JPH01212291A - Method and apparatus for growing crystal - Google Patents

Method and apparatus for growing crystal

Info

Publication number
JPH01212291A
JPH01212291A JP3285488A JP3285488A JPH01212291A JP H01212291 A JPH01212291 A JP H01212291A JP 3285488 A JP3285488 A JP 3285488A JP 3285488 A JP3285488 A JP 3285488A JP H01212291 A JPH01212291 A JP H01212291A
Authority
JP
Japan
Prior art keywords
growth
crucible
crystal
shape
growth interface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3285488A
Other languages
Japanese (ja)
Other versions
JP2649052B2 (en
Inventor
Keigo Hoshikawa
圭吾 干川
Hideo Nakanishi
秀男 中西
Hiroki Koda
拡樹 香田
Masahiro Sasaura
正弘 笹浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP63032854A priority Critical patent/JP2649052B2/en
Publication of JPH01212291A publication Critical patent/JPH01212291A/en
Application granted granted Critical
Publication of JP2649052B2 publication Critical patent/JP2649052B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To enable the control of a crystal growth speed (change in a growth boundary face position) and growth boundary face shape which are heretofore not controllable by executing computation and processing in accordance with the information on the temps. at plural points on the outside circumference of a crucible in crystal growth by a perpendicular Bridgman method. CONSTITUTION:The following constitution is adopted in the crystal growth method of growing the crystal 2 of the shape defined by the crucible 5 having a cylindrical shape or various shapes by starting the crystal growth from one end of the crucible 5 from the raw material melt or soln. prepd. by melting or synthesizing in the above- mentioned melt and gradually progressing the crystal growth in nearly the specified direction: The temps. at the specific plural points on the outside circumference of the crucible 5 are detected (thermocouples 111-115) and the temp. distribution in the crucible 5, the position of the growth boundary face and the position thereof are calculated and estimated (15, 16, 17) at every specified time in accordance with the temps. at the plural points. Both of the change in the growth boundary face position (growth speed) or the change in the growth boundary face shape or growth boundary face position and the growth boundary face shape are controlled (comparator 18, controller 19) in accordance with the results of such calculation and estimation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は金属、半導体あるいは酸化物などの単結晶育成
技術に関するもので、垂直ブリッジマン(あるいは垂直
温度勾配凝固法)tたは液体封止垂直ブリッジマン法な
どの名称で知られている原料融液を、この融液とは基本
的には濡れない材質で構成される容器、いわゆるるつぼ
内に作製した後、その融液を種子結晶を用いるか、ある
いは特別の方法によって特定の方位の揃った単結晶成長
を開始して、前記るつぼの下部から上部K(あるいは上
部から下部に)向かって徐々に固化すると共に、このる
つぼによって結晶形状を規定しながら単結晶を゛成長さ
せる結晶育成方法およびその育成装f!に関するもので
ある。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a technique for growing single crystals of metals, semiconductors, oxides, etc. A raw material melt, known under names such as the vertical Bridgman method, is prepared in a so-called crucible, which is basically a container made of an immovable material, and then the melt is used to seed crystals. The growth of a single crystal with a specific orientation is started using a special method or by a special method, and the crystal shape is gradually solidified from the bottom to the top K (or from the top to the bottom) of the crucible. A crystal growth method and its growth equipment for growing a single crystal under specified conditions f! It is related to.

以下、本発明に関して、代表的な化合物半導体の1つで
あるcaAm単結晶を液体封止垂直ブリッジマン法(あ
るいは液体封止垂直温度勾配凝固法)によって育成する
場合を例にとって詳述する。
Hereinafter, the present invention will be described in detail using an example in which a caAm single crystal, which is one of the typical compound semiconductors, is grown by the liquid-sealed vertical Bridgman method (or the liquid-sealed vertical temperature gradient solidification method).

〔従来の技術〕[Conventional technology]

第3図は、液体封止垂直プ替ツジマン法によるGaAa
単結晶育成を示す炉内の様子および結晶育成制御の概念
を示す模式図である。同図において、1は種子結晶、2
は成長したGaAm結晶、3はGa人8融液、4は液体
封止剤、5は円形の断面形状を有するるつぼ、6はるつ
ぼホルダー、7はこのホルダー6を支持するるつぼ軸、
8はこの軸7を介してそのるつぼ5を回転および上下移
動させるためのるつぼ駆動機構、9s + 9z + 
9s及び94は各々独立に制御可能な発熱体、10は気
密容器であり、21は発熱体91−94の電力およびる
つぼ50回転1位置などを変化するための制御装置であ
る。
Figure 3 shows GaAa obtained by the liquid-sealed vertical replacement Tudjiman method.
FIG. 2 is a schematic diagram showing the inside of a furnace showing single crystal growth and the concept of crystal growth control. In the same figure, 1 is a seed crystal, 2
3 is a grown GaAm crystal, 3 is a Ga melt, 4 is a liquid sealant, 5 is a crucible having a circular cross-sectional shape, 6 is a crucible holder, 7 is a crucible shaft that supports this holder 6,
8 is a crucible drive mechanism for rotating and vertically moving the crucible 5 via this shaft 7; 9s + 9z +
9s and 94 are heating elements that can be controlled independently, 10 is an airtight container, and 21 is a control device for changing the electric power of the heating elements 91-94 and the position of the crucible 50 rotations.

このような装置構成において、従来の結晶育成は、まず
、るつぼ5内に種子結晶1.原料となるGaAs多結晶
、固体状態の液体封止剤4等を充填し、つぎに1発熱体
、91〜94によシ高温に加熱して封止剤4の軟化、y
K料GaA@の融解を経て、種子付けにより単結晶成長
を開始して、徐々に成長界面12を上部に移動せしめ、
第3図に示すごとき結晶成長状態を実現するものとなっ
ている。
In such an apparatus configuration, in conventional crystal growth, seed crystals 1. GaAs polycrystal as a raw material, liquid sealant 4 in a solid state, etc. are filled, and then heated to a high temperature using a heating element 91 to 94 to soften the sealant 4.
After melting the K material GaA@, single crystal growth is started by seeding, and the growth interface 12 is gradually moved upward,
A crystal growth state as shown in FIG. 3 is realized.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述のごとき結晶育成方法における育成制御上の大きな
問題点として、結晶の成長速度つまシ成長界面12位置
の移動速度や成長界面形状の検出ができないため、その
制御が非常に困難なことがあげられる。
A major problem in controlling growth in the crystal growth method described above is that it is extremely difficult to control the growth rate of the crystal, the movement speed of the growth interface 12 position, and the shape of the growth interface cannot be detected. .

現在、GaAs結晶をはじめとする化合物半導体結晶の
製造法として実用になっている液体封止引き上げ(LE
C)法あるいは水平ブリッジマン(HB)法などの結晶
育成の場合、気密容器あるいは炉体に観測用窓を設け、
成長状況を観測するかあるいは成長結晶部の重量を検出
(LEC法の場合)して、これらの情報をもとに、炉内
の温度条件(主に温度分布)を、発熱体の電力あるいは
るつぼ位置(HB法の場合はボードの位置)などKより
制御して、所望の結晶成長速度を実現している。これに
対して、本発明に係わる上述のごとき垂直ブリッジマン
法のような結晶育成の場合、成長界面位置やその形状の
観測はもちろん成長した結晶部の重量の測定も原理的に
不可能なため、正確な成長速度の制御や界面形状の制御
は行なわれていなかった。すなわち、従来方法において
は、例えば第3図に模式的に示したように、予め測定し
た、各発熱体91〜94に加えた電力をパラメタにした
炉内温度分布(pt、pz)を基に、結晶成長の進行と
共に温度分布をp、からP!に変化させた場合に、融点
(Tm)の位置変化に対応して成長界面は121から1
2雪へ移動した(結晶が成長した)ものと推定するに過
ぎなかった。この場合、平均の結晶成長速度は、温度分
布がPIからpgへ移動した時間と成長界面121と成
長界面12鵞の距離から推定するにすぎず、精度良く成
長速度制御することはもちろん、実際の成長速度を知る
ことも十分でなかった。また、成長界面形状は結晶育成
終了後に結晶内部に発生している成長縞などの観測から
成長時の様子を推定していたに過ぎなかった。
Liquid encapsulation pulling (LE) is currently in practical use as a manufacturing method for compound semiconductor crystals including GaAs crystals.
In the case of crystal growth using the C) method or the horizontal Bridgman (HB) method, an observation window is provided in the airtight container or furnace body.
Observe the growth status or detect the weight of the growing crystal (in the case of the LEC method), and based on this information, adjust the temperature conditions in the furnace (mainly temperature distribution) by changing the power of the heating element or the crucible. A desired crystal growth rate is achieved by controlling the position (board position in the case of the HB method) using K. On the other hand, in the case of crystal growth such as the above-mentioned vertical Bridgman method according to the present invention, it is impossible in principle to observe the position and shape of the growth interface, as well as to measure the weight of the grown crystal part. However, precise control of growth rate and interface shape was not performed. That is, in the conventional method, for example, as schematically shown in FIG. , the temperature distribution changes from p to P! as the crystal growth progresses. , the growth interface changes from 121 to 1 in response to the change in the melting point (Tm) position.
It was only assumed that the crystals had moved to the snow (crystals had grown). In this case, the average crystal growth rate is only estimated from the time when the temperature distribution moves from PI to pg and the distance between the growth interface 121 and the growth interface 12. It was also not enough to know the growth rate. Furthermore, the shape of the growth interface was only estimated from observations of growth striations that appear inside the crystal after crystal growth.

ところで、結晶の成長速度は、成長界面における不純物
の偏析、成長界面形状、成長後の結晶部の熱履歴など結
晶特性に重大な影響を与えるため、これを精密に制御す
る技術は結晶育成においては必須である。また、結晶成
長時の成長界面形状は結晶全体を単結晶で育成する上で
の重要な要因であυ、さらに成長した結晶部での欠陥発
生等結晶品質を左右する要因であることが知られている
By the way, the crystal growth rate has a significant effect on crystal properties such as the segregation of impurities at the growth interface, the shape of the growth interface, and the thermal history of the crystal part after growth. Required. In addition, the shape of the growth interface during crystal growth is an important factor in growing the entire crystal as a single crystal, and is also known to be a factor that affects crystal quality, such as the occurrence of defects in the grown crystal part. ing.

しかるに、上述の従来方法においては、成長界面の位置
および形状が正確に測定できないため、その制御は行な
うことができないという重大な欠点を有していた。
However, the above-mentioned conventional method has a serious drawback in that the position and shape of the growth interface cannot be accurately measured and therefore cannot be controlled.

本発明は以上の点に鑑み、このような従来技術の欠点を
解決すべくなされたものであり、その目的は、垂直ブリ
ッジマン法のような結晶育成方法において、従来外部か
らの観測あるいは検出が困難なため、その制御ができな
かった。結晶の成長速度(成長界面位置の変化)や成長
界面形状の制御を可能にする結晶育成方法およびその育
成装置を提供することにある。
In view of the above points, the present invention has been made to solve the drawbacks of the prior art.The purpose of the present invention is to solve the problems of the prior art. It was difficult to control it. It is an object of the present invention to provide a crystal growth method and a growth apparatus that enable control of the crystal growth rate (change in the growth interface position) and the growth interface shape.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成するため、本発明は、るつぼ外周の特定
の複数筒、所の温度を検出し、この複数箇所の温度情報
をもとに、一定時間毎にるつぼ内部の温度分布さらに成
長界面の位置およびその形状を計算・推定して、この計
算会推定結果に基づいて、成長界面位置の変化(成長速
度)あるいは成長界面形状、または成長界面位置の変化
および成長界面形状の両方を制御するようにしたもので
ある。
In order to achieve the above object, the present invention detects the temperature of a plurality of specific tubes and places around the crucible, and based on the temperature information of the plurality of places, the temperature distribution inside the crucible and the growth interface are determined at regular intervals. The position and shape of the growth interface are calculated and estimated, and based on the calculation results, the change in the growth interface position (growth rate) or the growth interface shape, or both the change in the growth interface position and the growth interface shape are controlled. This is what I did.

〔作用〕[Effect]

したがって、本発明においては、予め設定した規定の精
度をもって、結晶の成長界面位置の成長速度および界面
形状の制御が可能になる。
Therefore, in the present invention, it is possible to control the growth rate of the crystal growth interface position and the interface shape with a predetermined precision.

〔実施例〕〔Example〕

次に、実施例を説明する前に本発明の概要を第1図を参
照して説明する。
Next, before describing embodiments, an overview of the present invention will be explained with reference to FIG. 1.

W、1図は本発明の詳細な説明する概念図である。FIG. 1 is a conceptual diagram illustrating the present invention in detail.

同図において、111.11意、1h、114及び11
gは本発明に係わるるつぼ外周の特定の複数箇所の温度
を検出するための5対の熱電対を各々示す。
In the same figure, 111.11, 1h, 114 and 11
g indicates five pairs of thermocouples for detecting temperatures at specific locations on the outer periphery of the crucible according to the present invention.

ここで、設置する熱電対の数および位置は、育成せんと
する結晶の種類、大きさ、形状、さらには要求される結
晶成長速度や界面形状の制御精度などによって種々異な
る。熱電対の数に関しては、原理的には2対以上(複数
)あればよいが、第1図に示すごとき形状の結晶育成で
は3対以上設置することが好ましい。さらに、形状が複
雑でかつ大形(大直径・長尺)の結晶のような場合は、
4対あるいは5対以上設置することが好ましい。熱電対
の数が多いほど、後で述べるるつぼ内温度分布の計算に
おいて、精度を向上させることができ、その結果、目的
とする成長速度および界面形状の制御精度向上に有効で
あることがわかっている。
Here, the number and position of the thermocouples to be installed vary depending on the type, size, and shape of the crystal to be grown, as well as the required crystal growth rate and control precision of the interface shape. Regarding the number of thermocouples, in principle, it is sufficient to have two or more pairs (plurality), but in the case of crystal growth having the shape shown in FIG. 1, it is preferable to install three or more pairs. Furthermore, in the case of crystals with complex shapes and large sizes (large diameter and long length),
It is preferable to install 4 pairs or 5 pairs or more. It has been found that the greater the number of thermocouples, the more accurate the calculation of the temperature distribution inside the crucible, which will be described later, can be improved, and as a result, it is effective in improving the control precision of the desired growth rate and interface shape. There is.

熱電対の設置場所に関しては、使用する熱電対の数や結
晶形状などを考慮して経験的に決定される。
The installation location of thermocouples is determined empirically, taking into consideration the number of thermocouples used, crystal shape, etc.

一般に第1図に示すように結晶形状が変化する近傍に設
置することにより良好な結果を得ている。
Generally, good results have been obtained by placing the crystal near the area where the crystal shape changes, as shown in FIG.

また、設置する熱電対は可能な限りるつぼ5に近接して
設置するのが好ましいが、結晶育成毎の設置位置の再現
性、炉体構成(ホットゾーン)の組み立て時、原料充填
時などの作業性を考慮して、るつぼホルダー内部の適切
な位置に設置すればよい。これら熱電対設置に関する他
の要件は、設置した複数の熱電対111〜1 isがい
づれもGaAs融。
In addition, it is preferable to install the thermocouple as close to the crucible 5 as possible, but the reproducibility of the installation position for each crystal growth, the time of assembling the furnace body configuration (hot zone), the time of charging raw materials, etc. It may be installed at an appropriate position inside the crucible holder, taking into account the nature of the crucible. Another requirement regarding the installation of these thermocouples is that the plurality of installed thermocouples 111 to 1 is all made of GaAs fusion.

液3あるいはGaAs結晶2を収納しているるつぼ5と
の相対位置を一定に保ちながら、回転あるいは上下移動
が可能なごとき構成となっていることである。すなわち
、これら熱電対111〜11sの出力接続線は、るつぼ
ホルダ−6下部からるつぼ軸7へ接続され、気密容器1
0の外部に取り出され、スリップリング13のごとき機
構を介して温度針測手R14へ接続される。次に、温度
分布計算手段15は、温度計測手段14において計測さ
れた熱電対設置位置各点の温度データに加えて、予め投
入されている、るつぼ5の構造、るつぼ内の物質の形状
および熱的物理定数、さらにるつぼホルダー6の形状お
よび熱的物理定数などの情報を基に、定められた手法に
よって、一定の時間間隔で、るつぼ内の温度分布を計算
すると共に、これらの情報t−信号として出力する機能
を有するものである。さらに、温度分布表示手段16は
、前記温度分布計算手段15の計算結果を基にるつは内
の温度分布を等温線などの画像処理手段によって表示す
ると共に、育成せんとする物質(GaAs)の融点に関
する情報などから成長界面の位置および形状を併せて表
示するとともに、この情報を電気信号として出力する機
能を有するものである。
The structure is such that it can be rotated or moved up and down while maintaining a constant relative position to the crucible 5 containing the liquid 3 or the GaAs crystal 2. That is, the output connection lines of these thermocouples 111 to 11s are connected from the lower part of the crucible holder 6 to the crucible shaft 7, and are connected to the crucible shaft 7 of the airtight container 1.
0 and connected to the temperature needle R14 via a mechanism such as a slip ring 13. Next, the temperature distribution calculation means 15 calculates, in addition to the temperature data at each thermocouple installation position measured by the temperature measurement means 14, the structure of the crucible 5, the shape of the substance in the crucible, and the heat Based on information such as physical physical constants, the shape of the crucible holder 6, and thermal physical constants, the temperature distribution inside the crucible is calculated at regular time intervals using a predetermined method, and the t-signal of this information is also calculated. It has the function of outputting as . Furthermore, the temperature distribution display means 16 displays the temperature distribution inside the horn using image processing means such as isotherms based on the calculation results of the temperature distribution calculation means 15, and also displays the temperature distribution of the material (GaAs) to be grown. It has the function of displaying the position and shape of the growth interface based on information regarding the melting point, etc., and outputting this information as an electrical signal.

一方、プログラム信号出力手段1Tは、予め希望する成
長界面移動速度、ま九は成長界面移動速度および成長界
面形状の両方を想定して行った成長界面位置及び形状の
プqグラム信号を時間と共に出力する手段を有するもの
である。ここで出力された信号の一部は温度分布表示手
段16へ伝達されプログラム状態表示のために処理され
るとともに、他の一部は比較器18へ伝達される。この
比較器18は、温度分布計算手段15の出力信号とプロ
グラム信号出力手段17の出力信号とを比較して、その
偏差信号を出力する機能を有し、この信号は制御器19
へ伝達される。ここで、制御器19は、るつぼ5内の温
度および温度分布を制御する手段、すなわち加熱手段で
ある発熱体91〜94の電力、るつは5の発熱体に対す
る相対位置、るつぼ内融液の温度分布制御に有効なこと
が知られている磁界印加手段20によって発生する印加
磁界の強さなどを制御する機能を有している。
On the other hand, the program signal output means 1T outputs, over time, a program qgram signal of the growth interface position and shape, which is performed by assuming a desired growth interface movement speed in advance, as well as the growth interface movement speed and the growth interface shape. It has the means to do so. A part of the output signal is transmitted to the temperature distribution display means 16 and processed for displaying the program status, and the other part is transmitted to the comparator 18. This comparator 18 has a function of comparing the output signal of the temperature distribution calculation means 15 and the output signal of the program signal output means 17 and outputting the difference signal, and this signal is sent to the controller 19.
transmitted to. Here, the controller 19 controls means for controlling the temperature and temperature distribution in the crucible 5, that is, the electric power of the heating elements 91 to 94 which are heating means, the relative position of the crucible 5 with respect to the heating elements, and the temperature of the melt in the crucible. It has a function of controlling the strength of the applied magnetic field generated by the magnetic field applying means 20, which is known to be effective in temperature distribution control.

その具体的制御方法の基本は、比較器18から出力する
偏差信号と、予め内部に記憶されている各発熱体9!〜
94の制御電力わるいはるつぼ位置とるつぼ内温度分布
あるいは印加磁界の強さとるつば内温度分布等に関する
情報を基に、各発熱体91〜94の電力めるiはるつぼ
50位置、印加V&界の強さ等の1つを単独に、または
2つ以上を同時に適正な値に変化させ、比較器18から
の偏差信号を常に零に近付けるように行うものとなって
いる。
The basics of the specific control method are the deviation signal output from the comparator 18 and each heating element 9! ~
Based on the information regarding the crucible position and temperature distribution in the crucible or the strength of the applied magnetic field and the temperature distribution in the crucible, etc., the control power of each heating element 91 to 94 is determined based on the crucible 50 position, applied V & field. One of the strengths or the like is changed to an appropriate value either alone or at the same time, so that the deviation signal from the comparator 18 always approaches zero.

このように、本発明によれば、るつぼ外周の複数箇所の
温度情報をもとに、一定時間毎にるつぼ内部の温度分布
、成長界面の位置およびその形状を計算・推定し、その
結果に基づいて成長界面位置の変化、成長界面形状を制
御することによ〕、予め設定した規定の精度をもって、
成長界面位置の成長速度およびその界面形状の制御が実
現できたものであシ、これについて以下の実施例によっ
て詳細に説明する。
As described above, according to the present invention, the temperature distribution inside the crucible, the position and shape of the growth interface are calculated and estimated at regular intervals based on temperature information at multiple locations around the crucible periphery, and based on the results. By controlling the change in the growth interface position and the growth interface shape], with a preset specified accuracy,
Control of the growth rate of the growth interface position and the shape of the interface was realized, and this will be explained in detail with reference to the following examples.

実施例1 第4図は本発明の一実施例による結晶育成炉および制御
装置を示す模式図であ夛、図中、同一符号は同一または
相当部分を示している。
Embodiment 1 FIG. 4 is a schematic diagram showing a crystal growth furnace and a control device according to an embodiment of the present invention. In the figures, the same reference numerals indicate the same or corresponding parts.

@1図において、直径80mのpBN製るつぼ5に約2
000gの01人鳳融液2を作製した。液体封止剤4に
は約200EOB意Osを用いた。るつぼホルダー6は
高純度グラファイトである。4個の発熱体り、9t、L
及び94もまた高純度のグラファイト抵抗体で構成し、
外部からの印加電力によシ発熱を制御した。結晶育成時
の炉内雰囲気は不活性人r約5気圧とした。温度検出に
用いた5対の熱電対111.1’h 、113.114
及び11sはいづれも白金−白金ロジュクム系のものを
用いた。検出した熱電対出力はるつぼ軸7下部のスリッ
プリング13を通して気密容器10外部に取シ出し、熱
電対出力から実際の温度への変換手段をそなえる温度計
測手段14へ入力した。つぎに、るつぼ周辺各部(5点
)の温度情報に変換した信号は温度分布計算手R15に
入力した。本実施例の温度分布計算手915は、パーソ
ナルコンピュータ(例えばPC−9801)と有限要素
法を適用した温度分布計算プログラムからなるシステム
である。
In Figure @1, approximately 2
000 g of 01 Ninho Melt 2 was prepared. Approximately 200 EOB Os was used as the liquid sealant 4. The crucible holder 6 is made of high purity graphite. 4 heating elements, 9t, L
and 94 are also composed of high-purity graphite resistors,
Heat generation was controlled by externally applied power. The atmosphere in the furnace during crystal growth was set to about 5 atmospheres of inert gas. Five pairs of thermocouples used for temperature detection 111.1'h, 113.114
and 11s were all based on platinum-platinum rhojucum. The detected thermocouple output was taken out to the outside of the airtight container 10 through a slip ring 13 at the bottom of the crucible shaft 7, and inputted to a temperature measuring means 14 having a means for converting the thermocouple output into an actual temperature. Next, the signal converted into temperature information of each part (5 points) around the crucible was input to the temperature distribution calculator R15. The temperature distribution calculator 915 of this embodiment is a system consisting of a personal computer (for example, PC-9801) and a temperature distribution calculation program to which the finite element method is applied.

2すなわち、本システムは、るつぼ5およびるつぼホル
ダー6の形状・材質、るつは内GIAI融液3の量と物
理定数、液体封止剤(nz Os) 4の量と物理定数
などを基に決定される境界条件をもとに構成してなるシ
ミエレーシ冒ンシステムである。このシステムは、るつ
ぼ周辺(5点)の温度情報を入力することによシ、4分
間に1回るつぼ内部の温度分布を計算するごとく構成し
た。
2. In other words, this system is based on the shape and material of the crucible 5 and crucible holder 6, the amount and physical constants of the GIAI melt 3 in the crucible, the amount and physical constants of the liquid sealant (NZOs) 4, etc. This is a simulation system constructed based on determined boundary conditions. This system was configured to calculate the temperature distribution inside the crucible once every 4 minutes by inputting temperature information around the crucible (5 points).

さらに、計算した温度分布の情報は温度分布表足手RI
Bへ伝達した。ここでは結晶の成長界面12に相当する
融点の等温線を境界に1融液および結晶中の温度分布を
一定間隔(10℃)の等温線でTVモニタに表示し、成
長界面12の形状および位置、さらにるつぼ5内金体の
温度分布を把握可能にした。
Furthermore, information on the calculated temperature distribution can be found in the temperature distribution table foot RI
It was communicated to B. Here, the temperature distribution in one melt and the crystal is displayed on a TV monitor with isothermal lines at regular intervals (10°C), with the isotherm line of the melting point corresponding to the growth interface 12 of the crystal as the boundary, and the shape and position of the growth interface 12 are shown. Furthermore, the temperature distribution of the metal body inside the crucible 5 can be grasped.

つぎに、本実施例における結晶の成長速度すなわち成長
界面12の移動速度の制御(本実施例では5 wa /
 hで一定とした)は以下のように行った。
Next, control of the crystal growth rate in this example, that is, the moving speed of the growth interface 12 (in this example, 5 wa /
h) was carried out as follows.

プログラム信号出力子917よシ、予めプログラムして
なる経過時間に対する成長界面12(界面形状は近似的
に平面とした)の位置変化の信号と、温度分布計算手9
15において計算した成長界面12の位置(本実施例で
はるりは中心における融点位置を近似的に成長界面の位
置として認識した)変化の信号とを比較器18において
比較し、この偏差信号を制御器18に伝達した。制御器
111においては、予め決定してなる、るつぼ位置制御
を主、4個の発熱体91〜94の加熱電力制御を補助と
する制御アルゴリズムに従って、上記偏差信号を一定の
範囲に制御し、結果として結晶の成長速度を制御した。
The program signal output terminal 917 outputs a signal of the position change of the growth interface 12 (the interface shape is approximately a plane) with respect to the elapsed time, which is programmed in advance, and a temperature distribution calculation circuit 9
The comparator 18 compares the signal of the change in the position of the growth interface 12 calculated in step 15 (in this example, the melting point position at the center was approximately recognized as the position of the growth interface), and this deviation signal is sent to the controller. This was communicated to 18. The controller 111 controls the deviation signal within a certain range according to a predetermined control algorithm that mainly controls the crucible position and assists in controlling the heating power of the four heating elements 91 to 94. The growth rate of the crystal was controlled as follows.

以上のようKして育成したGaAg結晶は、使用したp
BNるつぼ5の形状によって定まる、定径部の直径80
w1長さ約50■、成長方位<100>の単結晶であっ
た0本実施例における成長速度の確認は、結晶成長時に
一定時間(2時間)間隔でるつぼ50回転速度を通常の
2OrpmからlrpmK減少(約5分間)させる制御
プロセスを導入すると共に、これKよって育成結晶に発
生する成長縞の間隔をX線トポグラフによって観察した
。その結果、上記るつは回転の変化によって発生した成
長縞の間隔は10±0.2圏の範Hに制御されているこ
とが確認でき、本実施例での設定成長速度5Illl/
hで結晶成長が行われていたことが確認された。なお、
本実施例における計算した温度分布と実際の融液中およ
び結晶中の温度分布との対応は、結晶育成のプロセスと
は別に1温度測定用の熱電対を用いた融液および成長し
た結晶中の温度分布測定実験と計算結果との対応によっ
て行い、本計算システムの精度の向上を図っていること
は述べるまでもない。
The GaAg crystal grown by K as described above was
The diameter of the constant diameter part is determined by the shape of the BN crucible 5, 80
The growth rate in this example was confirmed by changing the rotation speed of the crucible from the usual 2Orpm to lrpmK at fixed time (2 hours) intervals during crystal growth. A control process was introduced to reduce K (for about 5 minutes), and the interval of growth stripes generated in the grown crystal due to this was observed using an X-ray topography. As a result, it was confirmed that the interval of the growth stripes caused by the change in the rotation of the above-mentioned crucible was controlled within the range H of 10±0.2, and the growth rate set in this example was 5Ill//.
It was confirmed that crystal growth was occurring at 1 h. In addition,
The correspondence between the calculated temperature distribution in this example and the actual temperature distribution in the melt and in the crystal is as follows: Needless to say, this is done by correlating the temperature distribution measurement experiment with the calculation results, in order to improve the accuracy of this calculation system.

実施例2 本実施例は、上記実施例1で行った成長速度の制御に加
えて成長界面12の形状の制御をも可能にすることを目
的に行っている。本実施例に係わる第2図において、9
mは追加した第5番目の発熱体であシ、成長界面12近
傍の精密な温度分布制御を行うためのものである。また
、使用したpBNるつぼ5は直径80■であル、In不
純物を1020atonus/crn 添加したGaA
s融液3は約2000g1液体封止剤4として用いるB
I Osは約200gである。炉内雰囲気は5気圧のム
rとした。熱電対111〜114による温度検出、温度
分布計算システムは実施例1と同様である。
Example 2 This example was carried out for the purpose of making it possible to control the shape of the growth interface 12 in addition to controlling the growth rate performed in Example 1 above. In FIG. 2 relating to this embodiment, 9
The fifth heating element m is added and is used to precisely control the temperature distribution near the growth interface 12. In addition, the pBN crucible 5 used had a diameter of 80 cm, and the GaA crucible doped with In impurities at 1020 atoms/crn.
s Melt 3 is about 2000 g 1 B used as liquid sealant 4
I Os is approximately 200 g. The atmosphere inside the furnace was set to 5 atmospheres. The temperature detection using thermocouples 111 to 114 and the temperature distribution calculation system are the same as in the first embodiment.

つぎに、本実施例で行った、成長速度および成長界面形
状の制御について説明する。プログラム信号出力手段1
Tにおいては、経過時間に対する成長界面12(界面形
状は平面ではない)の中心の位置変化および、成長界面
の中心および0.8r(r:結晶の半径)の位置をもと
に球面近似した成長界面形状の変化がプログラムしであ
る。このプログラム出力と温度分布計算手段15におい
て計算した成長界面の位置(゛るつぼ中心における融点
位置を成長界面の位置とgaした)と成長界面形状(る
つぼ中心の融点位置および0.8rの融点装置をもとに
球面近似し□た形状)変化の信号とを比較器18におい
て比較し、これらの偏差信号を制御器19に伝達した。
Next, the control of the growth rate and growth interface shape performed in this example will be explained. Program signal output means 1
At T, the growth is approximated to a spherical surface based on the change in the position of the center of the growth interface 12 (the interface shape is not a plane) over the elapsed time, and the position of the center of the growth interface and 0.8r (r: radius of the crystal). Changes in the interface shape are programmable. This program output, the position of the growth interface calculated by the temperature distribution calculation means 15 (the melting point position at the center of the crucible was set as the position of the growth interface), and the shape of the growth interface (the melting point position at the center of the crucible and the melting point device of 0.8r) A comparator 18 compares the signals of the changes in the shape (which was originally approximated to a spherical surface), and transmits these deviation signals to the controller 19.

本実施例における制御器19による、成長速度(成長界
面位置の変化)および成長界面−形状のi御は、以下の
制御アルゴリズムを基本として実行した。
In this example, the growth rate (change in the growth interface position) and the growth interface shape were controlled by the controller 19 based on the following control algorithm.

■ 発熱体91,9鵞、”’9 s p 94の加熱電
圧は一定として炉内の基本的な温度分布を保持する。
(2) The heating voltage of the heating elements 91, 9 and 94 is kept constant to maintain the basic temperature distribution in the furnace.

■ 成長界面の位置が発熱体95のほぼ中心位置になる
ように予めプログラムされた成長速度に従ってるつぼ位
置を移動する。
(2) The position of the crucible is moved according to a preprogrammed growth rate so that the growth interface is approximately at the center of the heating element 95.

■ 成長界面形状の制御は、発熱体9sの加熱電力を主
制御手段、印加磁界の強さを補助制御手段として行う。
(2) The growth interface shape is controlled by using the heating power of the heating element 9s as the main control means and by using the strength of the applied magnetic field as an auxiliary control means.

以上のごとくして育成し九〇aAa結晶は、実施例1の
場合と同様、直径80諺、定径部の長さ約501m、<
 100 >成長方位の単結晶であった。本実施例で主
として制御対象とした成長界面形状は、X線トポグラフ
によって添加したInO僅かな濃度ム2を成長縞として
観測し、狙いとした融液側に向かって凸界面であること
を確認した。
As in the case of Example 1, the 90aAa crystal grown in the above manner had a diameter of 80m, a length of the constant diameter part of about 501m, and <
It was a single crystal with a growth orientation of 100>. The shape of the growth interface, which was mainly controlled in this example, was confirmed to be a convex interface toward the targeted melt side by observing the small concentration of InO added as growth stripes using an X-ray topography. .

なお、上述した本発明の実施例では、代表的な化合物半
導体であるGaAg結晶を液体封止垂直ブリッジマン法
(あるいは液体封止温度勾配凝固法)によって育成する
場合を例にとって述べたが、本発明の思想は、結晶に関
してはGL人S結晶に留まらすに他の半導体結晶、金属
結晶さらに酸化物結晶などにも沼川できる。また、結晶
成長方法!7C−しても、通常の垂直ブリッジマン法、
−水平プリンラマン法など、一般に成長状態の観察が困
曙な結晶育成方法に適用して大きな効果が得られること
は言うまでもない。
In the above-described embodiments of the present invention, the case where a GaAg crystal, which is a typical compound semiconductor, is grown by the liquid-sealed vertical Bridgman method (or the liquid-sealed temperature gradient solidification method) was described as an example. Regarding crystals, the idea of the invention is not limited to GL and S crystals, but can also be applied to other semiconductor crystals, metal crystals, and even oxide crystals. Also, how to grow crystals! 7C- Even if the normal vertical Bridgman method,
- It goes without saying that great effects can be obtained when applied to crystal growth methods where observation of the growth state is generally difficult, such as the horizontal purine Raman method.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の結晶育成方法および育成
装置は、従来では不可能であった成長界面位置及び形状
を、測定した温度分布情報をもとに計算機シミュレーシ
ョン手法によって推定すると共に、その制御を可能にし
たものである。これによシ、結晶育成では成長速度や成
長界面形状に関係する単結晶化率を大幅に向1させるこ
とができる。また、結晶の品質面では成長速度の制御に
よシ、添加不純物(Inなど)の成長方向における分布
の均一化ができ、転位の低減・制御が容易になる。さら
に、成長後の結晶中の温度分布の推定・制御が可能とな
り、熱応力の低減・制御による転位発生の抑制ができる
。また、結晶の熱履歴の推定・制御による結晶中の点欠
陥の制御にも有効な情報を得ることが可能になるなど多
大の効果が認められた。
As explained above, the crystal growth method and growth apparatus of the present invention estimate the position and shape of the growth interface, which was impossible in the past, using a computer simulation method based on the measured temperature distribution information, and also control it. This is what made it possible. As a result, in crystal growth, the single crystallization rate, which is related to the growth rate and the shape of the growth interface, can be significantly improved. Furthermore, in terms of crystal quality, by controlling the growth rate, the distribution of added impurities (In, etc.) in the growth direction can be made uniform, and dislocations can be easily reduced and controlled. Furthermore, it becomes possible to estimate and control the temperature distribution in the crystal after growth, and it is possible to suppress the generation of dislocations by reducing and controlling thermal stress. In addition, significant effects were recognized, including the ability to obtain information useful for controlling point defects in crystals by estimating and controlling the thermal history of crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例による結晶育成炉および制御
装置を示す模式図、第2図は本発明の他の実施例を示す
結晶育成炉の模式図、第4図は従来の液体封止垂直ブリ
ッジマン法を用いた結晶育成装置および育成制御の概念
を示す模式図である。 1・・・・種子結晶、2・・・・Ga人人語結晶3・・
・・G&人8融液、4・・・・液体封止剤、5・・・・
るつぼ、6@・・拳るりぼホルダー、T・・・・るつぼ
軸、8・・−・・るつぼ駆動機構、91〜9.・・・・
発熱体、10・・・・気密容器、111〜114・・・
曖熱電対、12−・・・成長界面、13・・・・スリッ
プリング、14・・・・温度計測手段、15・・・・温
度分布計算手段、16・・・・温度分布表示手段、1T
・・・・プログラム信号出力手段、18・・・・比較器
、19・・・・制御器、20・・・・磁界印加手段。 特許出願人  日本Cat話株式会社
FIG. 1 is a schematic diagram showing a crystal growth furnace and a control device according to one embodiment of the present invention, FIG. 2 is a schematic diagram of a crystal growth furnace according to another embodiment of the present invention, and FIG. 1 is a schematic diagram showing the concept of a crystal growth apparatus and growth control using the static vertical Bridgman method. 1...Seed crystal, 2...Ga human language crystal 3...
・・G&人8 Melt liquid, 4・・Liquid sealant, 5・・・・
Crucible, 6@... Fist ruribo holder, T... Crucible shaft, 8... Crucible drive mechanism, 91-9.・・・・・・
Heating element, 10...Airtight container, 111-114...
Fuzzy thermocouple, 12--Growth interface, 13--Slip ring, 14--Temperature measurement means, 15--Temperature distribution calculation means, 16--Temperature distribution display means, 1T
... Program signal output means, 18 ... Comparator, 19 ... Controller, 20 ... Magnetic field application means. Patent applicant Nippon Cat Story Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] (1)円筒状あるいは各種形状を有するるつぼ内に融解
または合成して作製した原料融液あるいは溶液を、この
るつぼ内の一端から結晶成長を開始して、ほぼ一定の方
向に徐々に結晶成長を進行せしめ、前記るつぼによつて
規定される形状の結晶を成長させる結晶育成方法におい
て、前記るつぼ外周の特定の複数箇所の温度を検出し、
この複数箇所の温度情報をもとに、一定時間毎にるつぼ
内部の温度分布、成長界面の位置およびその形状を計算
・推定して、この計算・推定結果に基づいて、成長界面
位置の変化(成長速度)あるいは成長界面形状、または
成長界面位置の変化および成長界面形状の両方を制御す
ることを特徴とする結晶育成方法。
(1) Start crystal growth from one end of the melted or synthesized raw material melt or solution in a crucible having a cylindrical shape or various shapes, and gradually grow the crystal in a substantially constant direction. In the crystal growth method for growing a crystal in a shape defined by the crucible, detecting the temperature at a plurality of specific locations around the crucible;
Based on the temperature information at multiple locations, the temperature distribution inside the crucible, the position of the growth interface, and its shape are calculated and estimated at regular intervals, and based on the calculation and estimation results, changes in the growth interface position ( A crystal growth method characterized by controlling both the growth rate) or the growth interface shape, or both the change in the growth interface position and the growth interface shape.
(2)請求項1記載の結晶育成方法を実施する装置にお
いて、るつぼ外周の特定の複数箇所の温度を検出すると
共に、これら温度信号を外部に取り出し出力する手段と
、これら温度出力信号を基にるつぼ内部の温度分布およ
び結晶成長界面の位置と形状を近似計算し出力する手段
と、予めプログラム化してなる時間経過に対する成長界
面位置及びその形状の変化を出力する手段と、前記近似
計算出力とプログラム出力とを比較しその偏差情報を所
定の信号レベルで出力する手段と、この比較・偏差情報
を基にこの偏差を規定の値以下にならしめるごとく成長
界面位置またはその形状を、あるいはこれらの両方を制
御する手段とを有することを特徴とする結晶育成装置。
(2) In an apparatus for carrying out the crystal growth method according to claim 1, there is provided a means for detecting the temperature at a plurality of specific locations on the outer periphery of the crucible, and for extracting and outputting these temperature signals to the outside; means for approximating and outputting the temperature distribution inside the crucible and the position and shape of the crystal growth interface; means for outputting the position of the growth interface and changes in its shape over time which are programmed in advance; and the output of the approximate calculation and the program. a means for comparing the output and outputting the deviation information at a predetermined signal level; and a means for adjusting the growth interface position or its shape so as to reduce the deviation to a predetermined value or less based on this comparison/deviation information, or both of these. A crystal growth apparatus characterized by having a means for controlling.
JP63032854A 1988-02-17 1988-02-17 Crystal growing method and crystal growing device Expired - Lifetime JP2649052B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63032854A JP2649052B2 (en) 1988-02-17 1988-02-17 Crystal growing method and crystal growing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63032854A JP2649052B2 (en) 1988-02-17 1988-02-17 Crystal growing method and crystal growing device

Publications (2)

Publication Number Publication Date
JPH01212291A true JPH01212291A (en) 1989-08-25
JP2649052B2 JP2649052B2 (en) 1997-09-03

Family

ID=12370425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63032854A Expired - Lifetime JP2649052B2 (en) 1988-02-17 1988-02-17 Crystal growing method and crystal growing device

Country Status (1)

Country Link
JP (1) JP2649052B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139877A (en) * 1991-11-19 1993-06-08 Nikko Kyodo Co Ltd Production of compound semiconductor single crystal
US5603763A (en) * 1994-02-21 1997-02-18 Japan Energy Corporation Method for growing single crystal
JP2002211998A (en) * 2001-01-15 2002-07-31 Mitsubishi Materials Corp Method of producing langasite single crystal and langasite single crystal
JP2013134177A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible
CN113174626A (en) * 2021-04-25 2021-07-27 合肥庞碲新材料科技有限公司 Method and device for growing tellurium-zinc-cadmium single crystal

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101311332B (en) * 2008-04-10 2010-06-02 四川大学 Crystal region temperature gradient regulator and Bridgman-Stockbarge method single crystal growth device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148389A (en) * 1985-12-23 1987-07-02 Nippon Mining Co Ltd Method for growing single crystal
JPS63319286A (en) * 1987-06-22 1988-12-27 Nippon Mining Co Ltd Method for growing single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62148389A (en) * 1985-12-23 1987-07-02 Nippon Mining Co Ltd Method for growing single crystal
JPS63319286A (en) * 1987-06-22 1988-12-27 Nippon Mining Co Ltd Method for growing single crystal

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05139877A (en) * 1991-11-19 1993-06-08 Nikko Kyodo Co Ltd Production of compound semiconductor single crystal
US5603763A (en) * 1994-02-21 1997-02-18 Japan Energy Corporation Method for growing single crystal
JP2002211998A (en) * 2001-01-15 2002-07-31 Mitsubishi Materials Corp Method of producing langasite single crystal and langasite single crystal
JP2013134177A (en) * 2011-12-27 2013-07-08 Japan Siper Quarts Corp Method for measuring three-dimensional shape of silica glass crucible
CN113174626A (en) * 2021-04-25 2021-07-27 合肥庞碲新材料科技有限公司 Method and device for growing tellurium-zinc-cadmium single crystal

Also Published As

Publication number Publication date
JP2649052B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
Chani et al. Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique
EP0748884B1 (en) Process for producing polycrystalline semiconductors
JPH01212291A (en) Method and apparatus for growing crystal
JP3109950B2 (en) Method for growing semiconductor single crystal
JP3521070B2 (en) Fibrous crystal production equipment
JP2543449B2 (en) Crystal growth method and apparatus
JP3991400B2 (en) Single crystal growth method and apparatus
JPS62148389A (en) Method for growing single crystal
JP3125313B2 (en) Single crystal growth method
JP2717175B2 (en) Single crystal growing method and apparatus
JPH09315887A (en) Production of single crystal and device therefor
JPH0940492A (en) Production of single crystal and apparatus for production therefor
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JP2943419B2 (en) Single crystal growth method
JPS59227797A (en) Method for pulling up single crystal
JPH07291787A (en) Production of compound semiconductor single crystal
JPH111388A (en) Growth of single crystal and apparatus therefor
JPS6154760B2 (en)
JPH0329035B2 (en)
JPH0380180A (en) Device for producing single crystal
JPS6360190A (en) Device for pulling up single crystal
JPS63319286A (en) Method for growing single crystal
JPH07513B2 (en) Single crystal growth method
JPS6345200A (en) Production of single crystal of iii-v compound semiconductor
JPH061689A (en) Method for growing single crystal

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080516

Year of fee payment: 11