JPS63139090A - Method for growing single crystal - Google Patents
Method for growing single crystalInfo
- Publication number
- JPS63139090A JPS63139090A JP28479386A JP28479386A JPS63139090A JP S63139090 A JPS63139090 A JP S63139090A JP 28479386 A JP28479386 A JP 28479386A JP 28479386 A JP28479386 A JP 28479386A JP S63139090 A JPS63139090 A JP S63139090A
- Authority
- JP
- Japan
- Prior art keywords
- crystal
- single crystal
- diameter
- frequency power
- growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title claims description 21
- 238000002109 crystal growth method Methods 0.000 claims description 4
- 239000000463 material Substances 0.000 abstract description 6
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052593 corundum Inorganic materials 0.000 abstract description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract description 2
- 238000006243 chemical reaction Methods 0.000 abstract 1
- 238000005303 weighing Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004033 diameter control Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- PLDDOISOJJCEMH-UHFFFAOYSA-N neodymium oxide Inorganic materials [O-2].[O-2].[O-2].[Nd+3].[Nd+3] PLDDOISOJJCEMH-UHFFFAOYSA-N 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は高品質YAG(Y2Al5O12) !L結晶
あるいはNd:YAG(YAG l: Nd2O3をド
ープ)単結晶の育成における引上げ開始以後肩出し迄の
形状制御に関する。[Detailed Description of the Invention] (Industrial Application Field) The present invention is a high quality YAG (Y2Al5O12)! This invention relates to shape control from the start of pulling to shoulder extension in the growth of L crystal or Nd:YAG (YAG l: Nd2O3 doped) single crystal.
(従来の技術)
Nd:YAG単結晶の作成は通常引き上げ法(チョクラ
ルスキ法)によって行われている。引き上げ法で単結晶
を作成する場合の技術課題は第1に目的に合致する良質
な結晶を作成すること、第2に所定の直径を有する長い
結晶を作成することである。第1の。(Prior Art) Nd:YAG single crystals are usually produced by a pulling method (Czochralski method). The technical issues when producing a single crystal by the pulling method are firstly to produce a high-quality crystal that meets the purpose, and secondly to produce a long crystal with a predetermined diameter. First.
課題に関しては高純度原料の使用、育成時の雰囲気や温
度の安定化、圧力制御などがある。第2の課題に関して
は重量法あるいは光学法による自動育成方法がいくつか
提案されている。それはメカニカルラインをレーザ光線
で照射しつつ引き上げを行う方法(特開昭59−549
4)重量減少量の微分値に対応した基準電圧発生機構を
もつ方法(特公昭54−4345)、重量信号の精度を
上げるためにロードセルの温度を一定に保つ方法(特公
昭54−4771)である。Challenges include the use of high-purity raw materials, stabilization of the atmosphere and temperature during growth, and pressure control. Regarding the second problem, several automatic growth methods using gravimetric methods or optical methods have been proposed. It is a method of pulling up a mechanical line while irradiating it with a laser beam (Japanese Patent Laid-Open No. 59-549
4) A method of having a reference voltage generation mechanism corresponding to the differential value of the amount of weight reduction (Japanese Patent Publication No. 54-4345), and a method of keeping the temperature of the load cell constant to improve the accuracy of the weight signal (Japanese Patent Publication No. 54-4771). be.
これらはいずれも自動育成システムの構成を示すもので
あって直径制御に対する具体的制御特に引上げ開始して
から直胴部に入る(肩の部分)部分の形状制御方法は何
ら示されていない。更に高品質Nd:YAG単結晶の育
成の自動直径制御の実施例はなくもちろん発表された例
もない。即ちNd:YAG単結晶は非常に高い温度でし
かも引上げ速度が遅い(0゜5〜1mm/ur)ことや
、結晶の長さ方向に使用するため、長期安定の高信頼性
システムの開発が必要なため自動育成は困難とされてい
るのが実情である。従ってNd:YAG単結晶の育成は
熟練された経験者によって行われている。These all show the configuration of an automatic growing system, and do not show any specific control method for controlling the diameter, especially the shape control method for the part that enters the straight trunk (shoulder part) after the start of pulling. Furthermore, there are no practical examples of automatic diameter control for growing high-quality Nd:YAG single crystals, and of course, no examples have been published. In other words, since the Nd:YAG single crystal is pulled at a very high temperature and at a slow pulling speed (0°5 to 1 mm/ur), and because it is used in the length direction of the crystal, it is necessary to develop a highly reliable system that is stable over a long period of time. Therefore, the reality is that automatic training is considered difficult. Therefore, the growth of Nd:YAG single crystals is carried out by skilled and experienced persons.
(発明が解決しようとする問題点)
Nd:YAG単結晶の育成温度が、他の酸化物単結晶(
例えばGGG等)に比べ非常に高いために保温耐火物の
材質や構成の少しの変化でも温度の履歴に関与してくる
。このため種付の温度が毎回具ると共に肩の形状制御方
法も異って来る。特にNd:YAG単結晶は熱的変化に
非常に敏感である。このためより安定を保つために耐火
物構成はより複雑化すると共に結晶の監視窓が非常に小
さくなり育成状態を見るのが困難と成っている。この様
な状況下に於いて、結晶育成は作業者が長年の経験を基
に重量変化等を参考に肩作り、あるいは直径制御を行っ
ていた。従って熟練者であっても肩作りの形状制御に失
敗することもあり、当然ながら未経験者ではNd:YA
G単結晶の育成は困難である。特に高品質は単結晶の育
成するのは不可能であった。(Problem to be solved by the invention) The growth temperature of the Nd:YAG single crystal is higher than that of other oxide single crystals (
For example, GGG, etc.), it is extremely high compared to GGG, etc.), so even the slightest change in the material or composition of the heat-insulating refractory will affect the temperature history. For this reason, the seeding temperature is different every time, and the shoulder shape control method is also different. In particular, Nd:YAG single crystals are very sensitive to thermal changes. For this reason, in order to maintain stability, the refractory structure has become more complex, and the monitoring window for crystals has become extremely small, making it difficult to observe the growth state. Under these circumstances, when growing crystals, workers used their many years of experience to create shoulders or control diameters based on changes in weight, etc. Therefore, even an experienced person may fail to control the shape of the shoulders, and of course, an inexperienced person may fail to control the shape of the shoulders.
Growing G single crystals is difficult. In particular, it was impossible to grow single crystals of high quality.
本発明の目的はこの問題を解決し、誰でも再現性よく肩
作りの形状制御が出来る方法を提供するものである。The purpose of the present invention is to solve this problem and provide a method that allows anyone to control the shape of shoulder construction with good reproducibility.
(問題点を解決するための手段)
本発明は単結晶育成中の重量変化および高周波電力の検
出を可能にし、肩作りの形状制御条件を育成中に決め、
又制御できるチョクラルスキー法による単結晶育成方法
において、育成結晶の重量変化を随時検出しながら結晶
径(Di)を算出し、このDiと目標の径(Dx)とが
Dx−a≦Di < Dx + β(但し、αは0〜1
5%、pは0〜10%)以外のときDxをDx = D
iに設定し以後のあらかじめ決定したプログラムのDx
を修正しながら育成すること特徴とする単結晶育成方法
。(Means for Solving the Problems) The present invention enables detection of weight changes and high frequency power during single crystal growth, determines shape control conditions for shoulder formation during growth,
In addition, in a controllable single crystal growth method using the Czochralski method, the crystal diameter (Di) is calculated while constantly detecting changes in the weight of the grown crystal, and this Di and the target diameter (Dx) are determined so that Dx-a≦Di< Dx + β (however, α is 0 to 1
5%, p is 0 to 10%), Dx = D
Dx of the predetermined program after setting to i
A single crystal growth method characterized by growing while modifying.
(作用)
本発明は上述の構成、方法によって高品質Nd:YAG
単結晶の理想的な肩作りの形状制御を行う方法を得た。(Function) The present invention utilizes the above-described structure and method to produce high-quality Nd:YAG.
We have found a method to control the ideal shoulder shape of single crystals.
本発明者等は理想的な肩作りの形状制御を行うために、
育成された単結晶の径の変化と高周波電力の関係につい
て詳細に分析しかつ、種々の研究を行った。この結果そ
れまでの結晶の変化と高周波電力の変化から、一定条件
の高周波電力の制御と平行して、目標の径を変更しなが
ら形状制御を行うと高品質Nd:YAG単結晶の育成が
理想的に出来ることが明らかとなった。目標の径(Dx
)に対する高周波電力の関係は、育成結晶の径(Di)
がDxより小さい場合は高周波電力を一定あるいは減少
させ逆に、DiがDxより大きい場合は高周波電力を大
きくしなければならない。この高周波電力の大きさはD
xとDiとの差によって決定されるが、高周波電力の変
化量を大きくすると、Nd:YAG単結晶の品質が著し
く劣化する。更に極端な場合には破損してしまうことが
明らかとなった。したがって高品質を保ちながら結晶径
を制御するためには高周波電力の変化量をある一定条件
下で±0.05%以内あるいは2%脂以内で行う必要が
生じた。そこで高周波電力の一定条件で形状制御出来る
範囲をDiとDxとの差、すなわちα、i3について詳
細に分析した。In order to control the shape of ideal shoulder construction, the present inventors
We analyzed in detail the relationship between the change in the diameter of the grown single crystal and high-frequency power, and conducted various studies. As a result, from the changes in the crystal and the changes in high-frequency power, it is ideal to grow high-quality Nd:YAG single crystals by controlling the shape while changing the target diameter in parallel with controlling the high-frequency power under certain conditions. It became clear that it could be done. Target diameter (Dx
) is the relationship between the high frequency power and the diameter of the grown crystal (Di).
When Di is smaller than Dx, the high frequency power must be kept constant or decreased, and conversely, when Di is larger than Dx, the high frequency power must be increased. The magnitude of this high frequency power is D
Although it is determined by the difference between x and Di, when the amount of change in high frequency power is increased, the quality of the Nd:YAG single crystal deteriorates significantly. It has become clear that in even more extreme cases, it will break. Therefore, in order to control the crystal diameter while maintaining high quality, it has become necessary to vary the amount of high frequency power within ±0.05% or within 2% fat under certain conditions. Therefore, the range in which the shape can be controlled under certain conditions of high-frequency power was analyzed in detail with respect to the difference between Di and Dx, that is, α and i3.
この結果、第1図(a)のようにDxに対してαは0〜
15%、pは0〜10%以内であれば品質を保証した形
状制御が出来ることを見い出した。このことによってD
iがDx−α≦Di≦Dx+p以外のときは、Dxに近
ずけるための高周波電力の変化が一定条件より大きくな
り品質が著しく劣化することも明確になった。更に、α
、βの値は、引き上げ開始してからの経歴(耐火物の劣
化や熱的環境の変化等)によって、変化することも明ら
かとなった。そこでDiがDx−α≦Di≦Dx+β以
外のときも、品質を保証するための制御方法を検討した
。この結果DiがDx−α≦Di≦Dx+β以外のとき
にはDxをDx = Diに設定しく第1図b)新たに
今後目標とするDxのプログラムを作り出し、このプロ
グラムに従って形状制御をした場合に、高周波電力の変
化は一定条件下で行うことが出来た。これによって、高
品質な結晶を得た。As a result, α is 0 to Dx as shown in Figure 1(a).
It has been found that shape control with guaranteed quality can be achieved if p is within 0 to 10%. By this D
It has also become clear that when i is other than Dx-α≦Di≦Dx+p, the change in high-frequency power for approaching Dx becomes larger than a certain condition, and the quality deteriorates significantly. Furthermore, α
It has also become clear that the values of , β change depending on the history (deterioration of refractories, changes in the thermal environment, etc.) after the start of pulling. Therefore, we investigated a control method to ensure quality even when Di is other than Dx-α≦Di≦Dx+β. As a result, when Di is other than Dx-α≦Di≦Dx+β, Dx should be set to Dx = Di. (Figure 1b) If you create a new program for Dx to be the target in the future and perform shape control according to this program, high frequency Changes in power could be made under certain conditions. As a result, high quality crystals were obtained.
以上述べたように本発明の単結晶の育成方法特に肩作り
の形状制御方法を用いれば誰でも理想的に肩作りをする
事ができしかも良質な結晶が育成が可能であるためその
工業的利用価値は大きい。As mentioned above, by using the single crystal growing method of the present invention, especially the shape control method for shoulder making, anyone can ideally make the shoulder, and high quality crystals can be grown, so that it can be used industrially. Great value.
次に実施例をもって本発明を説明する。Next, the present invention will be explained with reference to examples.
(実施例)
第2図の単結晶育成装置の85φX 100h X 1
.7tのIrルツボ1にNd:YAG単結晶原料(高純
度Al2O3,Y2O3+: 0゜8at%Ndをドー
プしそれぞれ適当量秤量し混合した)を2100g加え
保温耐火物を設置し、高周波コイル3の中心に設けた。(Example) 85φX 100h X 1 of the single crystal growth apparatus shown in Figure 2
.. Add 2100 g of Nd:YAG single crystal raw material (high purity Al2O3, Y2O3+: doped with 0°8 at% Nd, weighed and mixed appropriate amounts of each) to a 7 ton Ir crucible 1, installed a heat-retaining refractory, and placed the center of the high frequency coil 3. It was established in
パーソナルコンピュータ5の指令によって、D/A変換
回路7を介しアナログコントローラ8、高周波発振器9
によって高周波コイル3に電力が加わりIrルツボ内の
原料1を熔解した。次にYAG単結晶(Ndドープして
いない)を種結晶<111>とし、前記溶液に浸し、最
適な温度条件であることを確認し、引上げを開始した。In response to a command from the personal computer 5, the analog controller 8 and the high frequency oscillator 9 are connected via the D/A converter circuit 7.
Electric power was applied to the high frequency coil 3 to melt the raw material 1 in the Ir crucible. Next, a YAG single crystal (not doped with Nd) was used as a seed crystal <111>, immersed in the solution, and after confirming that the temperature conditions were optimal, pulling was started.
引上げ速度1mm/nrで回転速度は2Orpmとした
。引上げ開始してから育成結晶の太り方が約30°にな
るように目標とする径(Dx)のプログラムを設定しロ
ードセルからの信号4、あるいは真空熱電対10からの
信号を用いパーソナルコンピュータで高周波電力の出力
を制御している。引上げ開始してから10時間後にDx
は12.5φに対し、結晶径(Di)はβ.8φとなっ
た。このため、高周波電力の出力変化率をβ11v/h
rから15pv/hrに変更すると共にDxをβ.8φ
とし以後のDxのプログラムを修正した。更に28時間
後にDxは28φに対し、Diは25φとなったため高
周波電力の出力変化率を18pv/hrから12pv/
hrに変更すると共にDxを25Φとし以後のDxのプ
ログラムを修正した。The pulling speed was 1 mm/nr and the rotation speed was 2 Orpm. Set the target diameter (Dx) program so that the grown crystal thickens by approximately 30 degrees after starting pulling, and use the signal 4 from the load cell or the signal from the vacuum thermocouple 10 to generate a high frequency signal using a personal computer. Controls power output. Dx 10 hours after starting pulling
is 12.5φ, while the crystal diameter (Di) is β. It became 8φ. For this reason, the output change rate of high frequency power is β11v/h
r to 15 pv/hr and Dx to β. 8φ
The Dx program after that was corrected. Furthermore, after 28 hours, Dx became 28φ and Di became 25φ, so the output change rate of high frequency power was changed from 18 pv/hr to 12 pv/hr.
At the same time as changing to hr, Dx was changed to 25Φ and the subsequent Dx program was modified.
33時間後にDiが30φに達したため肩出しを行いパ
ーソナルコンピュータ5で径の制御を行いながら約16
0時間後結晶を切り離し育成を終了した。育成された結
晶は角のない非常に滑らかな贋作がされており、更に、
結晶から切り出したロッド(4ΦX10mm)を位相差
により複屈折測定すると4n=IX10−7以下が得ら
れ、光学歪の非常に少ない高品質なNd:YAG単結晶
が得られた。After 33 hours, Di reached 30φ, so I opened my shoulder and controlled the diameter with personal computer 5 while measuring about 16mm.
After 0 hours, the crystal was separated and the growth was completed. The grown crystal is a very smooth counterfeit without any corners, and furthermore,
When the birefringence of a rod (4Φ×10 mm) cut out from the crystal was measured by phase difference, 4n=IX10-7 or less was obtained, and a high-quality Nd:YAG single crystal with very little optical distortion was obtained.
(発明の効果)
本発明によれば誰でも理想的な肩作りが可能であり、か
つ自動育成に有効である。(Effects of the Invention) According to the present invention, anyone can build ideal shoulders, and it is effective for automatic growth.
第1図(aXb)は本発明である肩作りの形状制御を説
明する図、第2図は単結晶育成装置の例を示す図、1は
Irルツボ、2はNd:YAG単結晶、3は高周波コイ
ル、4はロードセル、5はパーソナルコンピュータ、6
はA/D変換器、7はD/A変換器、8はアナログコン
トローラ、9は高周波発振器、1oは真空熱電対である
。
l
第1図
時間(1)
時間(1)Figure 1 (aXb) is a diagram explaining the shape control of shoulder making according to the present invention, Figure 2 is a diagram showing an example of a single crystal growth apparatus, 1 is an Ir crucible, 2 is a Nd:YAG single crystal, 3 is a diagram showing an example of a single crystal growth apparatus. High frequency coil, 4 is a load cell, 5 is a personal computer, 6
is an A/D converter, 7 is a D/A converter, 8 is an analog controller, 9 is a high frequency oscillator, and 1o is a vacuum thermocouple. l Figure 1 Time (1) Time (1)
Claims (1)
じめ決定したプログラムにそって変化させて結晶制御を
行うチョクラルスキ法による単結晶育成方法において、
育成中の結晶径を定められた結晶径(Dx)に制御する
ため、結晶重量変化から結晶径(Di)を算出し、Di
がDx−α≦Di≦Dx+β(但し、αはDxの0〜1
5%、βはDxの0〜10%以外のときDxをDx=D
iと設定した後、あらかじめ決定したプログラムのDx
を修正しながら育成することを特徴とする単結晶育成方
法。In the single crystal growth method using the Czochralski method, which detects the weight of the single crystal during growth and controls the crystal by changing the rate of increase according to a predetermined program,
In order to control the crystal diameter during growth to a predetermined crystal diameter (Dx), the crystal diameter (Di) is calculated from the change in crystal weight, and Di
is Dx-α≦Di≦Dx+β (however, α is 0 to 1 of Dx
5%, β is other than 0 to 10% of Dx, Dx = D
After setting i, Dx of the predetermined program
A single crystal growth method characterized by growing while modifying.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28479386A JPH07513B2 (en) | 1986-11-28 | 1986-11-28 | Single crystal growth method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP28479386A JPH07513B2 (en) | 1986-11-28 | 1986-11-28 | Single crystal growth method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63139090A true JPS63139090A (en) | 1988-06-10 |
JPH07513B2 JPH07513B2 (en) | 1995-01-11 |
Family
ID=17683092
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP28479386A Expired - Lifetime JPH07513B2 (en) | 1986-11-28 | 1986-11-28 | Single crystal growth method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07513B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020083714A (en) * | 2018-11-28 | 2020-06-04 | 住友金属鉱山株式会社 | Production method of oxide single crystal, and crystal growth apparatus |
-
1986
- 1986-11-28 JP JP28479386A patent/JPH07513B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020083714A (en) * | 2018-11-28 | 2020-06-04 | 住友金属鉱山株式会社 | Production method of oxide single crystal, and crystal growth apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPH07513B2 (en) | 1995-01-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chani et al. | Growth of Y3Al5O12: Nd fiber crystals by micro-pulling-down technique | |
WO2010048790A1 (en) | A method for controlling czochralski crystal growth | |
JPS63242991A (en) | Method for controlling crystal diameter | |
JPS59102896A (en) | Method for controlling shape of single crystal | |
JPS63139090A (en) | Method for growing single crystal | |
JPS6330394A (en) | Method for growing single crystal | |
JPS63139091A (en) | Method for growing single crystal | |
JPH01188488A (en) | Method for growing single crystal | |
JPS63139092A (en) | Method for growing single crystal | |
JPH01212291A (en) | Method and apparatus for growing crystal | |
JPH01188489A (en) | Method for growing single crystal | |
JPH01208392A (en) | Growth of single crystal | |
JPS6054994A (en) | Production of compound semiconductor crystal | |
US5476064A (en) | Pull method for growth of single crystal using density detector and apparatus therefor | |
JPH07514B2 (en) | Single crystal growth method | |
JPH01208391A (en) | Growth of single crystal | |
JPH069290A (en) | Method for growing compound semiconductor single crystal | |
JPH01208390A (en) | Growth of single crystal | |
JP2811826B2 (en) | Single crystal growing apparatus and single crystal growing method | |
JPS6221790A (en) | Device for crystal growth and method | |
JP2741747B2 (en) | Oxide single crystal and method for producing the same | |
JPH078754B2 (en) | Single crystal manufacturing method | |
JPH02275794A (en) | Automatical single crystal-growing device | |
JPS635360B2 (en) | ||
JPS6011297A (en) | Method and device for controlling growth of crystal |