JPS6033291A - Preparation of single crystal silicon - Google Patents

Preparation of single crystal silicon

Info

Publication number
JPS6033291A
JPS6033291A JP13925283A JP13925283A JPS6033291A JP S6033291 A JPS6033291 A JP S6033291A JP 13925283 A JP13925283 A JP 13925283A JP 13925283 A JP13925283 A JP 13925283A JP S6033291 A JPS6033291 A JP S6033291A
Authority
JP
Japan
Prior art keywords
single crystal
crystal silicon
strength
silicon
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP13925283A
Other languages
Japanese (ja)
Inventor
Hidekazu Taji
田路 英一
Kenji Akai
赤井 賢治
Mitsuhiro Yamato
充博 大和
Osamu Suzuki
修 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP13925283A priority Critical patent/JPS6033291A/en
Publication of JPS6033291A publication Critical patent/JPS6033291A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/30Mechanisms for rotating or moving either the melt or the crystal
    • C30B15/305Stirring of the melt

Abstract

PURPOSE:To obtain single crystal silicon having uniform concn. of impurity and oxygen in the growth direction and radial direction by changing continuously the strength of magnetic field impressed to the molten silicon in a quartz crucible in accordance with the pulled amt. of single crystal silicon. CONSTITUTION:A seed crystal suspended freely rotatable from the top of a chamber is dipped in molten silicon in a quartz crucible while impressing a magnetic field to the molten silicon, and the seed crystal is pulled up while changing the strength of the magnetic field continuously in accordance with the pulled amt. of the single crystal silicon. For example, pulling of a single crystal is performed by setting preliminarily a program for changing continuously the strength of magnetic strength from 3,000 gauss at the initial stage of pulling to ca. 1,500 gauss at the end stage of pulling to a computor control in order to make uniform the concn. of oxygen in the growth direction of the single crystal silicon. As the result, the difference between the max. value and the min. value of the oxygen concn. in the growth direction of single crystal silicon becomes 2.0X 10<17>/cm<2>. Therefore, the uniformity is improved.

Description

【発明の詳細な説明】 本発明は高品質の単結晶シリコンの製造方法に関する。[Detailed description of the invention] The present invention relates to a method for manufacturing high quality single crystal silicon.

従来、半導体装置の製造に用いられる単結晶シリコンは
主にチョクラルスキー法(CZ法)Kよシ製造されてい
る。この方法はチャンバー内に回転自在に支持された石
英ルッヂ内にシリコン原料を入れて溶融させ、この溶融
シリコンにチャンバー上部から回転自在に吊下された種
結晶を浸し、この種結晶を引上げることによシ単結晶シ
リコンを製造するものである。
Conventionally, single crystal silicon used in the manufacture of semiconductor devices has been mainly manufactured by the Czochralski method (CZ method). In this method, a silicon raw material is placed in a quartz ridge rotatably supported in a chamber, melted, a seed crystal suspended rotatably from the top of the chamber is immersed in the molten silicon, and the seed crystal is pulled up. It is used to manufacture single-crystal silicon.

しかし、溶融シリコンの対流によって、単結晶シリコン
の成長方向及び径方向のいずれにおいても不純物濃度、
酸素濃度の均一性が悪くなシ、単結晶シリコンの品質が
低下する原因となっていた。
However, due to the convection of molten silicon, the impurity concentration decreases in both the growth direction and radial direction of single crystal silicon.
Poor uniformity in oxygen concentration was a cause of deterioration in the quality of single crystal silicon.

そこで、上記C2法札おいて溶融シリコンに磁場を印加
することによル対流を抑制し、単結晶シリコンの品質向
上を図ろうとする方法(以下、MCZ法と略称する)が
知られている。
Therefore, a method (hereinafter abbreviated as MCZ method) is known in which the convection is suppressed by applying a magnetic field to the molten silicon in the C2 method, thereby attempting to improve the quality of single crystal silicon.

しかし、上記MCZ法でも単結晶シリコン中の不純物濃
度、酸素濃度の均一性をそれほど改善できるわけではな
いことが判明した。
However, it has been found that even the above MCZ method cannot significantly improve the uniformity of impurity concentration and oxygen concentration in single crystal silicon.

例えは、第1図及び第2図に磁場の強さをそれぞれO(
従来)C2法) 、 1000.1500.2000及
び3000ガウスとして一定に保持した場合のシリコン
の固化率と酸素濃度及び比抵抗値との関係を示す。
For example, in Figures 1 and 2, the strength of the magnetic field is O(
The relationship between the solidification rate of silicon, the oxygen concentration, and the specific resistance value is shown when holding constant values of 1000, 1500, 2000, and 3000 Gauss (Conventional) C2 method).

第1図から酸素濃度は同化率(引上率)の増加とともに
減少し、また磁場の強さに比例してl」\さくなること
がわかる。酸素濃度の最大値と最小値との差は0ガウス
の場合、約7.5 X 1017cnr3であるのに対
し、3000ffウスの場合、約3. OX 10” 
’G11−’となシ、均一性は若干改善されるだけであ
る。
It can be seen from Figure 1 that the oxygen concentration decreases as the assimilation rate (pulling rate) increases, and also decreases in proportion to the strength of the magnetic field. The difference between the maximum and minimum oxygen concentration is approximately 7.5 x 1017 cnr3 for 0 Gauss, while it is approximately 3. OX 10”
With 'G11-', the uniformity is only slightly improved.

また、第2図から比抵抗値も固化率(引上率)の増加と
ともに減少し、磁場の強さに比例して若干大きくなるが
、磁場の強さに対する依存性は少ないことかわかる。比
抵抗値の鮫太仙と最、J\値との差はθガウスの場合、
約11Ω−錦であるのに対し、3000ガウスの場合、
約0750−αとな力、均一性は若干改善されるたりで
ある。
Furthermore, from FIG. 2, it can be seen that the resistivity value also decreases as the solidification rate (pulling rate) increases, and increases slightly in proportion to the strength of the magnetic field, but that it has little dependence on the strength of the magnetic field. The difference between the specific resistance value of Sametaisen and the J\ value is θ Gauss,
Approximately 11Ω-Nishiki, while in the case of 3000 Gauss,
The force is about 0750-α, and the uniformity is slightly improved.

本発明は上記事情に鑑みてなされたものであシ、単結晶
シリコンの成長方向、ぜ方向のいずれにおいても不純物
濃度と酸素濃度を均一化し得る単結晶シリコンの製造方
法を提供しようとするものでおる。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a method for manufacturing single-crystal silicon that can make the impurity concentration and oxygen concentration uniform in both the growth direction and the warp direction of the single-crystal silicon. is.

本発明渚らは従来のMCZ法によっては単結晶シリコン
中の不純物濃度、酸素濃度の均一性がそれほど改暫され
ない理由について種々検討した。その結果、溶融シリコ
ンの対流の強さは融液量の影響を受けるにもかかわらず
、従来のMCZ法では磁場の強さを一定としているため
融液量の変化に応じて対流を抑制することかできず、単
結晶シリコン中の物性値を均一化すると1とかできカい
ということを究明し、本発明をなすに至った。
The present invention, Nagisa et al., conducted various studies on the reason why the uniformity of impurity concentration and oxygen concentration in single crystal silicon is not significantly improved by the conventional MCZ method. As a result, although the strength of convection in molten silicon is affected by the amount of melt, in the conventional MCZ method, the strength of the magnetic field is kept constant, so convection can be suppressed according to changes in the amount of melt. However, they found that it is possible to achieve a value of 1 by uniformizing the physical property values in single crystal silicon, and have accomplished the present invention.

すなわち、本発明の単結晶シリコンの製造方法は溶融シ
リコンに印加する磁場の強さを単結晶シリコンの引上げ
量に応じて連続的に変化させることを特徴とするもので
ある。
That is, the method for manufacturing single crystal silicon of the present invention is characterized in that the strength of the magnetic field applied to molten silicon is continuously changed in accordance with the amount of pulling of single crystal silicon.

このように磁場の強さを連続的に変化させれば、融液量
の変化に伴う対流の強さの変化に応じて有効に対流を抑
制することができるので、単結晶シリコンを高品質化す
ることかできる。
By continuously changing the strength of the magnetic field in this way, it is possible to effectively suppress convection in response to changes in the strength of convection due to changes in the amount of melt, thereby increasing the quality of single-crystal silicon. I can do something.

以下、本発明の実施例を第3図〜第6図を参照して説明
する。
Embodiments of the present invention will be described below with reference to FIGS. 3 to 6.

単結晶シリコンの成長方向の酸素濃度を均一化するため
に、予めコンピューター・コントロールに第3図に示す
ような磁板の強さを引上げ初期の3000ガ゛ウスから
連続的に引上は終期の約1500ガ゛ウスまで変化させ
るプログラムを与えておき、単結晶シリコンの引上けを
省なった。
In order to equalize the oxygen concentration in the growth direction of single-crystal silicon, the strength of the magnetic plate is raised in advance by computer control as shown in Figure 3. From the initial level of 3000 Gauss, the strength of the magnetic plate is continuously increased until the final stage. A program was given to vary the temperature up to about 1,500 Gauss, and the pulling of single crystal silicon was omitted.

この結果、第4図に示す如く、単結晶シリコンの成長方
向の酸素濃度の最大値と最小飴との差は約2.Ox10
cm となシ、均一性を改善することができた。
As a result, as shown in FIG. 4, the difference between the maximum and minimum oxygen concentrations in the growth direction of single crystal silicon is approximately 2. Ox10
cm, the uniformity could be improved.

また、既述したように比抵抗値は磁場の強さに対する依
存性が少ないので、第5図に示す如く、従来の方法と比
較して/lとんど変化がない。
Furthermore, as mentioned above, the resistivity value has little dependence on the strength of the magnetic field, so as shown in FIG. 5, there is almost no change in /l compared to the conventional method.

なお、単結晶シリコンの頭部において径方向の酸素濃度
を訓1べたところ第6図に丞す如く、最大値と最小値と
の差は従来のCZ法(磁場を印加しない場合、図中曲線
I)では約4.5 X 1017cm−3であったのに
対し、本発明方法(図中曲線■)では約1.8X10 
α となシ、径方向においても均一性が改善されている
ことがわかった。また、図示しないが、径方向の比抵抗
値についても均一性が改新されていることが1iIlさ
れた。
In addition, when the oxygen concentration in the radial direction at the head of single crystal silicon was measured, as shown in Figure 6, the difference between the maximum value and the minimum value was determined by the conventional CZ method (when no magnetic field was applied, the curve in the figure In I), it was about 4.5 x 1017 cm-3, whereas in the method of the present invention (curve ■ in the figure), it was about 1.8 x 10
It was found that uniformity was improved in the radial direction as well. Although not shown, it was also found that the uniformity of the radial specific resistance values was also improved.

なお、上記実施例では単結晶シリコン中の酸素濃度の均
一性を改善することを主な目的としたが、磁場の強さの
変化方法を変えれけ比抵抗値の均一性をよ多改善するこ
ともできる。
In the above example, the main purpose was to improve the uniformity of the oxygen concentration in single crystal silicon, but it is also possible to improve the uniformity of the specific resistance value by changing the method of changing the strength of the magnetic field. You can also do it.

また、コンピューターによって磁場の強さだけでなく、
結晶回転数、ルツが回転数などの駆動条件や融液面の温
度を同時にコントロールすれば、よル一層単結晶シリコ
ンを高品質化することができる。
In addition, the computer determines not only the strength of the magnetic field, but also
By simultaneously controlling driving conditions such as the crystal rotation speed and the crystal rotation speed, as well as the temperature of the melt surface, it is possible to further improve the quality of single-crystal silicon.

更に、本発明方法はシリコンたりてなく他の導電性の物
質にも適用でき、また、どのような引上装置にも適用で
きる。
Furthermore, the method of the present invention can be applied to other conductive materials other than silicon, and can be applied to any pulling device.

以上詳述した如く、本発明によれは単結晶シリコンの成
長方向、径方向のいずれにおいても不純物濃度と酸素濃
度を均一化し得る単結晶シリコンのM進方法を提供でき
るものである。
As described above in detail, the present invention can provide an M-arycrystalline method for single-crystal silicon that can make the impurity concentration and oxygen concentration uniform both in the growth direction and in the radial direction of single-crystal silicon.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の方法による単結晶シリコンの固化率と酸
素濃度との関係を示す線図、第2図は従来の方法による
単結晶シリコンの固化率と比抵抗値との関係を示す島!
図、第3図は本発明方法の実施例における磁場の強さの
変化を示す線図、第4図は本発明方法の実施例における
単結晶シリコンの同化率と酸素#度との関係を示す線図
、第5図は本発明方法の実施例におりる単結晶シリコン
の固化率と比抵抗値との関係を示すね図、第6図は従来
の方法及び本発明方法の実施例における径方向の酸素濃
度分布を示す線図である。
Figure 1 is a diagram showing the relationship between the solidification rate of single crystal silicon and oxygen concentration by the conventional method, and Figure 2 is a diagram showing the relationship between the solidification rate of single crystal silicon and the specific resistance value by the conventional method!
Figure 3 is a diagram showing changes in magnetic field strength in an embodiment of the method of the present invention, and Figure 4 shows the relationship between the assimilation rate of single crystal silicon and the degree of oxygen in an embodiment of the method of the present invention. Fig. 5 shows the relationship between the solidification rate and specific resistance value of single crystal silicon in an embodiment of the method of the present invention, and Fig. 6 shows the diameter in the conventional method and an embodiment of the method of the present invention. FIG. 2 is a diagram showing directional oxygen concentration distribution.

Claims (1)

【特許請求の範囲】[Claims] チャンバー内に回転自在に支持された石英ルツボ内の溶
融シリコンに磁場を印加しながら、前記チャンバー上部
から回転自在に吊下された種結晶を浸し、該種結晶を引
上けることにょル単結晶シリコンを製造する方法におい
て、前記磁場の強さを単結晶シリコンの引上げ量に応じ
て連続的に変化させることを特徴とする単結晶シリコン
の製造方法。
While applying a magnetic field to molten silicon in a quartz crucible that is rotatably supported in the chamber, a seed crystal that is rotatably suspended from the top of the chamber is immersed, and the seed crystal is pulled up to form a single crystal. A method for manufacturing single crystal silicon, characterized in that the strength of the magnetic field is continuously changed according to the amount of pulling of single crystal silicon.
JP13925283A 1983-07-29 1983-07-29 Preparation of single crystal silicon Pending JPS6033291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13925283A JPS6033291A (en) 1983-07-29 1983-07-29 Preparation of single crystal silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13925283A JPS6033291A (en) 1983-07-29 1983-07-29 Preparation of single crystal silicon

Publications (1)

Publication Number Publication Date
JPS6033291A true JPS6033291A (en) 1985-02-20

Family

ID=15240979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13925283A Pending JPS6033291A (en) 1983-07-29 1983-07-29 Preparation of single crystal silicon

Country Status (1)

Country Link
JP (1) JPS6033291A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847052A (en) * 1986-04-30 1989-07-11 Toshiba Ceramics Co., Ltd. Device for growing single crystals
JPH0431386A (en) * 1990-05-25 1992-02-03 Shin Etsu Handotai Co Ltd Pulling up semiconductor single crystal
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
JPH05194077A (en) * 1991-08-14 1993-08-03 Memc Electron Materials Inc Method for manufacture of single crystal silicon rod
JPH0692773A (en) * 1991-06-07 1994-04-05 Mitsubishi Materials Corp Method for pulling up single crystal
US5306387A (en) * 1990-06-21 1994-04-26 Shin-Etsu Handotai Co., Ltd. Method for pulling up semiconductor single crystal
JP2001220291A (en) * 2000-02-01 2001-08-14 Komatsu Electronic Metals Co Ltd Method for producing silicon wafer
WO2005073440A1 (en) * 2004-01-30 2005-08-11 Sumitomo Mitsubishi Silicon Corporation Method of lifting silicon single crystal
WO2005080646A1 (en) * 2004-02-19 2005-09-01 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor
JP2010024120A (en) * 2008-07-24 2010-02-04 Sumco Corp Silicon single crystal and its growing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100296A (en) * 1979-01-18 1980-07-31 Osaka Titanium Seizo Kk Production of silicon single crystal
JPS56104791A (en) * 1980-01-28 1981-08-20 Sony Corp Growth of crystal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55100296A (en) * 1979-01-18 1980-07-31 Osaka Titanium Seizo Kk Production of silicon single crystal
JPS56104791A (en) * 1980-01-28 1981-08-20 Sony Corp Growth of crystal

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847052A (en) * 1986-04-30 1989-07-11 Toshiba Ceramics Co., Ltd. Device for growing single crystals
JPH0431386A (en) * 1990-05-25 1992-02-03 Shin Etsu Handotai Co Ltd Pulling up semiconductor single crystal
US5306387A (en) * 1990-06-21 1994-04-26 Shin-Etsu Handotai Co., Ltd. Method for pulling up semiconductor single crystal
US5196085A (en) * 1990-12-28 1993-03-23 Massachusetts Institute Of Technology Active magnetic flow control in Czochralski systems
JPH0692773A (en) * 1991-06-07 1994-04-05 Mitsubishi Materials Corp Method for pulling up single crystal
JPH0818898B2 (en) * 1991-08-14 1996-02-28 エムイーエムシー・エレクトロニック・マテリアルズ・インコーポレイテッド Manufacturing method of single crystal silicon rod
JPH05194077A (en) * 1991-08-14 1993-08-03 Memc Electron Materials Inc Method for manufacture of single crystal silicon rod
JP2001220291A (en) * 2000-02-01 2001-08-14 Komatsu Electronic Metals Co Ltd Method for producing silicon wafer
WO2005073440A1 (en) * 2004-01-30 2005-08-11 Sumitomo Mitsubishi Silicon Corporation Method of lifting silicon single crystal
US7282095B2 (en) 2004-01-30 2007-10-16 Sumco Corporation Silicon single crystal pulling method
WO2005080646A1 (en) * 2004-02-19 2005-09-01 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor
US7374614B2 (en) 2004-02-19 2008-05-20 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for manufacturing single crystal semiconductor
JP2010024120A (en) * 2008-07-24 2010-02-04 Sumco Corp Silicon single crystal and its growing method

Similar Documents

Publication Publication Date Title
US4417943A (en) Method for controlling the oxygen level of silicon rods pulled according to the Czochralski technique
JP5344822B2 (en) Control of melt-solid interface shape of growing silicon crystal using variable magnetic field
US5359959A (en) Method for pulling up semi-conductor single crystal
US4436577A (en) Method of regulating concentration and distribution of oxygen in Czochralski grown silicon
EP0055619B1 (en) Method for regulating concentration and distribution of oxygen in czochralski grown silicon
JPS6033291A (en) Preparation of single crystal silicon
KR19990078057A (en) Silicon single crystal and method for producing the same
JP2688137B2 (en) Method of pulling silicon single crystal
JP3867476B2 (en) Silicon single crystal manufacturing method and silicon single crystal manufacturing apparatus
JPH0543379A (en) Production of silicon single crystal
JPS62275099A (en) Semi-insulating indium phosphide single crystal
JPH03137090A (en) Pulling-up method for silicon single crystal
JPH03232790A (en) Quartz crucible for apparatus for pulling up silicon single crystal
JPS62182190A (en) Production of compound semiconductor single crystal
JPH02217389A (en) Production of single crystal
JPH06316483A (en) Production of silicon single crystal
JPS6317289A (en) Production of semiconductor single crystal
JPS61146788A (en) Method for growing single crystal
JP2759105B2 (en) Single crystal manufacturing method
JP2000063198A (en) Growth of silicon single crystal
JP2734445B2 (en) Crystal growth method
JPH01290597A (en) Production of semiconductive gaas single crystal
JPS62275089A (en) Method for growing crystal
RU2076909C1 (en) Method of growing silicon monocrystals
JPS645992A (en) Method for growing crystal