JPS59102896A - Method for controlling shape of single crystal - Google Patents

Method for controlling shape of single crystal

Info

Publication number
JPS59102896A
JPS59102896A JP57208481A JP20848182A JPS59102896A JP S59102896 A JPS59102896 A JP S59102896A JP 57208481 A JP57208481 A JP 57208481A JP 20848182 A JP20848182 A JP 20848182A JP S59102896 A JPS59102896 A JP S59102896A
Authority
JP
Japan
Prior art keywords
circuit
single crystal
value
deviation
differentiated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57208481A
Other languages
Japanese (ja)
Other versions
JPH0416437B2 (en
Inventor
Shoichi Washitsuka
鷲塚 章一
Sadao Matsumura
禎夫 松村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57208481A priority Critical patent/JPS59102896A/en
Priority to US06/543,046 priority patent/US4591994A/en
Priority to DE8383306467T priority patent/DE3380932D1/en
Priority to EP83306467A priority patent/EP0115121B1/en
Publication of JPS59102896A publication Critical patent/JPS59102896A/en
Publication of JPH0416437B2 publication Critical patent/JPH0416437B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal
    • C30B15/28Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal using weight changes of the crystal or the melt, e.g. flotation methods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T117/00Single-crystal, oriented-crystal, and epitaxy growth processes; non-coating apparatus therefor
    • Y10T117/10Apparatus
    • Y10T117/1004Apparatus with means for measuring, testing, or sensing
    • Y10T117/1008Apparatus with means for measuring, testing, or sensing with responsive control means

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To carry out the control of the shape of a single crystal in high accuracy, by using a differentiated circuit detecting the weight of pulled single crystal and differentiating the weight signal with time, an operation circuit to carry out the arithmetic operation of the differentiated value, an integrated circuit to integrate the operated value with time, and a deviation detecting circuit to detect the deviation of the integrated value and the differentiated value, and feeding back the deviation to the electrical power for heating. CONSTITUTION:The weight of the pulled single crystal 5 is detected by the weight detector 7, and the signal is sent to the differentiated circuit 8, which differentiates the signal with time and transmits the differentiated result to the operation circuit 9. The operation circuit 9 calculates the value d<2>w/dt<2> from the differentiated value dw/dt according to the formula. The calculated value is integrated with time by the integrated circuit 10, and the integrated value is transferred to the deviation detecting circuit 11. The deviation between the integrated value and the differentiated value is calculated by the deviation detecting circuit 11, and is inputted to the controller 12 to obtain the signal for controlling the electrical power for the heating of crucible. The control signal is inputted to the thermostat 13 to control the heating apparatus 14. The signs A and B in the formula are constants determined by the densities of crystal and molten liquid, etc., and O is prescribed angle of the shoulder part of the single crystal.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明はチョクラルスキー法による単結晶を所定の形状
に制御する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of the Invention] The present invention relates to a method for controlling a single crystal into a predetermined shape using the Czochralski method.

〔従来技術とその問題点〕[Prior art and its problems]

チョクラルスキー法による単結晶の製造において、良好
な単結晶を得るためには結晶の胴体部の直径が一定であ
ることのほか、結晶の肩部が望ましい形状をしているこ
とが必要である。特に結晶の肩部は歪や転位及び双晶の
発生、伝播を防止するうえで、その形状の制御は重要な
問題である。
In the production of single crystals using the Czochralski method, in order to obtain a good single crystal, it is necessary that the diameter of the body of the crystal be constant, and that the shoulders of the crystal have the desired shape. . In particular, controlling the shape of crystal shoulders is an important issue in order to prevent the generation and propagation of strain, dislocations, and twins.

とりわけ、閃亜鉛鉱型構造を有する■−v族化合物半導
体単結晶では、肩部の形状、特に層形成角度と双晶発生
の関連について多くの報告がなされている。例えばW、
A、Honner : Mat、Res、l3ul I
 、15<1980)、63に記載されている。
In particular, many reports have been made regarding the relationship between the shape of the shoulder, particularly the angle of layer formation, and the occurrence of twin crystals in single crystals of group 1-V compound semiconductors having a zincblende structure. For example, W,
A, Honner: Mat, Res, l3ul I
, 15<1980), 63.

肩部での結晶重量はその時間変化量が一定でなく、時間
と共に変化することから、従来重量法による単結晶の形
状制御方法では次のような方法が行なわれていた。例え
ば第1図aに示すような形状の単結晶を製造する場合、
そ゛の重量変化は第1図すのグラフに示す曲線部と直線
部からなる変化をする。この曲線部は時間の3次関数、
直線部は時間の1次関数である。そこで、この基準重量
に対応する形状の板にそって摺動抵抗を直接動かして基
準重量信号を得るか、または基準重量の時間微分値に対
応する形状の板にそって摺動抵抗を動かすプログラマ−
でモータを回転させてヘリオームを動かし、基準重量信
号を得ていた(特公昭54−4345号公報参照)。ま
だ他の方法としてコンピュータを用いて肩部での基準重
量の時間微分値を時間の一次関数として演算により求め
、ソフト的に処理することも行なわれていた。この方法
は、例えば、A、E、Zinnes、etal : J
、Cryst。
Since the amount of change in the crystal weight at the shoulder is not constant and changes over time, conventional methods for controlling the shape of a single crystal using a gravimetric method have been carried out as follows. For example, when manufacturing a single crystal with the shape shown in Figure 1a,
The weight change consists of a curved part and a straight part as shown in the graph of Figure 1. This curved part is a cubic function of time,
The straight line part is a linear function of time. Therefore, a reference weight signal can be obtained by directly moving the sliding resistance along a plate with a shape corresponding to this reference weight, or a programmer can move the sliding resistance along a plate with a shape corresponding to the time differential value of the reference weight. −
The reference weight signal was obtained by rotating the motor and moving the heliome (see Japanese Patent Publication No. 4345/1983). Another method has been to use a computer to calculate the time differential value of the reference weight at the shoulder as a linear function of time, and process it using software. This method has been described, for example, by A, E, Zinnes, etal: J
, Cryst.

Growth 19(1973)187.に記載されて
いる。
Growth 19 (1973) 187. It is described in.

□□□□−■□11□□−リ1□− そして、これらのいずれの方法においても、基準となる
信号は時間の関数として定められており酸化物単結晶へ
適用さAていた。
□□□□-■□11□□-Li1□- In each of these methods, the reference signal was determined as a function of time and was applied to the oxide single crystal.

ところで、実際に単結晶の製造を行なう場合。By the way, when actually manufacturing single crystals.

種付は後引上げを開始してからいつも同じように肩部が
成長するとは限らず、例えば種付は温度が高いあるいは
低いと引上げても結晶がなかなか太ってとなかつたりあ
るいは急激に太ってしまう時がある。そのため従来方法
により単結晶の形状制御を行なう場合、大きなオフセッ
トを生じやすいという問題がある。このオフセットを消
すだめに制御を強くすると肩部では局部的に凹凸して滑
らかな結晶が得られず、歪の増大や双晶が発生するなど
の欠点があった。逆にこのオフセットを残しておくと所
定の形状からのずれが大きくなシ精度が悪いという欠点
があった。とくに川−■族単結晶ではこの影響が大き〈
従来の形状制御方法では高品質な■−■族単結晶の肩部
を再現性よく安定して育成することはできなかった。そ
のため、近年、赤外線CCU、超高速IC,FET用と
して注目されている大口径、大容量のI n S b 
、 GaAs。
In seeding, the shoulder does not always grow in the same way after starting pulling; for example, in seeding, if the temperature is high or low, the crystals may not thicken or thicken rapidly even after pulling. There is a time. Therefore, when controlling the shape of a single crystal using the conventional method, there is a problem in that a large offset tends to occur. If the control is strengthened in order to eliminate this offset, there will be local unevenness at the shoulders, making it impossible to obtain a smooth crystal, resulting in disadvantages such as increased strain and generation of twins. On the other hand, if this offset is left, there is a drawback that the deviation from the predetermined shape is large and the accuracy is poor. This effect is particularly large for Kawa-■ group single crystals.
Conventional shape control methods have not been able to stably grow high-quality ■-■ group single crystal shoulders with good reproducibility. Therefore, in recent years, large-diameter, large-capacity InSb devices have been attracting attention as infrared CCUs, ultrahigh-speed ICs, and FETs.
, GaAs.

InP などの■−■族単結晶の製造には適用できない
欠点がある。
There is a drawback that it cannot be applied to the production of ■-■ group single crystals such as InP.

〔発明の目的〕[Purpose of the invention]

この発明は上記した点に鑑みなされたもので。 This invention was made in view of the above points.

単結晶を製造する際に上記欠点を取シ除き、所定の形状
に制御された高品質単結晶を再現性よく安定して製造で
きる方法を提供するものである。
The object of the present invention is to provide a method that eliminates the above-mentioned drawbacks when producing single crystals and can stably produce high-quality single crystals controlled to a predetermined shape with good reproducibility.

〔発明の概要〕[Summary of the invention]

本発明者等は前記制御方法の欠点は基準となる信号を時
間の関数として一義的に定めているためであシ、実際の
単結晶の成長状態に応じて定める必要があると考えた。
The present inventors believed that the drawback of the above control method is that the reference signal is uniquely determined as a function of time, and that it is necessary to determine it according to the actual growth state of the single crystal.

直径2rで成長している結晶の重量の時間微分値(dw
/dt)は次式で表わされる。
The time derivative of the weight of a crystal growing with a diameter of 2r (dw
/dt) is expressed by the following formula.

dw/dt=πρ?u=rrp r”H/(1−ρ、γ
ンp1.R2)・・・・・・(1)S        
S ここで、ρ、ρはそれぞれ結晶、融液の密度、Ht は引上げ速度、Rはルツボの半径であシυは結晶成長速
度を示している。(1)式を時間で微分して整理すると
(2)式が得られる。
dw/dt=πρ? u=rrp r”H/(1-ρ, γ
p1. R2)・・・・・・(1)S
S Here, ρ and ρ are the densities of the crystal and melt, respectively, Ht is the pulling rate, R is the radius of the crucible, and υ is the crystal growth rate. When formula (1) is differentiated with respect to time and rearranged, formula (2) is obtained.

dtw/dt2=dw/dt (2/r−dr/dt+
1/u・dυ/d t )−(2)この式は結晶重量の
時間の2回微分値(d’w/dt”)はd w/d t
  と結晶直径の変化率および成長速度の変化率で表わ
されることを示している。肩部での直線的な広がり角度
をθとして+l) 、 (21式よ9時間を消去したd
”w/dt’とdw/dt  の関係を求めたところ、
直径のごく小さい部分を除いて次の(3)式でよく近似
できるととを見い出した。
dtw/dt2=dw/dt (2/r-dr/dt+
1/u・dυ/d t )−(2) This equation shows that the two-time differential value of the crystal weight (d'w/dt") is d w/d t
It is shown that this is expressed by the rate of change in crystal diameter and the rate of change in growth rate. +l) with the linear spread angle at the shoulder as θ
When we sought the relationship between “w/dt” and dw/dt, we found that
It has been found that the following equation (3) can be well approximated except for a portion with a very small diameter.

♂w/dt”=(A−dw/dt+B)θ ・・・・・
・・・・・・・・・・・・・(3)ここで、A、Bはp
s 、 pt、 II 、几から定まる定数である。す
なわち、(3)式は現在の直径から肩形成角就を一定に
するために次に取るべき設定値の変化率を与える式であ
ることが分った。このことから、引上げ中にdw/dt
  を測定して(3)式から定まるd”w/dt”を積
分していくことにより時間に無関係に実際の単結晶の成
長状態に応じて基準となるdw/dtを自動的に定める
ことができる。この基準信号を用いて結晶の肩部形状の
制御を行なったところ、オフセットは生ごず精度が向上
するという大きな効果があることが分った。そこで、本
発明の単結晶の形状制御方法では引き上げられた単結晶
の重量を検出し、前記単結晶の重量信号を時間微分する
微分回路と、該微分回路の出力である微分値dw/dt
より(3)式に基づいて演算する演獅4回路と、該演算
回路の出力である演算値d”w/d t!を時間積分す
る積分回路と、該積分回路の出力である積分値と前記微
分値の偏差を求める偏差検出回路とを備え、前記偏差を
加熱電力に帰還制御して単結晶の形状制御することを特
徴とするものである。
♂w/dt"=(A-dw/dt+B)θ...
・・・・・・・・・・・・・・・(3) Here, A and B are p
It is a constant determined from s, pt, II, and 几. That is, it has been found that equation (3) is an equation that gives the rate of change of the set value that should be taken next in order to keep the shoulder formation angle constant from the current diameter. From this, dw/dt during pulling
By measuring and integrating d"w/dt" determined from equation (3), it is possible to automatically determine the reference dw/dt according to the actual growth state of the single crystal regardless of time. can. When the shoulder shape of the crystal was controlled using this reference signal, it was found that the offset had a significant effect in improving the grain precision. Therefore, the single crystal shape control method of the present invention includes a differentiating circuit that detects the weight of the pulled single crystal and differentiates the weight signal of the single crystal with respect to time, and a differential value dw/dt that is the output of the differentiating circuit.
From this, we have four operating circuits that calculate based on formula (3), an integrating circuit that time-integrates the calculated value d''w/dt! that is the output of the calculating circuit, and an integral value that is the output of the integrating circuit. The present invention is characterized in that it includes a deviation detection circuit for determining the deviation of the differential value, and controls the shape of the single crystal by feedback-controlling the deviation to the heating power.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明の形状制御方法によれば、 (1)単結晶の肩部育成においてきわめて高精度な層形
状制御を再現性よく安定して行なうことができる。
As explained above, according to the shape control method of the present invention, (1) extremely accurate layer shape control can be performed stably with good reproducibility in the shoulder growth of a single crystal.

(2)  従来の制御方法に比べて結晶成長条件の変化
によく追従できるので、所定の形状からのオフセットが
少なく約115に減少し、肩部での直線的な広がり角度
からのずれは±1°以内にすることができる。
(2) Compared to conventional control methods, changes in crystal growth conditions can be tracked better, so the offset from the predetermined shape is reduced to approximately 115, and the deviation from the linear spread angle at the shoulder is ±1 Can be within °.

(3) 特にIll −V族単結晶に適用したところ肩
部での双晶発生はほとんど見られず、70%以上の高い
結晶作成歩留シが得られた。
(3) In particular, when applied to Ill-V group single crystals, almost no twinning was observed at the shoulders, and a high crystal production yield of 70% or more was obtained.

(4)  本発明によれば完全自動で所定の形状の単結
晶を製造でき、しかも良質の結晶が得られることから工
業的に適用することにより生産性が向上する。
(4) According to the present invention, single crystals in a predetermined shape can be produced completely automatically, and high-quality crystals can be obtained, so that productivity can be improved by industrial application.

等の効果がある。There are other effects.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の一実施例を図面に基づきより詳細に説明す
る。第2図は本発明による機能を具備した単結晶製造装
置の一例である。図において、1は容器、2は加熱ヒー
タ、3はルツボ、4は融液、5は結晶、6は引上げ軸、
7は重量検出器、8は微分回路、9は演算回路、10は
積分回路、11は偏差検出回路、12は調節計、13は
温調器、14は加熱装置である。ルツボ3内の融液4か
も引上げつつある結晶5の重量をM媚、検出器7により
測定し、微分回路8によシ微分する。この信号を次の演
算回路9に入力し基準信号の変化率を算出する。次に積
分回路10により積分を行ない基準信号を自動的に設定
する。この基準値と前記微分回路8の出力を偏差検出回
路11に入力し偏差信号を得る。この偏差信号を調節形
12に入力してルツボ加熱電力制御信号を得る。この制
御信号を温調器13に入力して加熱装置14を駆動し、
加熱電力を制御することによシ形状の制御を行なう。本
発明の機能である微分回路8から偏差検出回路11まで
は例えば、第3図に示すように構成することができる。
An embodiment of the present invention will be described in more detail below with reference to the drawings. FIG. 2 is an example of a single crystal manufacturing apparatus equipped with the functions according to the present invention. In the figure, 1 is a container, 2 is a heater, 3 is a crucible, 4 is a melt, 5 is a crystal, 6 is a pulling shaft,
7 is a weight detector, 8 is a differential circuit, 9 is an arithmetic circuit, 10 is an integral circuit, 11 is a deviation detection circuit, 12 is a controller, 13 is a temperature controller, and 14 is a heating device. The weight of the crystal 5 which is being pulled up from the melt 4 in the crucible 3 is measured by a detector 7 and differentiated by a differentiating circuit 8. This signal is input to the next arithmetic circuit 9 to calculate the rate of change of the reference signal. Next, the integration circuit 10 performs integration and automatically sets the reference signal. This reference value and the output of the differentiation circuit 8 are input to a deviation detection circuit 11 to obtain a deviation signal. This deviation signal is input to the adjustment type 12 to obtain a crucible heating power control signal. This control signal is input to the temperature controller 13 to drive the heating device 14,
The shape is controlled by controlling the heating power. The functions of the present invention, from the differentiation circuit 8 to the deviation detection circuit 11, can be configured as shown in FIG. 3, for example.

図においてR1からR14は抵抗器、C1からC2はコ
ンデンサ、VRIからVB2は可変抵抗器、OPlから
OF2はオペアンプ、Elは固定電池、81はスイッチ
である。
In the figure, R1 to R14 are resistors, C1 to C2 are capacitors, VRI to VB2 are variable resistors, OP1 to OF2 are operational amplifiers, El is a fixed battery, and 81 is a switch.

OPIは微分回路8、OF2からop4は演算回路9、
OF2とOF2は積分回路1O1OP7は偏差検出回路
11を構成している。ここで、 VRlからVB2は演
算回路9が(3)式で定めた入出力特性を持つように調
整するためのものである。Slは積分回路10の動作を
停止し出力を一定に保持するためのもので、肩部から胴
体部に制御を移すときに使用する。
OPI is a differentiator circuit 8, OF2 to op4 are arithmetic circuits 9,
OF2 and OF2 constitute an integrating circuit 1O1 and OP7 constitute a deviation detection circuit 11. Here, VRl to VB2 are used to adjust the arithmetic circuit 9 so that it has the input/output characteristics determined by equation (3). Sl is for stopping the operation of the integrating circuit 10 and keeping the output constant, and is used when transferring control from the shoulder to the torso.

次に具体的な例として本発明の機能を具備した単結晶製
造装置により、l−V族単結晶であるIn8b単結晶を
製造する場合について詳しく説明する。第2図において
直径75+wmのルツボ3にInSb多結晶原料を50
0g入れ、〜650℃まで加熱融解した。次に(211
)軸の種結晶を1゜rpmで回転させながら融液4に接
触させたのち10 m/ hの速度で引上げを開始した
。この時の(3)式の定数A、Bの値はそれぞれ、 A
=4.77X10/ minsdeg 、  B=6.
65X10  g/minedeg となった。そこで
肩形成角度θを15°に設定して肩部の形状制御を開始
した。所定径35fiになったところでスイッチS1を
開いて積分回路10の出力を固定し、連続して胴体部の
引上げを行ない、重さ〜450gのInSb単結晶を得
た。得られた単結晶は肩部の直線的な広がり角度は〜1
4.5°であり、結晶表面も滑らかで双晶なしの良質な
結晶であった。
Next, as a specific example, a case in which an In8b single crystal, which is a l-V group single crystal, is manufactured using a single crystal manufacturing apparatus having the functions of the present invention will be described in detail. In Fig. 2, 50% of InSb polycrystalline raw material is placed in crucible 3 with a diameter of 75+wm.
0g was added and melted by heating to ~650°C. Next (211
) The seed crystal on the shaft was brought into contact with the melt 4 while rotating at 1° rpm, and then pulling was started at a speed of 10 m/h. At this time, the values of constants A and B in equation (3) are respectively A
=4.77X10/minsdeg, B=6.
It became 65×10 g/minedeg. Therefore, the shoulder formation angle θ was set to 15° and control of the shape of the shoulder was started. When the predetermined diameter was 35 fi, the switch S1 was opened to fix the output of the integrating circuit 10, and the body was continuously pulled up to obtain an InSb single crystal weighing ~450 g. The linear spread angle of the shoulder of the obtained single crystal is ~1
The angle was 4.5°, and the crystal surface was smooth and the crystal was of good quality without twins.

以上の制御方法によりInSb単結晶の製造を連続して
10回行なったところ、肩部の角度のずれはすべて±1
°以内であシ、そのうち8本は双晶なしの良質の単結晶
であった。
When InSb single crystal was manufactured 10 times in succession using the above control method, the angle deviation of the shoulder part was all ±1.
8 of them were good quality single crystals without twins.

なお、他の発明の実施例として第4図に示すようにコン
ピュータを利用して本発明の一連の槓能をソフト的に実
施した。図において、15はAD変換器、16はコンピ
ュータ、17はDA変換器である。
As another embodiment of the present invention, a series of functions of the present invention were implemented in software using a computer as shown in FIG. In the figure, 15 is an AD converter, 16 is a computer, and 17 is a DA converter.

以上説明したように本発明の方法によれば単結晶の形状
を極めて高精度に制御できることから、良質な単結晶を
歩留りよく製造することができる。
As explained above, according to the method of the present invention, the shape of a single crystal can be controlled with extremely high precision, so that a high quality single crystal can be manufactured with a high yield.

さらに、本実施例では述べていないが単結晶の尾部の形
状も同様に自動的に制御することができる。また、本発
明の方法は他のnt −v族単結晶。
Furthermore, although not described in this embodiment, the shape of the tail of the single crystal can also be automatically controlled in the same way. The method of the present invention can also be applied to other nt-v group single crystals.

例えば、GaAs、Garb、Ink−、GaP等や、
酸化物単結晶においても(3)式の定数A、Bを引上げ
条件に応じて定めることにより同様に適用できるもので
あり、その得る効果も大きい。
For example, GaAs, Garb, Ink-, GaP, etc.
The method can be similarly applied to oxide single crystals by determining the constants A and B in equation (3) depending on the pulling conditions, and the effect obtained is also large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は単結晶の形状と結晶重量の関係を説明するため
の図、第2図は本発明の一実施例を説明するための図、
第3図は本発明の機能の一構成例を説明するだめの図、
第4図は本発明の他の実施例を説明するための図である
。 1・・・容器、2・・・加熱ヒータ、3・・・ルツボ、
4・・・融液、5・・・結晶、6・・・引上げ軸、7・
・・重量検出器。 8・・・微分回路、9・・・演算回路、10・・・積分
回路。 11・・・偏差検出回路、12・・・調節形、13・・
・温調器、14・・・加熱装置、15・・・AD変換器
、16・・・コンピュータ、17・・・DA変換器。 代理人  弁理士 則 近 憲 佑(ほか1名)第  
2 図 第8図 第4図 手 続 補 正 書(方式) 1. 事件の表示 昭和57年特願第208481号 2、 発明の名称 単結晶の形状制御方法 3、 補正をする者 事件との関係 特許出願人 (307)東京芝浦電気株式会社 4、代理人 〒100 東京都千代田区内幸町1−1−6 昭和58年3月29日(発送日) 明細書の浄書(内容に変更なし) 以上
FIG. 1 is a diagram for explaining the relationship between the shape of a single crystal and the crystal weight, and FIG. 2 is a diagram for explaining an embodiment of the present invention.
FIG. 3 is a diagram for explaining one configuration example of the functions of the present invention,
FIG. 4 is a diagram for explaining another embodiment of the present invention. 1... Container, 2... Heater, 3... Crucible,
4... Melt, 5... Crystal, 6... Pulling shaft, 7...
...Weight detector. 8...Differential circuit, 9...Arithmetic circuit, 10...Integrator circuit. 11... Deviation detection circuit, 12... Adjustable type, 13...
- Temperature controller, 14... Heating device, 15... AD converter, 16... Computer, 17... DA converter. Agent: Patent Attorney Noriyuki Chika (and 1 other person) No.
2 Figure 8 Figure 4 Procedure Amendment (Method) 1. Display of the case Patent Application No. 208481 of 1988 2 Title of the invention Method for controlling the shape of single crystals 3 Person making the amendment Relationship to the case Patent applicant (307) Tokyo Shibaura Electric Co., Ltd. 4 Agent address 100 Tokyo 1-1-6 Uchisaiwai-cho, Chiyoda-ku, Miyako March 29, 1981 (shipment date) Engraving of detailed statement (no changes to the contents)

Claims (1)

【特許請求の範囲】 チョクラルスキー法によって引上げられた単結晶の重量
を検出し、その単結晶の形状制御を行なう単結晶の製造
方法において、前記単結晶の重量信号を時間微分する微
分回路と、該微分回路の出力である微分値dw/dtよ
シ下記関係式に基づいて演算する演算回路と、該演算回
路の出力である演算値d w/d t″を時間積分する
積分回路と、該積分回路の出力である積分値と前記微分
値の偏差を求める偏差検出回路とを備え、前記偏差を加
熱電力に帰還制御して単結晶の形状を制御することを特
徴とする単結晶の形状制御方法。 記 d!w/d t = (A−dw/d t+ts )・
θただし、A、Bは結晶及び融液の密度、引上は速度、
ルツボの半径から定まる屋敷、θは予め設定された肩部
形成角度である。
[Claims] A method for manufacturing a single crystal in which the weight of a single crystal pulled by the Czochralski method is detected and the shape of the single crystal is controlled, comprising: a differentiating circuit for differentiating a weight signal of the single crystal with respect to time; , an arithmetic circuit that calculates the differential value dw/dt, which is the output of the differentiating circuit, based on the following relational expression; an integrating circuit that integrates the calculated value dw/dt'', which is the output of the arithmetic circuit, over time; A shape of a single crystal characterized by comprising a deviation detection circuit for determining a deviation between an integral value that is an output of the integrating circuit and the differential value, and controlling the shape of the single crystal by feedback control of the deviation to heating power. Control method: d!w/dt = (A-dw/dt+ts)・
θ However, A and B are the density of the crystal and melt, the pulling speed is
θ is a preset shoulder forming angle determined from the radius of the crucible.
JP57208481A 1982-11-30 1982-11-30 Method for controlling shape of single crystal Granted JPS59102896A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57208481A JPS59102896A (en) 1982-11-30 1982-11-30 Method for controlling shape of single crystal
US06/543,046 US4591994A (en) 1982-11-30 1983-10-18 Method and apparatus for controlling shape of single crystal
DE8383306467T DE3380932D1 (en) 1982-11-30 1983-10-25 METHOD AND DEVICE FOR REGULATING THE SHAPE OF A SINGLE CRYSTAL.
EP83306467A EP0115121B1 (en) 1982-11-30 1983-10-25 Method and apparatus for controlling shape of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57208481A JPS59102896A (en) 1982-11-30 1982-11-30 Method for controlling shape of single crystal

Publications (2)

Publication Number Publication Date
JPS59102896A true JPS59102896A (en) 1984-06-14
JPH0416437B2 JPH0416437B2 (en) 1992-03-24

Family

ID=16556875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57208481A Granted JPS59102896A (en) 1982-11-30 1982-11-30 Method for controlling shape of single crystal

Country Status (4)

Country Link
US (1) US4591994A (en)
EP (1) EP0115121B1 (en)
JP (1) JPS59102896A (en)
DE (1) DE3380932D1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184798A (en) * 1983-04-04 1984-10-20 Agency Of Ind Science & Technol Preparation of group iii-v compound semiconductor single crystal
JPS63159288A (en) * 1986-12-23 1988-07-02 Toshiba Corp Production of single crystal
JP2004316405A (en) * 2003-04-14 2004-11-11 Teh Yor Industrial Co Ltd Venetian blind

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1207055B (en) * 1985-05-28 1989-05-17 Montedison Spa MICROPROCESSOR FOR VOLTAGE RAMP PROGRAMMERS TO OBTAIN MINIMUM PROGRAMMABLE VOLTAGE INCREASES OF THE ORDER OF MILLIVOLT.
JPS63242991A (en) * 1987-03-31 1988-10-07 Shin Etsu Handotai Co Ltd Method for controlling crystal diameter
US5196086A (en) * 1987-04-09 1993-03-23 Mitsubishi Materials Corporation Monocrystal rod pulled from a melt
USRE34375E (en) * 1987-05-05 1993-09-14 Mobil Solar Energy Corporation System for controlling apparatus for growing tubular crystalline bodies
GB8715327D0 (en) 1987-06-30 1987-08-05 Secr Defence Growth of semiconductor singel crystals
FR2621053A1 (en) * 1987-09-29 1989-03-31 Commissariat Energie Atomique METHOD FOR CONTROLLING SINGLE CRYSTAL DRAWING MACHINE
US4971652A (en) * 1989-12-18 1990-11-20 General Electric Company Method and apparatus for crystal growth control
JPH06102590B2 (en) * 1990-02-28 1994-12-14 信越半導体株式会社 Single crystal neck growth automatic control method by CZ method
FI911857A (en) * 1990-04-27 1991-10-28 Nippon Kokan Kk FOERFARANDE OCH APPARAT FOER KONTROLL AV DIAMETERN HOS EN ENSKILD SILIKONKRISTALL.
US5246535A (en) * 1990-04-27 1993-09-21 Nkk Corporation Method and apparatus for controlling the diameter of a silicon single crystal
JPH0785489B2 (en) * 1991-02-08 1995-09-13 信越半導体株式会社 Single crystal diameter measurement method
US5394830A (en) * 1993-08-27 1995-03-07 General Electric Company Apparatus and method for growing long single crystals in a liquid encapsulated Czochralski process
US6051064A (en) * 1998-08-20 2000-04-18 Seh America, Inc. Apparatus for weighing crystals during Czochralski crystal growing
US8721786B2 (en) * 2010-09-08 2014-05-13 Siemens Medical Solutions Usa, Inc. Czochralski crystal growth process furnace that maintains constant melt line orientation and method of operation
DE102017215332A1 (en) * 2017-09-01 2019-03-07 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A single crystal of <100> oriented silicon doped with n-type dopant and methods of producing such a single crystal

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131683A (en) * 1974-04-03 1975-10-17
JPS577116A (en) * 1980-06-16 1982-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon thin film

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1434527A (en) * 1972-09-08 1976-05-05 Secr Defence Growth of crystalline material
GB1465191A (en) * 1974-03-29 1977-02-23 Nat Res Dev Automatically controlled crystal growth
GB1478192A (en) * 1974-03-29 1977-06-29 Nat Res Dev Automatically controlled crystal growth
CH580805A5 (en) * 1975-04-14 1976-10-15 Prolizenz Ag
US4239583A (en) * 1979-06-07 1980-12-16 Mobil Tyco Solar Energy Corporation Method and apparatus for crystal growth control
US4234376A (en) * 1979-10-01 1980-11-18 Allied Chemical Corporation Growth of single crystal beryllium oxide
JPS57123892A (en) * 1981-01-17 1982-08-02 Toshiba Corp Preparation and apparatus of single crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50131683A (en) * 1974-04-03 1975-10-17
JPS577116A (en) * 1980-06-16 1982-01-14 Matsushita Electric Ind Co Ltd Manufacture of amorphous silicon thin film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59184798A (en) * 1983-04-04 1984-10-20 Agency Of Ind Science & Technol Preparation of group iii-v compound semiconductor single crystal
JPS6339557B2 (en) * 1983-04-04 1988-08-05 Kogyo Gijutsuin
JPS63159288A (en) * 1986-12-23 1988-07-02 Toshiba Corp Production of single crystal
JP2004316405A (en) * 2003-04-14 2004-11-11 Teh Yor Industrial Co Ltd Venetian blind

Also Published As

Publication number Publication date
EP0115121A2 (en) 1984-08-08
DE3380932D1 (en) 1990-01-11
JPH0416437B2 (en) 1992-03-24
US4591994A (en) 1986-05-27
EP0115121A3 (en) 1987-01-21
EP0115121B1 (en) 1989-12-06

Similar Documents

Publication Publication Date Title
JPS59102896A (en) Method for controlling shape of single crystal
CN100371507C (en) System and method for controlling the isodiametric growth of crystal
US6776840B1 (en) Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process
JPH0438719B2 (en)
Bardsley et al. The weighing method of automatic Czochralski crystal growth: II. control equipment
CN112064109A (en) Control method for crystal growth shouldering shape of semiconductor silicon material crystal
JPS5848517B2 (en) How do you know what to do?
JPH01148778A (en) Method for controlling floating zone
JPS6033291A (en) Preparation of single crystal silicon
CN115044967A (en) Monocrystalline silicon crystal pulling control method and device and monocrystalline silicon crystal pulling furnace
JPH04219388A (en) Control of diameter of silicon single crystal and apparatus therefor
JPH01212291A (en) Method and apparatus for growing crystal
JPS6054994A (en) Production of compound semiconductor crystal
JPS63295493A (en) Method for pulling up single crystal
JPS6330394A (en) Method for growing single crystal
JPS63274687A (en) Method and device for controlling diameter of single crystal
JPS635360B2 (en)
JPS5935879B2 (en) Method for manufacturing compound semiconductor single crystal
JPS6131384A (en) Process for growing compound semiconductor single crystal
JPH01188490A (en) Method for growing single crystal
JPS63139090A (en) Method for growing single crystal
JPS60246294A (en) Method for growing single crystal
JPH0512310B2 (en)
JPH01126294A (en) Production of single crystal
JPH078754B2 (en) Single crystal manufacturing method