JPS6345200A - Production of single crystal of iii-v compound semiconductor - Google Patents

Production of single crystal of iii-v compound semiconductor

Info

Publication number
JPS6345200A
JPS6345200A JP18525786A JP18525786A JPS6345200A JP S6345200 A JPS6345200 A JP S6345200A JP 18525786 A JP18525786 A JP 18525786A JP 18525786 A JP18525786 A JP 18525786A JP S6345200 A JPS6345200 A JP S6345200A
Authority
JP
Japan
Prior art keywords
amount
crystal
per unit
unit time
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18525786A
Other languages
Japanese (ja)
Inventor
Tatsuya Tanabe
達也 田辺
Hiroyuki Hara
原 広之
Masamichi Yokogawa
横川 正道
Norio Ogata
小片 教男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP18525786A priority Critical patent/JPS6345200A/en
Publication of JPS6345200A publication Critical patent/JPS6345200A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To produce single crystal in a desired shape automatically and in good reproducibility, by adding correction amounts to a changed amount of measured weight per unit time of crystal growth to give a control amount and regulating heater temperature by using a reference change amount of weight as a set amount. CONSTITUTION:In liquid-encapsulated Czochralski method wherein semiconductor single crystal 6 is pulled up through a liquid encapsulating agent 2 such as B2O3, etc., from raw material melt 3 of III-V compound such as GaAs, etc., in a crucible 1, weight of the single crystal 6 is continuously detected by a weight sensor 7. To the obtained changed amounts DW are added correction amounts by buoyancy of the liquid encapsulating agent 2, reverse response, surface tension or meniscus of the melt 3 at real time in a correction amount calculator 11 to give an effective weight change amount DWC per unit time. This amount is used as a control amount, a reference weight change amount Dwref per unit time corresponding to the aimed crystal shape based on practical crystal length Z is regarded as a set amount and both are compared by a divided difference device 16. A change amount Tp of heater temperature per unit time is regulated by a regulator 17, a temperature program 18, a temperature regulator 19, etc., based on the deviation amount of the divided difference device.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は液体封止型チョクラルスキー法によるm−v族
化合物半導体単結晶全自動形状シ制御方法により製造す
る方法に関するものである。 〔従来の技術〕 GaAg 、  InP 、  GaP  などのat
−V族化合物半導体単結晶の製造方法の1つに、液体封
止型チョクラルスキー法(LKC法)がある。これはB
、03などの低融点のガラス材をGaAs原料融液の封
止剤として用い、さらに高圧下で化合物の分解を抑制し
ながら、形成した化合物の融液(種結晶をつけこみ回転
させながら引上げて円柱状の化合物単結晶全成長させる
ものである。 しかし、この場合、結晶成長が自由空間内であり、しか
も液体封止剤の存在、及び高圧ガスの熱対流により、そ
の温度分布の制御が困難でちるために結晶の形状?制御
することが非常に踊しいという問題がちる。 結晶の形状?制御する方法には、コラクル方式(例:特
開昭57−200286号公報)、リング方式(列:特
開昭58−41796号公報)などとともに重量方式(
列:特開昭58−145692号公報、特開昭59−1
84796号公報等)があり、液体封止型チョクラルス
キー法結晶成長では一役的に重量法が用いられている。 この方法は成長結晶の重量?検出してその単位時間当り
の変化量より結晶の径を演算し、一方目標結晶径に基づ
く重量変化量を求め、その偏差量に従って結晶原料融液
を加熱するヒーターの温度を調節することで結晶径の制
御2行なうものである。 〔発明が解決しようとする問題点〕 しかし、液体封止型チョクラルスキー法においては、重
量センサーで検出された結晶重量は、。 前記液体封止剤による浮力及び融液の表面張力の影響を
受けるために実際に固化したえ晶型】つ値よりも小さい
値となり、さらをてこの重量に対する単位時間当りの重
量変化量自体を制御量とすると、この値は真の重量変化
量とは大きく異ってきて、結果として、全く目標の結晶
形状とは異った形状に制御してしまうという問題点があ
った。また■−v族化合物半導体特有の現象として結晶
径が急激に変動した場合に逆応答と呼ばれる現象が生じ
る。すなわち、固体の比重づ:液体の比重より小さいゆ
えに、結晶径の増大に対し、重量変化量が減少し径の減
少)(対しては重量変化量が増加する。この現象のため
2ζ検出された重量変化量を用いて結晶径を制御すると
、急激な径変MJK対しては逆対応の制御2行うこと(
でなり、結果的に径の発碌現象を生じてしまい、直胴部
で一定の径を持った所望の形状を得るのは困難であった
。さらに、従来の形状制御方法のように結晶原料融液を
加熱するヒーターの温度自体を制御すると、原料融液温
度を急変させてしまうという場合が生じ、急な径変動の
原因となり、このために前記逆応答現象を生じやすくな
ってし遣うという問題点があった。 本発明は、上記開題点?解消し、所望の形状をし念単結
晶を自動的に、しかも、再現性よく製造する方法を提供
しようとするものである。 〔問題点?解決する手段〕 本発明は液体封止型チョクラルスキー法にょるm−v族
化合物半導体単結晶の製造方法
[Industrial Application Field] The present invention relates to a method for manufacturing an m-v group compound semiconductor single crystal by a fully automatic shape control method using a liquid-filled Czochralski method. [Prior art] At such as GaAg, InP, GaP, etc.
One of the methods for producing a -V group compound semiconductor single crystal is the liquid-contained Czochralski method (LKC method). This is B
, 03 is used as a sealant for the GaAs raw material melt, and while suppressing the decomposition of the compound under high pressure, the formed compound melt (with a seed crystal attached and pulled up while rotating) is used as a sealing agent for the GaAs raw material melt. This method allows the entire growth of a cylindrical compound single crystal. However, in this case, the crystal growth occurs in free space, and the temperature distribution is difficult to control due to the presence of a liquid sealant and thermal convection of high-pressure gas. There is a problem in that it is very difficult to control the shape of the crystal because it is made by molding. Methods for controlling the shape of the crystal include the coracle method (for example, Japanese Patent Application Laid-Open No. 57-200286), the ring method (column method), etc. : Japanese Unexamined Patent Publication No. 58-41796), as well as the weight method (
Column: JP-A-58-145692, JP-A-59-1
No. 84796, etc.), and the gravimetric method is used to play an important role in liquid-filled Czochralski crystal growth. How to grow crystal weight? The diameter of the crystal is calculated based on the amount of change per unit time, the amount of weight change is determined based on the target crystal diameter, and the temperature of the heater that heats the crystal raw material melt is adjusted according to the deviation amount. Two diameter controls are performed. [Problems to be Solved by the Invention] However, in the liquid-sealed Czochralski method, the crystal weight detected by the weight sensor is... Because it is affected by the buoyancy of the liquid sealant and the surface tension of the melt, the value becomes smaller than the actual solidified crystalline type], and furthermore, the amount of weight change per unit time with respect to the weight of the lever itself is When used as a control amount, this value is largely different from the true amount of weight change, and as a result, there is a problem in that the crystal shape is controlled to be completely different from the target crystal shape. Further, as a phenomenon unique to the ■-V group compound semiconductor, a phenomenon called reverse response occurs when the crystal diameter changes rapidly. In other words, the specific gravity of a solid is smaller than that of a liquid, so as the crystal diameter increases, the amount of weight change decreases and the diameter decreases (in contrast, the amount of weight change increases. Because of this phenomenon, 2ζ was detected. When controlling the crystal diameter using the amount of weight change, reverse control 2 should be performed for sudden diameter changes (MJK).
As a result, a phenomenon of diameter expansion occurs, and it is difficult to obtain a desired shape with a constant diameter in the straight body portion. Furthermore, if the temperature of the heater itself that heats the crystal raw material melt is controlled as in the conventional shape control method, the temperature of the raw material melt may change suddenly, causing sudden diameter fluctuations. There is a problem in that the above-mentioned reverse response phenomenon tends to occur. Is the present invention based on the above-mentioned problem? The purpose of the present invention is to provide a method for automatically producing a single crystal in a desired shape with good reproducibility. 〔problem? Means for Solving the Problem] The present invention provides a method for manufacturing an m-v group compound semiconductor single crystal using a liquid-sealed Czochralski method.

〔作用〕[Effect]

以下、本発明を、図面を使用して詳細に説明する。第1
図に示したように■−■族化合物半導体単結晶引上げ装
置ておいてルッ!F:1内のB2O3などの液体封止剤
2に覆われたGaAsなどの結晶原料融液3に引上tc
B4に固定された種結晶5を接触させ、これを引上げる
ことてよって結晶6が育成される。この結晶60重量を
引上軸4に取り付けられた1号センサー7で連続的に電
圧信号として検出し、変換器8で重量信号Wt  に変
換し、信号平滑化処理回路9において雑音成分を除去す
る。この信号を単位時間毎にサンプリングして得られた
測定重量変化量Dwを演算し、さらに補正量演算器11
によりリアルタイムで補正量ヲ加えて単位時間当りの実
効重量変化量Dwc’に演算する。さらに前記測定重量
変化量Dw より結晶形状演算器12にて成長中の結晶
半径R1並びに実効成長結晶長z2演算しCRT 13
に表示する。一方、目標結晶形状発生器14より単位時
間毎に前記実効成長結晶長2に対応する目標実効重量変
化量Dwrefを目標値演算器15で演算する。差分器
16において実効重量変化量Dwcと目標実効重塁変化
量Dwrsfの偏差量を演算し、この偏差量信号に基づ
き、制御器17でディジタルPより制御によりリアルタ
イムの操作量として結晶原量融液温度?調節するヒータ
ーの単位時間当りの温度変化量TP を得る。この温度
変化仝TPを温度プログラマ18で温度制御信号に変換
し、温調計19によりヒーターの温度THを制御するこ
とで結晶原料融液の単位時間当りの温度全調整する。 補正量演算器11では次のようにして単位時間当りの実
効重量変化量1’wcの演算を行々う。 第2図は結晶成長の模式図であるが、結晶原料融液密胛
をP。、結晶密度をPa 、液体封止剤密度をρb、融
液による表面張力をγ8 、結晶固化体積?■8、液体
封止剤内にある結晶固化体積を”sb s cB晶−融
液界面のメニスカスの体積をvm  とすると一般的に
測定測定型ff1Wh  はWh = /’s”s−ρ
bvBb+(ρ0−ρb)Vm+γ8 ・・・■で与え
らり、る。 ここで、メニスカスとは第3図に示すように結晶と融液
の界i付近の表面張力により生ずる部分であり、界面形
状は熱環境などの成長条件によって凸になったり凹に々
つたりする。結晶の径変化は実際にはこのメニスカスの
形状の変化に従って生じており、メニスカスの高さが低
くなると径が増加し、高くなると径は減少する(第4図
参照)。しかし、メニス刀ス体Tlv+は円柱に近似さ
せることができVm=πR2:(として求めている。 次に結晶径?結晶長の関数rに)とすると、第2図より
結晶固化体積 V、 = P=x (rf:Z))”dZ     =
−■B!03中の結晶体積 vs b =fz〒” (r (Z) )”dZ   
 −■メニスカス体積 V工=πR”H・・・■ 一方、E、o、中の偉績保存則よりB、o3の体積?■
BxOs  とすると、 VB、0.+ VBb+ Vm = ”Fte” L 
   ・・−■よって0式は wh=Psfz−Hπ(r(z))”az  pb(”
Rc”L  V]32o、)+ PeπR”H+ γe
      −” ”となり、単位時間当りの5i11
定重分変化ffiDw ばDW = P9πRg(送−
m)−ρbπRo2i+ρ8(πR2−1+2πR−貧
H)+18     ・・・■となり、vP=z、DR
=H,D。=L、Dr=R及びD7El =rB  で
あるので、結局の式はDw ” PBπR”vp  p
bxRc” −D8+ pe・2πRDrH+Cpep
a)πR”DR+ D、8−−− @と々る。なお、こ
こで融液面上の結晶半径をR、メニスカスの高さ?H1
液体封止剤の厚み?L、表面張力を18 としたときに
、単位時間当りの変化量ヲそれぞhDr、 DR、D6
 、 Drs  とし、さらに融液面の低下を考慮した
結晶の実効成長速度をvp とした。 さらに、実効重量変化量11wcはρgfR”vpに対
応することがら0式より、 Dwc ” Dw + PbπRc”De  Pe2π
RDrH−(ρ0−ρ8)πR”DhDAB     
 ””■となる。 ここでρbπRc2Deが浮力補正項(pe−ps)π
R”Dhが逆応答補正項、Dγ8が融液の表面張力補正
項、またーρe 2 r Rn rB  はメニスカス
の存在【よって生ずる重量変化量への影響の補正項に対
応している。 結晶形状演算器12ではまず実効成長結晶長2が求めら
れる。液体封止剤の初期厚みiLo、引上げ開始後の経
過時間をtとすると、2は測定重量Wh  より で与えられる。また結晶半径Rは測定重量変化jlDw
  より■式から得られ、さらに補正量演算器11でI
)weを演算するのに使用される。結晶径記憶器22で
は、結晶形状演算器12で発生した結晶径?記憶すると
ともにB!0.上の結晶径を求める。さらに微分器23
でDr?演算し、これらの値よりメニスカス形状演算器
24にて、メニスカスの高さ■など?算出し、−刃表面
張力演算器25にて表面張力γ8 iど?算出する。 以上の数値より、補正量演算器11において単位時間当
りの実効重量変化量DWCを演算する。 目標値演算器15では、目標結晶形状発生器14より、
結晶形状演算器12で得られた実効成長速度Vpref
を求めて目標実効重量変化量Dwref k次式のよう
に演算する。 Dvref  =  2日にRref” Vpref 
         ” ” −’Iり制御器17では実
効重量変化量I’vcと目標実効重量変化iよりwre
fとの偏差寸に基づき、ディジタルP I D iI″
lI御の速度アルゴリズム?用いて融液温度を調整する
ヒーターの温度の単位時間当りの変化量’rp  を演
算し、温度プログラマ18にデータ?送る。 チョクラルスキー法による結晶成長では一定径で結晶を
成長さJtようとしまた場合は成長に伴う固化熱全一定
;てすれ(ばよく、このためには成長、すなわち原q融
液の減少(て従い融液全加熱するヒーター温度を徐々に
低下させていかなければならない。つまり一定径、一定
成長速度で、結晶が成長している々らばヒーターの温度
変化量も一定となる。ゆえに、単位時間当りのヒーター
の温度変化量τpt制御する方が望塘しいのである。 さらに、ヒーターの温度TH自身を制御するのでは彦く
、微分器21によって求められる、単位時間当りの温度
変化jiTpk制御することにより、融液温度の急変?
防ぐことができる。 この結果、結晶径の瞬間的な変動の生じる可能性が少々
くなり逆応答現象を出にくくするという効果がちる。 〔実施列〕 本発明の方法によって、■−■族化合物半導体の一つで
あるGaAs単結晶を製造した。 内径154m、深さ140■のPBN製ルツルツボaA
s多結晶原料を4000F、液体封止剤としてE、 o
、を6002入れ、高圧容器内で窒素ガスを圧入し20
気圧に加圧して約30時間後で加熱、封止剤及び結晶系
$−+を完全に溶融させた後、種結晶全接触させ引上げ
を開始した。 引上げ軸を1分間に5回転、ルツボを逆方向に1分間1
0回転させなから9簡/時の速度で、直胴部直径が60
鱈である結晶?目標結晶形状として本発明の方法を用い
て、結晶を引上げたところ、約30時間後に長さ約29
0、重量32001のGaAs単結晶が得られた。その
場合の目標結晶形状と実際に引上げられた結晶形状を第
5図に示す。図に示されているように目標の結晶形状と
ほぼ等しい形状をもつ結晶が引上げられており直、胴部
におりては結晶径は60士1+w&て非常に良く制御さ
せている。この実施列シζおいてCRT13に表示され
た形状制御内容を第7図に示す。 また、上記と同様の成長条件においてGaA3多結晶原
料を6ooor投入し直胴部の直径が90mである結晶
を目標結晶形状として結晶を引上げたところ約18時間
後に長さ約22erm、重量abaoyのGaA3単結
晶が得られ、結果は第6図に示したよって前記実施例同
様はぼ目標結晶形状と等しい結晶が引上げられており、
亘胴部においては結晶径は90±1.5■に非常に良く
制御されている。 前記GaAs単結晶引上げにおいて、圧力、引上げ軸及
びルツボの回転数、結晶の引上げ速度などの条件を変更
しても、前記実施列と同様、目標結晶形状と等しい形状
の結晶が得られ、さらに結晶原料融液の対流を抑制する
ために結晶成長時に磁場を印加した状態においても、前
記実施す1と同様、目標結晶形状と等しい形状の結晶が
得られている。 なお、本発明は、土肥実施列に限定されるものではかく
、[+1−V族化合物半導体単結晶を含めて液体封止型
チョクラルスキー法:(よる単結晶製造法にも同様に適
用できるものである。 〔発明の効果〕 以上説明したように本発明に係る結晶形状制御方法を用
いて単結晶を製造すると液体封止型チョクラルスキー法
による■−■族化合物半導体単結晶成長(/!:おいて
1M部から直胴部、テイル部に至るまで所望の形状をし
た単結晶が自動的にしかも再現性良く得られる。従って
この結果高品質の結晶が歩留良く製造でき、さらに省人
化が図れるという効果がある。
Hereinafter, the present invention will be explained in detail using the drawings. 1st
As shown in the figure, set up the ■-■ group compound semiconductor single crystal pulling equipment! F:1 is pulled up to a crystal raw material melt 3 such as GaAs covered with a liquid sealant 2 such as B2O3.
The crystal 6 is grown by bringing the seed crystal 5 fixed to the B4 into contact and pulling it up. The weight of this crystal 60 is continuously detected as a voltage signal by the No. 1 sensor 7 attached to the pulling shaft 4, converted to a weight signal Wt by the converter 8, and noise components are removed by the signal smoothing processing circuit 9. . The measured weight change amount Dw obtained by sampling this signal every unit time is calculated, and the correction amount calculator 11
The correction amount is added in real time to calculate the effective weight change amount Dwc' per unit time. Furthermore, the crystal shape calculator 12 calculates the crystal radius R1 and the effective growing crystal length z2 based on the measured weight change amount Dw, and displays the CRT 13.
to be displayed. On the other hand, a target value calculator 15 calculates a target effective weight change amount Dwref corresponding to the effective growth crystal length 2 from the target crystal shape generator 14 every unit time. The difference unit 16 calculates the deviation amount between the effective weight change Dwc and the target effective weight change Dwrsf, and based on this deviation signal, the controller 17 calculates the crystal original amount melt as a real-time manipulated variable using the digital P. temperature? Obtain the temperature change amount TP per unit time of the heater to be adjusted. This temperature change TP is converted into a temperature control signal by a temperature programmer 18, and the temperature TH of the heater is controlled by a temperature controller 19, thereby controlling the entire temperature of the crystal raw material melt per unit time. The correction amount calculator 11 calculates the effective weight change amount 1'wc per unit time as follows. Figure 2 is a schematic diagram of crystal growth. , crystal density is Pa, liquid sealant density is ρb, surface tension due to melt is γ8, crystal solidification volume? ■8. If the solidified volume of the crystal in the liquid sealant is "sb s cB" and the volume of the meniscus at the interface between the crystal and the melt is vm, then the general measurement type ff1Wh is Wh = /'s"s-ρ
bvBb+(ρ0-ρb)Vm+γ8...Given by ■. Here, the meniscus is a part generated by surface tension near the interface i between the crystal and the melt, as shown in Figure 3, and the shape of the interface becomes convex or concave depending on the growth conditions such as the thermal environment. . The change in the diameter of the crystal actually occurs in accordance with the change in the shape of the meniscus; as the height of the meniscus decreases, the diameter increases, and as the height of the meniscus increases, the diameter decreases (see FIG. 4). However, the meniscus body Tlv+ can be approximated to a cylinder, and it is determined as Vm=πR2: (Next, the crystal diameter is the function r of the crystal length). From Figure 2, the crystal solidification volume V, = P=x (rf:Z))”dZ=
-■B! Crystal volume in 03 vs b = fz〒” (r (Z) )”dZ
−■Meniscus volume V = πR”H...■ On the other hand, from the law of conservation of greatness among E, o, and inside, is the volume of B, o3?■
If BxOs, then VB, 0. +VBb+Vm=”Fte”L
...-■ Therefore, the formula 0 is wh=Psfz-Hπ(r(z))"az pb("
Rc”L V]32o, )+ PeπR”H+ γe
−” ”, 5i11 per unit time
Constant weight change ffiDw = P9πRg (feed -
m)-ρbπRo2i+ρ8(πR2-1+2πR-Poor H)+18...■, vP=z, DR
=H,D. =L, Dr=R and D7El =rB, so the final formula is Dw "PBπR"vp p
bxRc” −D8+ pe・2πRDrH+Cpep
a) πR”DR+ D, 8--- @Totoru. Here, the crystal radius on the melt surface is R, and the height of the meniscus?H1
Thickness of liquid sealant? L, when the surface tension is 18, the amount of change per unit time is hDr, DR, D6, respectively.
, Drs, and the effective growth rate of the crystal taking into account the decrease in the melt surface was vp. Furthermore, since the effective weight change amount 11wc corresponds to ρgfR”vp, from equation 0, Dwc ”Dw + PbπRc”De Pe2π
RDrH−(ρ0−ρ8)πR”DhDAB
””■. Here, ρbπRc2De is the buoyancy correction term (pe-ps) π
R”Dh corresponds to the reverse response correction term, Dγ8 corresponds to the surface tension correction term of the melt, and -ρe 2 r Rn rB corresponds to the correction term for the influence on the amount of weight change caused by the presence of a meniscus.Crystal shape First, the effective grown crystal length 2 is determined in the calculator 12.If the initial thickness of the liquid sealant is iLo and the elapsed time after the start of pulling is t, then 2 is given by the measured weight Wh.Also, the crystal radius R is determined by the measured weight Wh. Weight change jlDw
It is obtained from the formula
) used to calculate we. The crystal diameter memory 22 stores the crystal diameter ? generated by the crystal shape calculator 12. Remember and B! 0. Find the diameter of the upper crystal. Furthermore, the differentiator 23
And Dr? Then, from these values, the meniscus shape calculator 24 calculates the height of the meniscus etc. Calculate and use the blade surface tension calculator 25 to determine the surface tension γ8 i? calculate. Based on the above numerical values, the correction amount calculator 11 calculates the effective weight change amount DWC per unit time. In the target value calculator 15, from the target crystal shape generator 14,
Effective growth rate Vpref obtained by crystal shape calculator 12
The target effective weight change amount Dwref is calculated according to the k-th equation. Dvref = Rref on the 2nd” Vpref
” ” -'The controller 17 calculates wre from the effective weight change amount I'vc and the target effective weight change i.
Based on the deviation size from f, digital PID iI''
lI controlled speed algorithm? The amount of change 'rp per unit time in the temperature of the heater used to adjust the temperature of the melt is calculated by using the temperature programmer 18, and the data is sent to the temperature programmer 18. send. In crystal growth using the Czochralski method, the crystal is grown with a constant diameter Jt, and if the solidification heat accompanying the growth is constant; Therefore, the temperature of the heater that completely heats the melt must be gradually lowered.In other words, with a constant diameter and a constant growth rate, the temperature change of the heater will also be constant when the crystal is growing.Therefore, the unit It is more desirable to control the amount of temperature change τpt of the heater per hour.Furthermore, rather than controlling the temperature TH of the heater itself, it is better to control the temperature change per unit time jiTpk determined by the differentiator 21. Is this a sudden change in melt temperature?
It can be prevented. As a result, there is a small possibility that instantaneous fluctuations in crystal diameter will occur, which has the effect of making it difficult for reverse response phenomena to occur. [Example] A GaAs single crystal, which is one of the ■-■ group compound semiconductors, was manufactured by the method of the present invention. PBN crucible aA with inner diameter of 154m and depth of 140cm
s polycrystalline raw material at 4000F, liquid sealant E, o
, 6002, and pressurized nitrogen gas into the high-pressure container.
After about 30 hours of pressurization, the sealant and crystal system $-+ were completely melted by heating, and then the seed crystal was brought into full contact and pulling was started. Rotate the pulling shaft 5 times per minute and rotate the crucible in the opposite direction once per minute.
At a speed of 0 to 9 rotations/hour, the straight body diameter is 60
Crystals that are cod? When a crystal was pulled using the method of the present invention as a target crystal shape, it had a length of about 29 mm after about 30 hours.
A GaAs single crystal with a weight of 32001 was obtained. The target crystal shape and the actually pulled crystal shape in that case are shown in FIG. As shown in the figure, a crystal having a shape almost identical to the target crystal shape is pulled up, and when it reaches the body, the crystal diameter is 60 mm, which is very well controlled. FIG. 7 shows the shape control contents displayed on the CRT 13 in this implementation sequence ζ. In addition, under the same growth conditions as above, 6ooor of GaA3 polycrystalline raw material was introduced and the target crystal shape was pulled up. After about 18 hours, GaA3 with a length of about 22 erm and a weight of abaoy was pulled. A single crystal was obtained, and the results are shown in FIG. 6. As in the previous example, a crystal having approximately the same shape as the target crystal was pulled.
In the trunk, the crystal diameter is very well controlled to 90±1.5 cm. In the above GaAs single crystal pulling process, even if the conditions such as the pressure, the rotation speed of the pulling shaft and crucible, and the crystal pulling speed are changed, a crystal having the same shape as the target crystal shape can be obtained as in the above-mentioned example. Even when a magnetic field was applied during crystal growth to suppress the convection of the raw material melt, a crystal having the same shape as the target crystal shape was obtained, as in Example 1 above. Note that the present invention is not limited to the Doi matrix, but can be similarly applied to a single crystal production method using the liquid-filled Czochralski method, including [+1-V group compound semiconductor single crystals]. [Effects of the Invention] As explained above, when a single crystal is manufactured using the crystal shape control method according to the present invention, the ■-■ group compound semiconductor single crystal growth (/ !: A single crystal with the desired shape from the 1M section to the straight body section and the tail section can be obtained automatically and with good reproducibility.As a result, high-quality crystals can be manufactured with good yield, and further savings can be made. This has the effect of humanizing it.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の詳細な説明するブロック図、第2図は
結晶成長時の結晶−融液の界面近傍を示す図、第3図、
第4図(&)、 (b)は結晶と融液界面のメニスカス
の説明図、また、第5図及び第6図は本発明の実1@例
における目標結晶形状の直径と実際に成長し九茫晶の直
径との関係を示すグラフ、第7図はCRT画面上にリア
ルタイムで表示された制御に関する情報の1列を示す図
である。
FIG. 1 is a block diagram explaining the present invention in detail, FIG. 2 is a diagram showing the vicinity of the crystal-melt interface during crystal growth, and FIG.
Figures 4 (&) and (b) are explanatory diagrams of the meniscus at the crystal-melt interface, and Figures 5 and 6 are the diameter of the target crystal shape and the actual growth in Example 1 of the present invention. FIG. 7 is a graph showing the relationship with the diameter of the Kusaku crystal, and is a diagram showing one row of control-related information displayed in real time on the CRT screen.

Claims (1)

【特許請求の範囲】[Claims] (1)液体封止型チョクラルスキー法によるIII−V族
化合物半導体単結晶の製造方法において、単位時間当り
の測定重量変化量に、液体封止剤による浮力、逆応答、
融液による表面張力、または、メニスカスの存在による
重量変化量への影響量あるいはそれらの組み合せに基づ
く補正量をリアルタイムで加えた値を制御量とし、目標
結晶形状に対応した単位時間当りの基準重量変化量を設
定量とし、制御量が設定量となるように、単位時間当り
のヒーター温度の変化量を調節することを特徴とするI
II−V族化合物半導体単結晶の製造方法。
(1) In a method for manufacturing a III-V compound semiconductor single crystal using the liquid-sealed Czochralski method, the buoyancy due to the liquid sealant, the reverse response to the measured weight change per unit time,
The control amount is the value obtained by adding in real time a correction amount based on the surface tension due to the melt, the amount of influence on the amount of weight change due to the presence of a meniscus, or a combination thereof, and the reference weight per unit time corresponding to the target crystal shape. I characterized by adjusting the amount of change in heater temperature per unit time so that the amount of change is a set amount and the controlled amount is the set amount.
A method for producing a II-V group compound semiconductor single crystal.
JP18525786A 1986-08-08 1986-08-08 Production of single crystal of iii-v compound semiconductor Pending JPS6345200A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18525786A JPS6345200A (en) 1986-08-08 1986-08-08 Production of single crystal of iii-v compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18525786A JPS6345200A (en) 1986-08-08 1986-08-08 Production of single crystal of iii-v compound semiconductor

Publications (1)

Publication Number Publication Date
JPS6345200A true JPS6345200A (en) 1988-02-26

Family

ID=16167652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18525786A Pending JPS6345200A (en) 1986-08-08 1986-08-08 Production of single crystal of iii-v compound semiconductor

Country Status (1)

Country Link
JP (1) JPS6345200A (en)

Similar Documents

Publication Publication Date Title
JPS63242991A (en) Method for controlling crystal diameter
JPS59102896A (en) Method for controlling shape of single crystal
US5164039A (en) Apparatus for controlling the diameter of silicon single crystal
JPS6345200A (en) Production of single crystal of iii-v compound semiconductor
JPH09227273A (en) Production of silicon single crystal by continuous-charge method
US5246535A (en) Method and apparatus for controlling the diameter of a silicon single crystal
JPH04219388A (en) Control of diameter of silicon single crystal and apparatus therefor
JPS63252989A (en) Production of semiconductor single crystal by pull-up method
JPH01212291A (en) Method and apparatus for growing crystal
JPS6054994A (en) Production of compound semiconductor crystal
JPS6065788A (en) Production of single crystal
KR102662342B1 (en) Apparatus for controlling ingot growth and method thereof
JP2726887B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6011297A (en) Method and device for controlling growth of crystal
JPH02233588A (en) Growth of single crystal
JPS6129914B2 (en)
JPH0283292A (en) Production of silicon single crystal and apparatus therefor
JP2537605B2 (en) Method for producing compound semiconductor single crystal
JPH07291787A (en) Production of compound semiconductor single crystal
JPS62148389A (en) Method for growing single crystal
JP2719672B2 (en) Single crystal growth method
JPS5826096A (en) Manufacturing apparatus for single crystal
CN116145240A (en) Crystal growth control method, device and system and computer storage medium
JPH02248399A (en) Method for growing mixed crystal-type compound semiconductor
JPS61174189A (en) Method and device for production of single crystal