしてしまいかねない。
こうした事態は、種結晶4の厚みを大きくすることで回
避できそうであるが、そうすると大型の種結晶が必要と
なり、それだけコストが高くなってしまうという新たな
不都合が生じていた。また結晶の直径が大きくなるにし
たがって、成長中の結晶中央部からの有効な熱放散が困
難となり、結晶の成長速度が中央部と周辺部とで異な
り、固液界面の形状が結晶側(第2図における下方側)
に凹状となってしまい、成長固液界面での熱応力に起因
する結晶中への転位導入等による品質低下が著しくなる
という問題があった。
For this reason, a technique for making the diameter of the seed crystal 5 equal to the diameter of the grown crystal 4 and preventing twins from being generated from the cone portion 6 is also known. However, such a method has a disadvantage that seeding becomes difficult due to a small allowable temperature limit of the seed crystal 5. That is, in the case of seeding, extremely accurate temperature control is required, and if one step is wrong, the entire seed crystal 5 may be melted.
Such a situation is likely to be avoided by increasing the thickness of the seed crystal 4, but this requires a large-sized seed crystal, which raises a new inconvenience of increasing the cost. Also, as the diameter of the crystal increases, it becomes more difficult to effectively dissipate heat from the center of the growing crystal, the growth rate of the crystal differs between the center and the periphery, and the shape of the solid-liquid interface changes on the crystal side (the (Lower side in Fig. 2)
In this case, there is a problem that the quality is significantly deteriorated due to the introduction of dislocations into the crystal due to the thermal stress at the interface between the solid and the liquid.

本発明はこうした状況のもとになされたものであっ
て、その目的は、垂直ブリッジマン法によって化合物半
導体単結晶を製造するに当たり、上記の様な双晶発生を
回避すると共に、比較的薄型のバルク状種結晶で安定な
シーディングを可能にし、高品質の大口径化合物半導体
単結晶を歩留りよく製造する方法を提供することにあ
る。
The present invention has been made under such a circumstance, and an object of the present invention is to avoid the twinning as described above and manufacture a relatively thin compound semiconductor compound single crystal by the vertical Bridgman method. An object of the present invention is to provide a method for manufacturing a high-quality large-diameter compound semiconductor single crystal with a high yield by enabling stable seeding with a bulk seed crystal.

[課題を解決する為の手段] 上記目的を達成し得た本発明とは、封管容器を用いて
行なう垂直ブリッジマン法によって化合物半導体単結晶
を製造するに当たり、製造すべき単結晶と同等の直径を
有する種結晶を用いると共に、該種結晶の中央下部に凹
部を形成しておき、該凹部からの放熱を促進させつつ操
業を行なう点に要旨を有する化合物半導体単結晶の製造
方法である。
[Means for Solving the Problems] The present invention, which has achieved the above object, refers to a method of manufacturing a compound semiconductor single crystal by the vertical Bridgman method using a sealed vessel, which is equivalent to a single crystal to be manufactured. A method for producing a compound semiconductor single crystal having a gist in that a seed crystal having a diameter is used, a recess is formed in the lower center of the seed crystal, and operation is performed while heat radiation from the recess is promoted.

[作用] 本発明は上述の如く構成されるが、要するに、育成結
晶と同等の直径を有する種結晶を用いて初期結晶成長過
程での双晶発生を回避すると共に、前記種結晶の中央下
部に凹部を形成しておき、該凹部に制御された量の冷却
媒体を供給して強制冷却することによって、結晶中央部
からの放熱を促進し、固液界面形状が平坦化する様に結
晶成長速度を均一化し、高品質の大口径化合物半導体単
結晶を得る様にしたのである。
[Function] The present invention is configured as described above. In short, while using a seed crystal having the same diameter as the grown crystal to avoid twinning during the initial crystal growth process, By forming a concave portion and supplying a controlled amount of a cooling medium to the concave portion and forcibly cooling it, heat radiation from the central portion of the crystal is promoted, and the crystal growth rate is set so that the solid-liquid interface shape becomes flat. And obtain a high-quality large-diameter compound semiconductor single crystal.

本発明によれば、希望する直径の単結晶を製造するこ
とができ、例えば75mmの直径の結晶を作製しようと思え
ば、種結晶として75mm直径のものを用いればよい。また
上記の強制冷却効果によって、用いる種結晶の厚みを比
較的小さくすることができる。尚第2図に示した様な細
い種結晶を使用する場合に比べて、本発明で用いる種結
晶は重量的に大きくなることは否めないが、本発明にお
ける種結晶はシーディングの際における不都合を回避
し、繰り返し使用に耐え得るのでその点は相殺されるこ
とになる。
According to the present invention, a single crystal having a desired diameter can be produced. For example, if a crystal having a diameter of 75 mm is to be produced, a seed crystal having a diameter of 75 mm may be used. Further, the thickness of the seed crystal used can be made relatively small by the above-mentioned forced cooling effect. Although the seed crystal used in the present invention is unavoidably larger in weight than the case where a thin seed crystal as shown in FIG. 2 is used, the seed crystal in the present invention is disadvantageous in seeding. Is avoided, and the point is offset because it can withstand repeated use.

本発明で形成する凹部の直径は、結晶直径の1/2以下
となる様にするのが好ましいが、これは中央部からの冷
却能を高めたいという要請と、冷却能が高まり過ぎると
育成結晶の周辺部も冷却されることになり、本発明の目
的が達成されないのでこれを避けるという要請を考慮し
たことによる。
The diameter of the concave portion formed in the present invention is preferably set to be equal to or less than 1/2 of the crystal diameter. Is also cooled, and the object of the present invention is not achieved.

本発明で採用する冷却機構については、例えば第3図
(a),(b)に示す様に、石英ガラス容器10の下部中
央に形成した凹部11の内側にスパイラル状の管路12を設
け(他の参照符号は第2図と同じ)、この管路12内に冷
ガスや冷水等の冷却媒体を供給する構成が代表的に例示
されるが、管路12の凹部11付近の形状はスパイラル状に
限らず、例えば第4図に示す様に2重管式のジャケット
方式による熱交換用通路14の通常をガラス細工により容
器10に形成したものを採用することもできる。また管路
12は第3図に示した様に、独立した2系統(またはそれ
以上)となる様に設置した方が成長初期の微妙な温度制
御の点から有利であるが、成長結晶の直径や設定温度等
によって適宜設計変更すればよい。尚本発明を実施する
に当たっては、炉温度や冷却媒体供給量の制御について
は、装置構成に対応したシミユレーション実験を行なう
ことによって設定すればよい(後記実施例参照)。
As for the cooling mechanism employed in the present invention, for example, as shown in FIGS. 3 (a) and 3 (b), a spiral pipe 12 is provided inside a concave portion 11 formed in the lower center of the quartz glass container 10 (see FIG. 3). The other reference numerals are the same as those in FIG. 2), and a configuration in which a cooling medium such as cold gas or cold water is supplied into the pipe 12 is typically exemplified. For example, as shown in FIG. 4, it is also possible to employ a double-walled jacket type heat exchange passage 14 formed in the container 10 by glasswork as shown in FIG. Also pipeline
In FIG. 12, as shown in FIG. 3, it is advantageous to provide two independent systems (or more) in terms of delicate temperature control in the initial stage of growth, but the diameter of the grown crystal and the set temperature The design may be appropriately changed according to the above. In carrying out the present invention, the control of the furnace temperature and the supply amount of the cooling medium may be set by performing a simulation experiment corresponding to the apparatus configuration (see Examples described later).

前記第3図では、石英ガラス容器内に原料を直接装入
する構成を示したけれども、本発明で用いる結晶成長用
容器は第3図に示した構成に限らず、例えば第4図に示
した様に、石英ガラス容器10内にパイロリティック・ボ
ロン・ナイトライド(PBN)製のるつぼ15を装填し、こ
のるつぼ15内に多結晶GaAs原料16(図では融解前を示
す)を装入する様な構成も採用することができる。尚第
4図中15aは、るつぼ用蓋(PBN製)である。この様な構
成では、石英ガラス容器10からのシリコンの結晶への混
入を避けることができ、高速IC用として好適な高純度の
半絶縁性GaAsを製造することができる。
Although FIG. 3 shows the configuration in which the raw material is directly charged into the quartz glass container, the crystal growth container used in the present invention is not limited to the configuration shown in FIG. Similarly, a crucible 15 made of pyrolytic boron nitride (PBN) is loaded into a quartz glass container 10, and a polycrystalline GaAs raw material 16 (before melting is shown in the figure) is loaded into the crucible 15. Various configurations can also be adopted. In FIG. 4, reference numeral 15a denotes a crucible lid (made of PBN). With such a configuration, mixing of silicon from the quartz glass container 10 into the crystal can be avoided, and high-purity semi-insulating GaAs suitable for high-speed ICs can be manufactured.

以下本発明を実施例によって更に詳細に説明するが、
下記実施例は本発明を限定する性質のものではなく、前
・後記の趣旨に徴して設計変更することはいずれも本発
明の技術的範囲に含まれるものである。
Hereinafter, the present invention will be described in more detail with reference to Examples.
The following examples are not intended to limit the present invention, and any change in design based on the above and following points is included in the technical scope of the present invention.

[実施例] 第1図は本発明を実施する為の装置構成例を示す概略
説明図であり、図中20は結晶成長用容器、21は加熱用電
源、17はヒータ、18a〜18dは熱電対型温度計、19a,19b
は熱交換器、20a,20bはマスフローメータ、25は制御装
置、26は温度制御装置、27は測温用熱電対、28はパーソ
ナルコンピュータを夫々示す。
Embodiment FIG. 1 is a schematic explanatory view showing an example of an apparatus configuration for carrying out the present invention, in which 20 is a crystal growth vessel, 21 is a heating power source, 17 is a heater, and 18a to 18d are thermoelectric devices. Pair type thermometer, 19a, 19b
Denotes a heat exchanger, 20a and 20b denote mass flow meters, 25 denotes a controller, 26 denotes a temperature controller, 27 denotes a thermocouple for temperature measurement, and 28 denotes a personal computer.

まず冷却媒体の流量制御の解析手順について説明す
る。
First, an analysis procedure for controlling the flow rate of the cooling medium will be described.

本発明者らは第1図に示した構成において、100mm直
径のGaAs単結晶を成長させ、成長用容器20内の温度分布
と冷却ガス流量との関係を有限要素法を用いた熱流解析
によって求めた。その結果例を第5図(a)〜(d)に
示す。
The present inventors have grown a GaAs single crystal having a diameter of 100 mm in the configuration shown in FIG. 1 and determined the relationship between the temperature distribution in the growth vessel 20 and the cooling gas flow rate by heat flow analysis using the finite element method. Was. Examples of the results are shown in FIGS. 5 (a) to 5 (d).

次に、GaAsの融点1238℃の等温線で示される固液界面
の形状が平坦になる条件を全結晶成長過程に亘って求め
た。その一例として、第5図(a)に示した温度プロフ
ィルAでの固液界面平坦化に必要な冷却ガス流量を第6
図に示す。尚解析に当たっては実際のるつぼ内での温度
測定データを参考にし、その境界条件を最適化した。
Next, conditions for flattening the shape of the solid-liquid interface indicated by the isotherm at the melting point of 1238 ° C. of GaAs were determined over the entire crystal growth process. As one example, the cooling gas flow rate required for flattening the solid-liquid interface with the temperature profile A shown in FIG.
Shown in the figure. In the analysis, the boundary conditions were optimized with reference to the actual temperature measurement data in the crucible.

解析の結果、冷却ガスを流さないで炉の温度コントロ
ールを行っただけでは、固液界面の形状を結晶側に凹状
となるのを避けることはできなかったが、冷却ガスを使
用して強制冷却した場合は、界面形状のコントロール範
囲を格段に大きくすることができることが確かめられ
た。尚結晶下部中央部に形成する冷却用凹部の直径に関
しては、あまり大きくすると結晶中央部に冷却効果をも
たせる目的に対して不適当となり、成長した結晶長さが
比較的短い段階での界面形状コントロール効果が弱くな
り、固液界面の形状を結晶側に凹状になるのを避けるこ
とが不可能になることが判明した。本発明者らの実験に
よると、100mm直径の結晶成長においては、長さ20cmの
結晶全体を固液界面形状を平坦に保ちつつ成長させる為
には、前記凹部の直径は結晶直径の1/2以下であること
が好ましいことがわかった。また凹部の直径の最小値
は、冷却部の方式の違いによっても異なり、必ずしも限
定できるものではなく、実質的に冷却効果を低下させな
い範囲内であればよい。従って最終的には、結晶成長の
全範囲に亘って、固液界面形状を平坦化させつつ結晶成
長させる為の容器の温度設定と冷却ガス流量との組合せ
を整理し、最適成長条件を決定すればよい。
As a result of the analysis, simply controlling the furnace temperature without flowing cooling gas could not prevent the shape of the solid-liquid interface from becoming concave on the crystal side, but forced cooling using cooling gas In this case, it was confirmed that the control range of the interface shape could be significantly increased. If the diameter of the cooling recess formed in the center of the lower part of the crystal is too large, it becomes inappropriate for the purpose of having a cooling effect in the center of the crystal, and the interface shape is controlled at a stage where the grown crystal length is relatively short. It has been found that the effect is weakened and it becomes impossible to avoid the shape of the solid-liquid interface being concave toward the crystal. According to experiments performed by the present inventors, in the case of crystal growth with a diameter of 100 mm, in order to grow the entire crystal having a length of 20 cm while keeping the solid-liquid interface shape flat, the diameter of the concave portion is 1/2 of the crystal diameter. It has been found that the following is preferable. The minimum value of the diameter of the concave portion also differs depending on the type of the cooling unit, and is not necessarily limited, and may be within a range that does not substantially reduce the cooling effect. Therefore, finally, over the entire range of crystal growth, the combination of the temperature setting of the vessel and the flow rate of the cooling gas for crystal growth while flattening the solid-liquid interface shape should be determined to determine the optimum growth conditions. I just need.

以上の解析結果に基づき、冷却ガス制御プログラムを
作製し、このプログラムに従って実際にGaAs単結晶の製
造を実施した。
Based on the above analysis results, a cooling gas control program was created, and a GaAs single crystal was actually manufactured according to the program.

LEC法によって製造された直径100mm,厚さ15mmのGaAs
単結晶バルク材の円形面上に超音波加工によって直径10
mm,深さ10mmの穴をあけたものを種結晶とし、GaAsの多
結晶原料およびドーパントとしてのSi(1018/cm3の濃度
となる量)と共に、第3図に示した石英容器中に真空封
入した。このとき、結晶成長中の容器とGaAsとの反応を
防止するために、真空封入に先立ち、成長容器内部を充
填原料と共に洗浄し、清浄化しておくことが好ましい。
成長容器を垂直ブリッジマン炉にセットした後、通常の
結晶成長方法に従って昇温し、上記種結晶を上端面3mm
のところでメルトバックした。その後、炉の温度コント
ロールにより、固液界面を10℃/mmの温度勾配下で1時
間に3mmの割合で移動させ、さらにこれに同期させつつ
上記冷却ガスによる強制冷却を実施し、全長20cmに亘る
結晶化を終了した。
100mm diameter, 15mm thick GaAs manufactured by LEC method.
Ultrasonic machining on a circular surface of single crystal bulk material with a diameter of 10
A hole with a hole of 10 mm in depth and 10 mm in depth was used as a seed crystal, and together with a polycrystalline raw material of GaAs and Si as a dopant (a concentration of 10 18 / cm 3 ) were placed in the quartz container shown in FIG. Vacuum sealed. At this time, in order to prevent a reaction between the vessel during crystal growth and GaAs, it is preferable to clean and clean the inside of the growth vessel together with the filling material before vacuum encapsulation.
After setting the growth vessel in a vertical Bridgman furnace, the temperature was raised according to the usual crystal growth method, and the seed crystal was heated at the upper end face 3 mm.
Melted back at After that, by controlling the temperature of the furnace, the solid-liquid interface was moved at a rate of 3 mm per hour under a temperature gradient of 10 ° C./mm. The extensive crystallization has ended.

得られたGaAs結晶は、全体に亘って双晶の発生が見ら
れず、切断および研磨加工によって製作したウェハー20
0枚から10枚毎に抜き取ってその特性評価を行なったと
ころ、その90%が面内平均値で700/cm2以下の転位密度
を持ち、極めて低結晶欠陥でありインゴット内での均質
性の高い高品質のものであった。
In the obtained GaAs crystal, no twinning was observed throughout, and the wafer 20 manufactured by cutting and polishing was used.
90% of the samples had a dislocation density of 700 / cm 2 or less as an in-plane average value, were extremely low in crystal defects, and had uniformity in the ingot. It was of high quality.

比較例 冷却ガスによる強制冷却を実施しない以外は、上記実
施例と同様にしてGaAs単結晶を成長させ、その品質を調
査した。
Comparative Example A GaAs single crystal was grown in the same manner as in the above example except that forced cooling with a cooling gas was not performed, and its quality was examined.

その結果、結晶成長初期段階での転位密度は面内平均
値で1300/cm2であり、実施例の場合と比較して若干多い
程度であったが、成長が長くなるにつれて、転位密度は
次第に増加し、種結晶から5cm,10cmの位置において夫々
3300/cm2,17700/cm2となり、品質の劣化が目立った。更
に、それ以降の部分では、結晶内部に結晶方位の異なる
サブグレインが発生し、成長につれて次第にその領域が
広がり、結晶全体が多結晶化していた。
As a result, the dislocation density at the initial stage of crystal growth was 1300 / cm 2 in the in-plane average value, which was slightly higher than that in the example, but as the growth lengthened, the dislocation density gradually increased. Increased at 5 cm and 10 cm from the seed crystal, respectively.
It was 3300 / cm 2 and 17700 / cm 2 , and the deterioration of quality was conspicuous. Further, in the subsequent portions, subgrains having different crystal orientations were generated inside the crystal, and the region gradually widened as the crystal was grown, and the entire crystal was polycrystallized.

[発明の効果] 以上述べた如く本発明によれば、種結晶中央下部から
強制冷却して結晶中央部からの放熱を促進させる構成を
採用することにより、直径75mm以上の比較的大型の化合
物半導体単結晶を欠陥の少ない高品質の状態で歩留りよ
く製造することができる様になった。
[Effects of the Invention] As described above, according to the present invention, a relatively large compound semiconductor having a diameter of 75 mm or more is employed by adopting a structure in which forced cooling is performed from the lower part of the seed crystal to promote heat radiation from the central part of the crystal. It has become possible to manufacture a single crystal with a high yield with few defects.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明を実施する為の装置構成例を示す概略説
明図、第2図は垂直ブリッジマン法の基本原理を説明す
る為の概略説明図、第3図は本発明で採用する石英ガラ
ス容器の構成例を示す概略説明図、第4図は石英ガラス
容器内にPBN製るつぼを装填した状態を示す概略説明
図、第5図(a)〜(d)は成長容器内の温度分布と冷
却ガス流量との関係の一例を示すグラフ、第6図は固液
界面平坦化に必要な冷却ガス流量の領域を示すグラフで
ある。 1……るつぼ、2,17……ヒーター 3……原料融液、4……結晶(育成結晶) 5……種結晶、6……コーン部 20……結晶成長用容器、21……加熱用電源
FIG. 1 is a schematic explanatory view showing an example of an apparatus configuration for carrying out the present invention, FIG. 2 is a schematic explanatory view for explaining the basic principle of the vertical Bridgman method, and FIG. 3 is quartz employed in the present invention. FIG. 4 is a schematic explanatory view showing a configuration example of a glass container, FIG. 4 is a schematic explanatory view showing a state in which a PBN crucible is loaded in a quartz glass container, and FIGS. 5 (a) to (d) are temperature distributions in the growth container. FIG. 6 is a graph showing an example of a relationship between the cooling gas flow rate and the cooling gas flow rate. FIG. 6 is a graph showing a cooling gas flow rate area required for flattening the solid-liquid interface. 1 crucible, 2,17 heater 3 raw material melt 4 crystal (grown crystal) 5 seed crystal 6 cone part 20 crystal growth container 21 heating Power supply

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】封管容器を用いて行なう垂直ブリッジマン
法によって化合物半導体単結晶を製造するに当たり、製
造すべき単結晶と同等の直径を有する種結晶を用いると
共に、該種結晶の中央下部に凹部を形成しておき、該凹
部からの放熱を促進させつつ操業を行なうことを特徴と
する化合物半導体単結晶の製造方法。
In producing a compound semiconductor single crystal by a vertical Bridgman method using a sealed vessel, a seed crystal having a diameter equal to that of the single crystal to be produced is used, and a seed crystal is formed at a lower center of the seed crystal. A method for producing a compound semiconductor single crystal, characterized in that a concave portion is formed, and operation is performed while promoting heat radiation from the concave portion.
JP18551590A 1990-07-12 1990-07-12 Method for manufacturing compound semiconductor single crystal Expired - Fee Related JP2704032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18551590A JP2704032B2 (en) 1990-07-12 1990-07-12 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18551590A JP2704032B2 (en) 1990-07-12 1990-07-12 Method for manufacturing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH0474788A JPH0474788A (en) 1992-03-10
JP2704032B2 true JP2704032B2 (en) 1998-01-26

Family

ID=16172138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18551590A Expired - Fee Related JP2704032B2 (en) 1990-07-12 1990-07-12 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2704032B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5372088A (en) * 1991-12-30 1994-12-13 At&T Bell Laboratories Crystal growth method and apparatus
US8137779B2 (en) * 2008-02-29 2012-03-20 Ykk Corporation Of America Line of sight hose cover
JP5234018B2 (en) * 2010-01-28 2013-07-10 住友電気工業株式会社 Single crystal growth vessel used in compound single crystal production method
WO2015080201A1 (en) 2013-11-29 2015-06-04 東レ株式会社 Multiple tubular woven structure

Also Published As

Publication number Publication date
JPH0474788A (en) 1992-03-10

Similar Documents

Publication Publication Date Title
EP0992618B1 (en) Method of manufacturing compound semiconductor single crystal
JP4830312B2 (en) Compound semiconductor single crystal and manufacturing method thereof
US7972439B2 (en) Method of growing single crystals from melt
JP2704032B2 (en) Method for manufacturing compound semiconductor single crystal
JP5370394B2 (en) Compound semiconductor single crystal substrate
JP3042097B2 (en) Apparatus and method for growing single crystal
JP2543449B2 (en) Crystal growth method and apparatus
JP7115592B1 (en) Single crystal manufacturing equipment
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JPH04187585A (en) Device of growing crystal
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JP2700145B2 (en) Method for manufacturing compound semiconductor single crystal
JP2013193942A (en) Single crystal manufacturing apparatus and method for manufacturing single crystal using the same
CN116163021A (en) Growth device and growth method of tellurium-zinc-cadmium crystal
JPH03193689A (en) Production of compound semiconductor crystal
JPH0341432B2 (en)
JPH10212192A (en) Method for growing bulk crystal
JP4207783B2 (en) Method for producing compound semiconductor single crystal
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
CN117026360A (en) Device and method for growing large-size low dislocation density GaSb monocrystal
JPH07165486A (en) Method for growing compound semiconductor single crystal in vertical container
JPH09315881A (en) Production of semiconductor crystal
JPH07206584A (en) Production of compound semiconductor single crystal
JPH07291788A (en) Production of compound semiconductor single crystal
JP2005200228A (en) Growth method for compound semiconductor single crystal

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20081003

LAPS Cancellation because of no payment of annual fees