JPH07514B2 - Single crystal growth method - Google Patents

Single crystal growth method

Info

Publication number
JPH07514B2
JPH07514B2 JP63013066A JP1306688A JPH07514B2 JP H07514 B2 JPH07514 B2 JP H07514B2 JP 63013066 A JP63013066 A JP 63013066A JP 1306688 A JP1306688 A JP 1306688A JP H07514 B2 JPH07514 B2 JP H07514B2
Authority
JP
Japan
Prior art keywords
single crystal
crystal
growth
weight
pulling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63013066A
Other languages
Japanese (ja)
Other versions
JPH01188490A (en
Inventor
兼雄 上原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP63013066A priority Critical patent/JPH07514B2/en
Publication of JPH01188490A publication Critical patent/JPH01188490A/en
Publication of JPH07514B2 publication Critical patent/JPH07514B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は高品質YAG(Y3Al5O12)単結晶あるいはNd:YAG
(YAGにNd2O3をドープ)単結晶の育成における直胴部の
直径制御に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a high-quality YAG (Y 3 Al 5 O 12 ) single crystal or Nd: YAG.
Controlling the diameter of the straight body part in the growth of a single crystal (Yd doped with Nd 2 O 3 ).

(従来の技術) Nd:YAG単結晶の育成は通常引き上げ法(チョクラルスキ
ー法)によって行なわれている。引き上げ法で単結晶を
育成する場合の技術課題は第1に目的に合致する良質な
結晶を育成すること、第2に所定の直径を有する結晶を
育成することである。第1の課題に関しては高純度原料
の使用,育成時の雰囲気や温度の安定化,圧力制御など
がある。第2の課題に関しては重量法あるいは光学法に
よる自動育成方法がいくつか提案されている。それはメ
ニスカスラインをレーザ光線で照射しつつ引き上げを行
う方法(特開昭59−5494),重量減少量の微分値に対応
した基準電圧発生機構をもつ方法(特公昭54−4345),
重量信号の精度を上げるためにロードセルの温度を一定
に保つ方法(特公昭54−4771)である。これらはいずれ
も自動育成システムの構成を示すものであって、直径制
御に対する具体的制御方法は何ら示されていない。更に
高品質Nd:YAG単結晶の育成の自動直径制御の実施例はな
くもちろん発表された例もない。即ち、Nd:YAG単結晶は
非常に高い温度でしかも引上げ速度が遅い(0.5〜1mm/h
r)ことや、結晶の長さ方向に使用するため、長期安定
の高信頼性システムの開発が必要なため自動育成は困難
とされているのが実情である。従って、Nd:YAG単結晶の
育成は熟練された径験者によって行なわれている。
(Prior Art) Nd: YAG single crystal is normally grown by the pulling method (Czochralski method). The technical problems in growing a single crystal by the pulling method are firstly to grow a good quality crystal that meets the purpose and secondly to grow a crystal having a predetermined diameter. The first issue is the use of high-purity raw materials, stabilization of the atmosphere and temperature during growth, and pressure control. With respect to the second problem, some automatic growing methods using a weight method or an optical method have been proposed. It is a method of pulling up while irradiating a meniscus line with a laser beam (Japanese Patent Laid-Open No. 59-5494), a method having a reference voltage generating mechanism corresponding to the differential value of the weight reduction amount (Japanese Patent Publication No. 54-4345),
This is a method of keeping the temperature of the load cell constant in order to improve the accuracy of the weight signal (Japanese Patent Publication No. 54-4771). All of these show the configuration of the automatic growing system, and no specific control method for the diameter control is shown. Furthermore, there is no example of automatic diameter control for growing high-quality Nd: YAG single crystal, and of course, no example has been published. That is, Nd: YAG single crystal has a very high temperature and a slow pulling rate (0.5 to 1 mm / h).
r) and because it is used in the length direction of the crystal, it is necessary to develop a highly reliable system that is stable for a long period of time, and it is said that automatic growth is difficult. Therefore, the growth of Nd: YAG single crystal is performed by a trained technologist.

(発明が解決しようとする問題点) Nd:YAG単結晶は育成温度が高く(1970℃)しかも、育成
時間が非常に長い(300H)ために、保温耐火物の材質や
構成の少しの変化でも温度の履歴に関与してくる。しか
もNd:YAG単結晶は熱的変化に非常に敏感である。このた
めより安定を保つために耐火物の構成はより複雑化する
と共に結晶の監視窓が非常に小さくなり育成状態を見る
のが困難となっている。この様な状況下に於いての結晶
育成は、作業者が長年の経験を基に重量変化等を参考に
直径の制御を行なっていた。このため熟練者であっても
常時監視することはむずかしく、直径制御に失敗し、結
晶品質の低下や、デコボコの激しい結晶が育成される場
合も多々見られた。当然ながら未経験者ではNd:YAG単結
晶の育成は困難で高品質は単結晶の育成は不可能に近か
った。
(Problems to be solved by the invention) Nd: YAG single crystal has a high growth temperature (1970 ° C) and a very long growth time (300H), so even if the material or composition of the heat insulating refractory is slightly changed. Involved in temperature history. Moreover, Nd: YAG single crystals are very sensitive to thermal changes. Therefore, in order to keep the stability, the refractory structure becomes more complicated, and the crystal monitoring window becomes very small, making it difficult to see the growth state. In the crystal growth under such a situation, the operator controls the diameter with reference to the weight change based on many years of experience. For this reason, it is difficult for even a skilled person to constantly monitor, and it is often observed that the diameter control fails, the crystal quality is deteriorated, and a crystal with a severe unevenness is grown. Naturally, it was difficult for an inexperienced person to grow an Nd: YAG single crystal, and it was almost impossible to grow a single crystal with high quality.

本発明の目的はこの問題を解決し、誰れでも再現性よく
直径制御が出来、しかも高品質な単結晶を育成出来る方
法を提供することである。
An object of the present invention is to solve this problem and to provide a method by which anyone can control the diameter with good reproducibility and can grow a high quality single crystal.

(問題点を解決するための手段) 本発明は、高周波コイルに真空熱電対を有しmV設定値
(M1)に真空熱電対の起電力を近ずけるように高周波発
振器の供給電力を制御するアナログコントローラが付属
する高周波加熱炉を用いて単結晶育成中の重量変化およ
び高周波電力の検出を可能にし直胴部の直径制御ができ
るチョクラルスキー法による単結晶育成方法において、
育成中の結晶重量(Wi)が目標重量(Wx)に対してWx+
(0.001〜0.02)×Wx<WiのときV0=V01×Wi×k/Wx(但
し、V01は直前のM1のの変化量であり、kは0〜3であ
る)を算出すると共にV0がV0>αのときのみV0=αに設
定する。このαは引上げ長さ(l)によって決定され
る。lが0<l≦l1のときV0=30〜50μv/hr,l1<l≦l
2のときV0=20〜30μv/hr,l2<l≦l3のときV0=15〜25
μv/hr,l3<lのときV0=5〜20μv/hr(但し、l1,l2,l
3はそれぞれ育成中の結晶の長さであってl1=0〜45mm,
l2=45〜75mm,l3=75〜110mmである。)に設定すること
を特徴とする。
(Means for Solving Problems) The present invention has a high-frequency coil having a vacuum thermocouple and controls the power supplied to the high-frequency oscillator so that the electromotive force of the vacuum thermocouple approaches the mV setting value (M 1 ). In the single crystal growth method by the Czochralski method that enables the weight change during the single crystal growth and the high frequency power detection using the high frequency heating furnace with the attached analog controller to control the diameter of the straight body,
The crystal weight (Wi) during growth is Wx + relative to the target weight (Wx)
(0.001~0.02) × Wx <V 0 = V 01 × Wi × k / Wx when Wi (where, V 01 is the change amount of the M 1 immediately before, k is a is 0 to 3) to calculate the Also, set V 0 = α only when V 0 is V 0 > α. This α is determined by the pulling length (l). When l is 0 <l ≦ l 1 , V 0 = 30 to 50 μv / hr, l 1 <l ≦ l
When 2 is V 0 = 20 to 30 μv / hr, l 2 <l ≦ l 3 is V 0 = 15 to 25
When μv / hr, l 3 <l, V 0 = 5 to 20 μv / hr (however, l 1 , l 2 , l
3 is the length of the growing crystal, l 1 = 0 to 45 mm,
l 2 = 45 to 75 mm and l 3 = 75 to 110 mm. ) Is set to.

(作 用) 本発明者等は理想的な直径制御を行なうために、育成さ
れた単結晶の直径の変化と高周波電力更に結晶品質の関
係について詳細に分析しかつ、種々の研究を行なった。
この結果これまでの結晶の変化と高周波電力の変化か
ら、直径制御を行なうには目標重量(Wx)と結晶重量
(Wi)との差に応じた高周波電力を制御することによっ
て可能となることが明らかとなった。目標の結果重量
(Wx)に対する高周波電力の関係は、育成結晶の重量
(Wi)がWxより小さい場合には高周波電力を一定あるい
は減少させ、逆にWiがWxより大きい場合は高周波電力を
大きくしなければならない。この高周波電力の大きさは
WxとWiとの差によって決定されるが、高周波電力の変化
量が大きすぎると、Nd:YAG単結晶の凹凸が激くなり同時
に品質が著るしく劣化することが判り、更に極端な場合
には気泡あるいはクラックが発生することも明らかと成
った。従って、高品質を保ちながら結晶直径を制御する
ためには、高周波電力の変化量を極力小さくすると共に
増加,減少等の振巾が連続して起らないようにする必要
が生じた。そこで上述条件で直径制御できる方法を得る
ために、WxとWiとの差が何によって生ずるか検討した。
この結果、引上げ装置の熱的環境の変化によって、Wiが
変化することが明らかとなった。この熱的環境には、
耐火物の長時間使用に伴う劣化,結晶成長に伴う結晶
からの放熱,溶液の減少,育成雰囲気の変化,育成
システムの環境変化等が考えられた。これらの変化は急
激に起らないが育成時間即ち、結晶の引上げ長さに依存
することが多くの実験から得られた。これは引上げ初期
の熱的変化は非常に大きいが結晶が長くなるに従いその
変化は少なくなってくる。又結晶品質は、高周波電力の
変化量と引上げ長さ時間にも関係しており、引上げ長さ
が長くなるほど電力変化の影響を受け易い。このため高
品質を保つために引上げ長さによって高周波電力の制御
方法を変える必要があることが明らかとなった。
(Operation) In order to perform ideal diameter control, the present inventors have analyzed in detail the relationship between the diameter change of the grown single crystal, the high frequency power and the crystal quality, and conducted various studies.
As a result, from the changes in the crystal and the changes in the high-frequency power, it is possible to control the diameter by controlling the high-frequency power according to the difference between the target weight (Wx) and the crystal weight (Wi). It became clear. The relationship between the target result weight (Wx) and the high frequency power is to keep the high frequency power constant or decrease when the weight (Wi) of the grown crystal is smaller than Wx, and to increase the high frequency power when Wi is larger than Wx. There must be. The magnitude of this high frequency power is
It is determined by the difference between Wx and Wi, but if the amount of change in high-frequency power is too large, it becomes clear that the unevenness of the Nd: YAG single crystal becomes severe and at the same time the quality deteriorates significantly. It also became clear that bubbles or cracks occurred. Therefore, in order to control the crystal diameter while maintaining high quality, it is necessary to minimize the amount of change in high-frequency power and to prevent continuous fluctuations such as increase and decrease. Therefore, in order to obtain a method capable of controlling the diameter under the above conditions, we examined what causes the difference between Wx and Wi.
As a result, it was clarified that Wi changes depending on the thermal environment of the pulling device. In this thermal environment,
It was considered that the refractory material deteriorated with long-term use, the heat was released from the crystal due to crystal growth, the amount of solution decreased, the growth atmosphere changed, and the environment of the growth system changed. It was found from many experiments that these changes did not occur rapidly, but depended on the growth time, that is, the pulling length of the crystal. This is because the thermal change in the initial stage of pulling is very large, but the change becomes smaller as the crystal becomes longer. The crystal quality is also related to the amount of change in high-frequency power and the pulling length time, and the longer the pulling length, the more susceptible it is to power changes. Therefore, it became clear that the control method of high frequency power needs to be changed depending on the pulling length in order to maintain high quality.

一方結晶直径を一定に保つための高周波電力の制御電圧
の変化量(V0)の設定はWxとWiの比によって決定され
る。このV0で育成が行なわれこれによりWiが修正され
る。しかし以後補正を必要としない状況が継続すれば良
いが前述の様な熱的環境の変化等によってWiが変化する
のが実状である。このためWiがWxに対しWx+(0.001〜
0.02)×Wx<Wiなる条件が連続して起きると、V0は加速
的に大きくなってしまう。この結果、Wiが急激に減少し
てしまい結晶直径の変動は非常に大きくなると同時に、
結晶品質が悪くなる。このためV0の大きさを限定する必
要が生じた。又、上述,の経時変化から結晶の引上
げ長さによってもV0を限定する必要があることを見い出
した。V0の上限の設定は、育成時の高周波電力(制御電
圧)を調べその電圧変化から求めることが出来る。電圧
変化曲線を直線近似すると第2図の〜の曲線が得ら
れその直線の勾配とそれぞれの直線の交差する点即ち結
晶の長さl1〜l3を求める。この勾配の0〜10%の範囲で
V0をそれぞれ設定すると良いことが多くの実験で求めら
れた。その結果、第1図に示すよように0<l≦l2のと
きα=30〜50μv/hr,l1<l≦l2のときα=20〜30μv/h
r l2<l≦l3のときα=15〜25μv/hr,l3<lのときα
=5〜20μv/hr(但し、αは高周波電力の制御電圧の変
化量,l1,l2,l3はそれぞれ引上げ結晶の長さであってl1
=0〜45mm,l2=45mm〜75mm,l3=75〜110mmである。)
このα,l1〜l3は、耐火物の材質変化あるいはルツボ等
の変形等によって変化することも明らかとなった。又、
前述の,は昼夜間の温度変動やgas圧力変動等によ
って容易にWiが変わることが明確となった。このWiの変
化量を調べると+0.1〜2%であることが判明した。こ
の結果WiがWxに対し+0.1〜2%以内にあるときはその
まま放置することが得策である。したがってV0の変更は
WiがWxに対し+0.1〜2%以上の時である。V0=V01×Wi
×k/WxのkはWiとWxの差に等しいV0を決定するための定
数であるがkが3より大きい場合V0が大きくなり、この
結果凹凸が急激となり結晶品質が著るしく低下した。こ
のためkの設定はWiやV0の過去の経歴によって行なわれ
る。
On the other hand, the setting of the change amount (V 0 ) of the control voltage of the high frequency power for keeping the crystal diameter constant is determined by the ratio of Wx and Wi. Training is performed at this V 0 , and Wi is corrected accordingly. However, if the situation where no correction is required continues after that, the fact is that Wi changes due to changes in the thermal environment as described above. Therefore, Wi is Wx + Wx + (0.001 ~
If the condition 0.02) × Wx <Wi occurs continuously, V 0 will increase at an accelerated rate. As a result, Wi decreases sharply and the fluctuation of crystal diameter becomes very large.
Crystal quality is poor. Therefore, it became necessary to limit the magnitude of V 0 . Moreover, it was found from the above-mentioned change with time that V 0 should be limited also by the pulling length of the crystal. The upper limit of V 0 can be set by investigating the high frequency power (control voltage) at the time of growing and the voltage change. By linearly approximating the voltage change curve, the curves ( 1) to ( 3) in FIG. 2 are obtained, and the points at which the slopes of the straight lines intersect with the respective straight lines, that is, the crystal lengths l 1 to l 3 are determined. In the range 0-10% of this gradient
In many experiments, it was desirable to set V 0 respectively. As a result, as shown in FIG. 1, when 0 <l ≦ l 2 , α = 30 to 50 μv / hr, and when l 1 <l ≦ l 2 , α = 20 to 30 μv / h.
When rl 2 <l ≤ l 3 α = 15 to 25 μv / hr, when l 3 <l α
= 5 to 20 μv / hr (where α is the amount of change in the control voltage of the high frequency power, l 1 , l 2 and l 3 are the lengths of the pulled crystals, respectively, l 1
= 0 to 45 mm, l 2 = 45 mm to 75 mm, l 3 = 75 to 110 mm. )
It has also been clarified that these α, l 1 to l 3 change due to the material change of the refractory material or the deformation of the crucible or the like. or,
In the above, it became clear that Wi can easily change due to temperature fluctuations during the day and night and gas pressure fluctuations. When the amount of change in Wi was examined, it was found to be +0.1 to 2%. As a result, when Wi is within +0.1 to 2% of Wx, it is a good idea to leave it as it is. Therefore, changing V 0
When Wi is +0.1 to 2% or more of Wx. V 0 = V 01 × Wi
The k of × k / Wx is a constant for determining V 0, which is equal to the difference between Wi and Wx, but when k is larger than 3, V 0 becomes large, and as a result, the unevenness becomes sharp and the crystal quality remarkably deteriorates. did. Therefore, k is set according to the past history of Wi and V 0 .

(実施例) 次に実施例により本発明を説明する。(Example) Next, this invention is demonstrated with an Example.

第3図の単結晶育成装置の85φ×100h×1.7tのIrルツボ
1にNd:YAG単結晶原料(高純度Al2O3,Y2O3に0.8at%Nd
をドープしそれぞれ適当量秤量し混合した)を2100gを
加え保温耐火物を設置し、高周波コイル3の中心に設け
た。パーソナルコンピュータ5の指令によって、D/A変
換器7を介しアナログコントローラ8、高周波発振器9
によって高周波コイル3に電力が加わりIrルツボ1内の
原料を熔解した。次にYAG単結晶(Ndドープしていな
い)を種結晶<111>とし、前記熔液に浸し、最適な温
度条件であることを確認し、引上げを開始した。引上げ
速度1mm/hrで回転速度は20rpmとした。引上げ開始して
から育成結晶の太り方が約30゜になるように目標とする
径(Dx)のプログラムを設定しロードセルからの信号
4、あるいは真空熱電対10からの信号を用いパーソナル
コンピュータで高周波電力の出力を制御している。引上
げ開始してから29時間後にDxは30φに達したため肩出し
を行った後直胴部の直径制御が開始された。この時の目
標の重量(Wx)は35gであり結晶重量(Wi)も35gで高周
波電力の制御電圧の変化量(V0)は、18μv/hrであっ
た。引上げ開始してから41時間後にWxは60gであった
が、Wiは61.2gになった。このときV0は53μv/hrになっ
たが、V0を35μv/hrとし、育成を続行した。
Nd: YAG single crystal raw material (high purity Al 2 O 3 , Y 2 O 3 0.8 at% Nd) was added to the Ir crucible 1 of 85φ × 100h × 1.7t in the single crystal growth apparatus shown in FIG.
2100 g of the dope was mixed and weighed and mixed in an appropriate amount, and a heat-resistant refractory was installed and provided in the center of the high-frequency coil 3. In response to a command from the personal computer 5, the analog controller 8 and the high frequency oscillator 9 are transmitted via the D / A converter 7.
By this, electric power was applied to the high frequency coil 3 to melt the raw material in the Ir crucible 1. Next, a YAG single crystal (not Nd-doped) was used as a seed crystal <111>, and it was immersed in the above-mentioned melt, and it was confirmed that the temperature was optimum, and pulling was started. The pulling speed was 1 mm / hr and the rotation speed was 20 rpm. Set the program of the target diameter (Dx) so that the thickness of the grown crystal becomes about 30 ° after the pulling is started, and use the signal 4 from the load cell or the signal from the vacuum thermocouple 10 to generate a high frequency with a personal computer. It controls the output of electric power. After 29 hours from the start of pulling up, Dx reached 30φ, so after straightening the shoulder, diameter control of the straight body was started. At this time, the target weight (Wx) was 35 g, the crystal weight (Wi) was also 35 g, and the change amount (V 0 ) of the control voltage of the high frequency power was 18 μv / hr. 41 hours after the pulling started, Wx was 60g, but Wi was 61.2g. At this time, V 0 was 53 μv / hr, but V 0 was set to 35 μv / hr and the growth was continued.

又、引上げ後105時間後Wxは380gであったがWiは377gと
なった。このときV0は26μv/hrだった。このためV0を20
μv/hrに設定し育成を続行した。同様にパーソナルコン
ピュータ5で径の制御を行いながら約160時間後結晶を
切り離し育成を終了した。育成された結晶は角のない非
常に滑らかな直胴部であり、更に、結晶から切り出した
ロッド(4φ×63.5mm)を位相差により複屈折測定する
とΔn=1×10-7以下が得られ、光学歪の非常に少ない
高品質なNd:YAG単結晶が得られた。
Also, 105 hours after the pulling, Wx was 380 g, but Wi was 377 g. At this time, V 0 was 26 μv / hr. Therefore V 0 is 20
The growth was continued by setting to μv / hr. Similarly, while controlling the diameter with the personal computer 5, the crystal was separated after about 160 hours to complete the growth. The grown crystal has a very smooth straight body with no corners, and when a rod (4φ x 63.5 mm) cut out from the crystal is birefringence measured by phase difference, Δn = 1 x 10 -7 or less is obtained. , A high quality Nd: YAG single crystal with very little optical distortion was obtained.

(発明の効果) 本発明によれば誰でも理想的な肩作りが可能であり、か
つ自動育成に有効である。
(Effects of the Invention) According to the present invention, anyone can make an ideal shoulder and it is effective for automatic growth.

【図面の簡単な説明】[Brief description of drawings]

第1図,第2図は本発明である直胴部の直径制御を説明
する図、第3図は単結晶育成装置の例を示す図である。 1はIrルツボ、2はNd:YAG単結晶、3は高周波コイル、
4はロードセル、5はパーソナルコンピュータ、6はA/
D変換器、7はD/A変換器、8はアナログコントローラ、
9は高周波発振器、10は真空熱電対。
1 and 2 are diagrams for explaining the diameter control of the straight body portion according to the present invention, and FIG. 3 is a diagram showing an example of a single crystal growing apparatus. 1 is an Ir crucible, 2 is a Nd: YAG single crystal, 3 is a high frequency coil,
4 is a load cell, 5 is a personal computer, 6 is A /
D converter, 7 D / A converter, 8 analog controller,
9 is a high frequency oscillator, 10 is a vacuum thermocouple.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】高周波コイルに真空熱電対を有しmV設定値
(M1)に真空熱電対の起電力を近ずけるように高周波発
振器の供給電力を制御するアナログコントローラが付属
する高周波加熱炉を用いて単結晶の育成中の重量を検出
しその増加速度をあらかじめ決定したプログラムにそっ
て変化するようにM1を変化させ結晶直径制御を行うチョ
クラルスキー法による単結晶育成方法において、M1の変
化量(V0)の上限の値を単結晶の引上げ長さ(l)によ
って0<l≦l1のときV0=30〜50μV/hr,l1<l≦l2
ときV0=20〜30μV/hr,l2<l≦l3のときV0=15〜25μV
/hr,l3<lのときV0=5〜20μV/hr(但し、l1,l2,l3
それぞれ育成中の結晶の長さであってl1=0〜45mm,l2
=45〜75mm,l3=75〜110mmである。)に設定することを
特徴とする単結晶の育成方法。
1. A high-frequency heating furnace having a vacuum thermocouple in the high-frequency coil, and an analog controller for controlling the power supplied to the high-frequency oscillator so that the electromotive force of the vacuum thermocouple approaches the mV set value (M 1 ). In the single crystal growth method by the Czochralski method, in which the weight is detected during the growth of the single crystal by using, and the increase rate is changed according to a predetermined program, M 1 is changed to control the crystal diameter. 1 of variation (V 0) pulling the length of the value of the upper single crystal by (l) 0 <when l ≦ l 1 V 0 = 30~50μV / hr, when l 1 <l ≦ l 2 V 0 = 20 to 30 μV / hr, when L 2 <l ≤ l 3 V 0 = 15 to 25 μV
When / hr, l 3 <l, V 0 = 5 to 20 μV / hr (provided that l 1 , l 2 and l 3 are the lengths of the crystals during growth and l 1 = 0 to 45 mm, l 2
= 45 to 75 mm, l 3 = 75 to 110 mm. ) Is set to a method for growing a single crystal.
【請求項2】前記V0は結晶重量(Wi)が目標重量(Wx)
に対しWi>Wx+(0.001〜0.02)×WxのときV0=V01×Wi
×k/Wx(但し、V01は直前のM1の変化量であり、kは0
〜3である。)である特許請求の範囲第(1)項記載の
単結晶の育成方法。
2. The crystal weight (Wi) of V 0 is the target weight (Wx)
On the other hand, if Wi> Wx + (0.001 to 0.02) × Wx, V 0 = V 01 × Wi
× k / Wx (However, V 01 is the amount of change of M 1 immediately before, and k is 0.
~ 3. ) The method for growing a single crystal according to claim (1).
JP63013066A 1988-01-22 1988-01-22 Single crystal growth method Expired - Lifetime JPH07514B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63013066A JPH07514B2 (en) 1988-01-22 1988-01-22 Single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63013066A JPH07514B2 (en) 1988-01-22 1988-01-22 Single crystal growth method

Publications (2)

Publication Number Publication Date
JPH01188490A JPH01188490A (en) 1989-07-27
JPH07514B2 true JPH07514B2 (en) 1995-01-11

Family

ID=11822765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63013066A Expired - Lifetime JPH07514B2 (en) 1988-01-22 1988-01-22 Single crystal growth method

Country Status (1)

Country Link
JP (1) JPH07514B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5248111B2 (en) * 1971-12-29 1977-12-07

Also Published As

Publication number Publication date
JPH01188490A (en) 1989-07-27

Similar Documents

Publication Publication Date Title
TW552324B (en) Method and apparatus for controlling diameter of a silicon crystal in a locked seed lift growth process
EP0428415B1 (en) A method for controlling specific resistance of single crystal
EP0432914B1 (en) A method of controlling oxygen concentration in single crystal
CN1350602A (en) Method and system of controlling taper growth in a semiconductor crystal growth process
JPH0438719B2 (en)
US3980438A (en) Apparatus for forming semiconductor crystals of essentially uniform diameter
JPH04149092A (en) Method and device for controlling growth of cone part
EP1734157B1 (en) Production process of silicon single crystal
EP0294311B1 (en) Automatic control of crystal rod diameter
JPH07514B2 (en) Single crystal growth method
JPH01212291A (en) Method and apparatus for growing crystal
JPH07513B2 (en) Single crystal growth method
JPS6054994A (en) Production of compound semiconductor crystal
JPH09118585A (en) Apparatus for pulling up single crystal and method for pulling up single crystal
JPH085742B2 (en) Single crystal growth method
JPH01313385A (en) Method for controlling diameter of semiconductor single crystal
JPS63139091A (en) Method for growing single crystal
JPH01188488A (en) Method for growing single crystal
JPH09315887A (en) Production of single crystal and device therefor
JPS63139092A (en) Method for growing single crystal
JPS6221790A (en) Device for crystal growth and method
JPH078754B2 (en) Single crystal manufacturing method
JPH07133185A (en) Production of single crystal
JPS635360B2 (en)
JPH0341432B2 (en)