JPH05139877A - Production of compound semiconductor single crystal - Google Patents

Production of compound semiconductor single crystal

Info

Publication number
JPH05139877A
JPH05139877A JP32977491A JP32977491A JPH05139877A JP H05139877 A JPH05139877 A JP H05139877A JP 32977491 A JP32977491 A JP 32977491A JP 32977491 A JP32977491 A JP 32977491A JP H05139877 A JPH05139877 A JP H05139877A
Authority
JP
Japan
Prior art keywords
compound semiconductor
crystal
single crystal
orientation
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32977491A
Other languages
Japanese (ja)
Other versions
JP2582318B2 (en
Inventor
Toshiaki Asahi
聰明 朝日
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Nikko Kyodo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd, Nikko Kyodo Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP3329774A priority Critical patent/JP2582318B2/en
Publication of JPH05139877A publication Critical patent/JPH05139877A/en
Application granted granted Critical
Publication of JP2582318B2 publication Critical patent/JP2582318B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To provide the title single crystal improved in yield. CONSTITUTION:In a method for growing CdTe single crystal using a seed crystal by vertical Bridgman technique or vertical gradient freezing technique, a crucible made up of (A) a smaller diameter portion for the seed crystal, (B) a second portion with its diameter divergent, and (C) a cylindrical portion with constant diameter is used, and the initial growth rate within the portion A after seeding is set at >=1mm/hr and the <111> orientation the greatest in growth rate is grown prior to the other orientations.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は垂直ブリッジマン法ある
いは垂直グラジエントフリーズ法により化合物半導体単
結晶を成長する方法に関し、特にCdTeなどの2−6
族化合物半導体単結晶を成長する方法に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for growing a compound semiconductor single crystal by a vertical Bridgman method or a vertical gradient freeze method, and particularly to 2-6 such as CdTe.
The present invention relates to a method for growing a group compound semiconductor single crystal.

【0002】[0002]

【従来の技術】垂直ブリッジマン法あるいは垂直グラジ
エントフリーズ法で種結晶を使用して化合物半導体単結
晶を成長する方法がある。この方法はGaAsなどの3
−5族化合物半導体の場合にはあまり問題はないが、C
dTeのような2−6族化合物半導体ではGaAsなど
と比べて積層欠陥エネルギーが低く、単結晶成長中に双
晶などの欠陥が入りやすいという欠点がある。特に種結
晶を用いた場合、成長初期に双晶などが発生しやすく、
発生した双晶によって成長方位が変わってしまうことが
多かった。成長方位は単結晶を歩留まり良く得るための
重要な条件であり、結晶の方位が変わってしまうことは
問題であった。さらに、成長方位が変わってしまうこと
によって単結晶化そのものが難しくなるという問題点も
あった。
2. Description of the Related Art There is a method of growing a compound semiconductor single crystal by using a seed crystal by a vertical Bridgman method or a vertical gradient freeze method. This method is suitable for GaAs etc.
In the case of -5 group compound semiconductor, there is not much problem, but C
Group 2-6 compound semiconductors such as dTe have a drawback that stacking fault energy is lower than that of GaAs and that defects such as twins are likely to occur during single crystal growth. Especially when a seed crystal is used, twins and the like are likely to occur in the early stage of growth,
The growth direction often changed depending on the twin crystals that occurred. The growth orientation is an important condition for obtaining a single crystal with a high yield, and changing the crystal orientation has been a problem. Further, there is also a problem that the single crystallization itself becomes difficult because the growth orientation changes.

【0003】[0003]

【発明が解決しようとする課題】本発明は上記の問題点
を解決したもので、成長方位が安定した化合物半導体単
結晶の製造方法を提供するものである。
The present invention solves the above problems and provides a method for producing a compound semiconductor single crystal having a stable growth orientation.

【0004】[0004]

【問題点を解決するための手段及び方法】すなわち、本
発明は、垂直ブリッジマン法あるいは垂直グラジエント
フリーズ法により、種結晶を用いて化合物半導体単結晶
を成長する方法において、種結晶を入れる小径部分と径
が徐々に広がる部分と直胴部分とからなるるつぼを使用
し、種付け後の上記小径部分内での初期の成長速度を1
mm/h以上として、該化合物半導体の最も成長速度の
速い結晶方位を優先的に成長させることを特徴とする化
合物半導体単結晶の製造方法を提供するものである。本
発明は、化合物半導体すべてに適用できるが、中でも2
−6族化合物半導体、特にCdTeおよびCdTeを含
む3元あるいは4元混晶に適用して効果がある化合物半
導体単結晶の製造方法である。CdTeは閃亜鉛鉱型の
結晶構造をもち、結合手が<111>軸と平行にあり<
111>軸を中心として60°回転したような回転双晶
が入りやすい。<111>方位と等価な方位は表裏の関
係を除けば他に3つあるので、双晶は4つの面方位に入
ることができ、それぞれが109.5°で交わってい
る。例えば<111>方位で結晶を育成する場合、成長
方位に対して垂直な(111)面に入った双晶では成長
方位には影響がないが、他の等価な双晶面に双晶が入る
と成長方位は双晶面を境にまったく異なった成長方位と
なる。このように双晶が一度入ると成長方位が変わって
しまうわけではあるが、この変わってしまった成長方位
のところに初めに入った双晶と同じ面方位の双晶が入る
と成長方位はもとの<111>方位に戻ってしまう。つ
まり双晶が入ったとしてももう一度同じ面方位の双晶が
入れば元の面に戻ることになり、偶数回の双晶では双晶
の部分は欠陥になるとしても成長方位は変わらないこと
になる。本発明者は、この点に着目し、双晶が一度入っ
たとしても再び双晶を入れることによって元の成長方位
に戻す方法を考えた。<111>方位は、成長速度が最
も速い。遅い成長速度で結晶を成長すれば、どの結晶方
位にも安定して結晶が成長できるが、成長速度を速くす
ることにより、成長速度の最も速い<111>方位を優
先的に成長させれば、たとえ双晶によって成長方位が変
わったとしてもその方位は安定して成長できないため、
再び双晶が入りやすく最終的にはもとの<111>方位
に戻ることになる。本発明は、以上の着眼をもとに実験
・研究の結果得られたものである。
[Means and Method for Solving the Problems] That is, the present invention relates to a method for growing a compound semiconductor single crystal using a seed crystal by the vertical Bridgman method or the vertical gradient freeze method. And a crucible consisting of a straight body portion and a gradually increasing diameter, and the initial growth rate in the small diameter portion after seeding is 1
It is intended to provide a method for producing a compound semiconductor single crystal, characterized by preferentially growing the crystal orientation of the compound semiconductor having the highest growth rate of mm / h or more. The present invention can be applied to all compound semiconductors.
It is a method for producing a compound semiconductor single crystal which is effective when applied to a Group-6 compound semiconductor, particularly a ternary or quaternary mixed crystal containing CdTe and CdTe. CdTe has a zincblende-type crystal structure and has a bond parallel to the <111> axis.
Rotational twins like those rotated by 60 ° around the 111> axis are likely to enter. Since there are three other azimuths equivalent to the <111> azimuth except for the relationship between the front and back sides, twins can enter four plane azimuths, and the twins intersect at 109.5 °. For example, in the case of growing a crystal in the <111> orientation, twins entering the (111) plane perpendicular to the growth orientation do not affect the growth orientation, but twins enter other equivalent twin planes. And the growth direction is completely different from that of the twin plane. In this way, the growth orientation changes once twins enter, but if a twin with the same plane orientation as the twin initially entered enters this changed growth orientation, the growth orientation also changes. It will return to the <111> direction. In other words, even if twins enter, if twins with the same plane orientation enter again, it will return to the original plane, and even number of twins will not change the growth orientation even if the twins become defects. Become. The present inventor has paid attention to this point and considered a method of returning to the original growth orientation by inserting a twin crystal even if the twin crystal has entered once. The <111> orientation has the highest growth rate. If the crystal is grown at a slow growth rate, the crystal can be grown stably in any crystal orientation. However, by increasing the growth rate, preferentially growing the <111> orientation, which has the fastest growth rate, Even if the growth direction changes due to twins, that direction cannot grow stably,
Twinning is likely to occur again, and eventually the original <111> orientation will be restored. The present invention has been obtained as a result of experiments and research based on the above viewpoints.

【0005】[0005]

【実施例】図1に示すように内径8mmのるつぼ小径部
に長手方向が<111>方位の円柱型のCdTe種結晶
をエッチング洗浄した後入れ、内径80mmのるつぼ直
胴部にCdTe多結晶原料を入れ、このるつぼを石英ア
ンプルにいれて真空度10-6torrにて封じた。この石英
アンプルを図2に示す結晶成長炉に装填し、CdTeの
融点直下まで昇温しアンプル縦方向に2〜10℃/cm
の温度勾配を付け、温度を徐々に上げながら種結晶の途
中までをメルトバックし、その後30時間の均一化を行
った。種付け後のるつぼ小径部での初期の成長速度を
0.3mm/h,0.6mm/h,1mm/h,1.5
mm/hの4条件で、成長開始位置から1mmまでと2
0mmまでとを上記速度で成長した後、0.5mm/h
の成長速度にして直胴部分まで成長させた。
EXAMPLES As shown in FIG. 1, a cylindrical CdTe seed crystal having a <111> orientation in the longitudinal direction was etched and washed in a small diameter portion of an inner diameter of 8 mm, and the CdTe polycrystal raw material was placed in the crucible straight body portion of the inner diameter of 80 mm. Then, the crucible was put in a quartz ampoule and sealed at a vacuum degree of 10 −6 torr. This quartz ampoule was loaded into the crystal growth furnace shown in FIG. 2, the temperature was raised to just below the melting point of CdTe, and the ampoule lengthwise direction was 2 to 10 ° C./cm.
A temperature gradient was applied, the temperature was gradually raised, and the seed crystal was melted back to the middle thereof, and then homogenized for 30 hours. The initial growth rate in the crucible small diameter part after seeding was 0.3 mm / h, 0.6 mm / h, 1 mm / h, 1.5
Under 4 conditions of mm / h, from the growth start position to 1 mm and 2
0.5mm / h after growing up to 0mm at the above speed
It was made to grow to the straight body part at the growth rate of.

【0006】その結果、0.3mm/h及び0.6mm
/hで育成した結晶はいずれも成長初期に入った双晶に
よって成長方位が変わったままであった。一方、1mm
/h及び1.5mm/hで成長した結晶には複数回の双
晶の発生がみられたが、最終的な成長方位は種結晶と同
じ<111>方位となった。また、1mm/h及び1.
5mm/hで成長した場合でも、成長開始位置から1m
mまで成長した後成長速度を0.5mm/hにしたもの
は、多結晶化することがなかったのに対し、成長開始位
置から20mmまで成長した後に成長速度を0.5mm
/hとして成長したものは、成長方位はもとに戻ってい
たもののるつぼ壁から結晶粒が発生し多結晶化している
ものもあった。以上の結果から、種付け後のるつぼ小径
部分内での初期の成長速度を1mm/h以上とすること
で、化合物半導体の最も成長速度の速い結晶方位を優先
的に成長させることができた。なお、1mm/h以上で
成長させる範囲はそこで入る双晶の影響がるつぼ小径部
分内に収まる範囲内とする必要があり、るつぼ小径部の
大きさにもよるが、成長開始位置から15mm以内の範
囲が望ましい。
As a result, 0.3 mm / h and 0.6 mm
In all the crystals grown at / h, the growth orientation was still changed by the twin crystal in the initial stage of growth. On the other hand, 1 mm
Twin crystals were generated a plurality of times in the crystals grown at / h and 1.5 mm / h, but the final growth orientation was the same <111> orientation as the seed crystal. Also, 1 mm / h and 1.
1m from the growth start position even when growing at 5mm / h
Although the material having a growth rate of 0.5 mm / h after being grown to m did not polycrystallize, the growth rate was 0.5 mm after growing from the growth start position to 20 mm.
In some of those grown as / h, the growth orientation was returned to the original one, but there were some in which crystal grains were generated from the crucible wall and polycrystallized. From the above results, it was possible to preferentially grow the crystal orientation of the compound semiconductor having the highest growth rate by setting the initial growth rate in the crucible small diameter portion after seeding to 1 mm / h or more. The range of growth at 1 mm / h or higher must be within the range of the small diameter portion of the crucible that is affected by twin crystals entering there, and it depends on the size of the small diameter portion of the crucible, but within 15 mm from the growth start position. Range is desirable.

【0007】[0007]

【発明の効果】本発明により、その化合物半導体の最も
成長速度の速い結晶方位に単結晶を安定して成長するこ
とができ、単結晶の歩留まりを向上させることができ
た。
According to the present invention, a single crystal can be stably grown in the crystal orientation of the compound semiconductor having the highest growth rate, and the yield of the single crystal can be improved.

【図面の簡単な説明】[Brief description of drawings]

図1はるつぼの構造を示す図である。図2は結晶成長炉
を示す図である。
FIG. 1 is a diagram showing the structure of a crucible. FIG. 2 is a diagram showing a crystal growth furnace.

【符号の説明】[Explanation of symbols]

1 pBNるつぼ 2 CdTe多結晶原料 3 CdTe種結晶 4 結晶成長炉 5 石英アンプル 6 石英キャップ 7 るつぼ支持台 1 pBN crucible 2 CdTe polycrystal raw material 3 CdTe seed crystal 4 crystal growth furnace 5 quartz ampoule 6 quartz cap 7 crucible support stand

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 垂直ブリッジマン法あるいは垂直グラジ
エントフリーズ法により、種結晶を用いて化合物半導体
単結晶を成長する方法において、種結晶を入れる小径部
分と径が徐々に広がる部分と直胴部分とからなるるつぼ
を使用し、種付け後の上記小径部分内での初期の成長速
度を1mm/h以上として、該化合物半導体の最も成長
速度の速い結晶方位を優先的に成長させることを特徴と
する化合物半導体単結晶の製造方法。
1. A method for growing a compound semiconductor single crystal using a seed crystal by the vertical Bridgman method or the vertical gradient freeze method, which comprises a small diameter portion for putting the seed crystal, a portion where the diameter gradually expands and a straight body portion. A compound semiconductor, which uses a crucible and has an initial growth rate in the small-diameter portion after seeding of 1 mm / h or more and preferentially grows the crystal orientation of the compound semiconductor having the fastest growth rate. A method for producing a single crystal.
【請求項2】 上記化合物半導体が2−6族化合物半導
体であることを特徴とする化合物半導体単結晶の製造方
法。
2. A method for producing a compound semiconductor single crystal, wherein the compound semiconductor is a 2-6 group compound semiconductor.
【請求項3】 上記2−6族化合物半導体がCdTeお
よびCdTeを含む3元あるいは4元混晶であることを
特徴とする化合物半導体単結晶の製造方法。
3. A method for producing a compound semiconductor single crystal, wherein the Group 2-6 compound semiconductor is a ternary or quaternary mixed crystal containing CdTe and CdTe.
JP3329774A 1991-11-19 1991-11-19 Method for manufacturing compound semiconductor single crystal Expired - Lifetime JP2582318B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3329774A JP2582318B2 (en) 1991-11-19 1991-11-19 Method for manufacturing compound semiconductor single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3329774A JP2582318B2 (en) 1991-11-19 1991-11-19 Method for manufacturing compound semiconductor single crystal

Publications (2)

Publication Number Publication Date
JPH05139877A true JPH05139877A (en) 1993-06-08
JP2582318B2 JP2582318B2 (en) 1997-02-19

Family

ID=18225116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3329774A Expired - Lifetime JP2582318B2 (en) 1991-11-19 1991-11-19 Method for manufacturing compound semiconductor single crystal

Country Status (1)

Country Link
JP (1) JP2582318B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212291A (en) * 1988-02-17 1989-08-25 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01212291A (en) * 1988-02-17 1989-08-25 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for growing crystal

Also Published As

Publication number Publication date
JP2582318B2 (en) 1997-02-19

Similar Documents

Publication Publication Date Title
CN1323196C (en) Method for producing silicon single crystal and, silicon single crystal and silicon wafer
TW200305663A (en) Single crystal silicon producing method, single crystal silicon wafer producing method, seed crystal for producing single crystal silicon, single crystal silicon ingot, and single crystal silicon wafer
US5769941A (en) Method of forming semiconductor material
JPH05139877A (en) Production of compound semiconductor single crystal
JPH05139880A (en) Seed crystal for silicon single crystal
JP2001192289A (en) Method of producing compound semiconductor single crystal
JPH0543379A (en) Production of silicon single crystal
JPH0680493A (en) Method for crystal growth and crucible for use therefor
US4217167A (en) Method of growing large low defect, monocrystals of BeO
JPH10152393A (en) Growth of bulk crystal and seed crystal for bulk crystal growth
JPH05310494A (en) Growth of single crystal
JP2809364B2 (en) Method for producing lithium tetraborate single crystal
US6251181B1 (en) Method for forming a solid solution alloy crystal
JP2922038B2 (en) Method for manufacturing compound semiconductor single crystal
JP2766897B2 (en) Single crystal growth equipment
RU2462541C2 (en) Method of producing indium phosphide monocrystals
KR200285675Y1 (en) Semiconductor silicon ingot
JPH059397B2 (en)
JPH0818899B2 (en) Crystal growth method
JPH02143414A (en) Formation of single crystal film
JPH08333189A (en) Apparatus for pulling up crystal
JPH10212192A (en) Method for growing bulk crystal
JPS62153192A (en) Method for growing crystal of compound semiconductor
JPH10182277A (en) Device for producing single crystal and production of single crystal, using the same
Clszek et al. Growth and properties of silicon filaments for photovoltaic applications