JPS62153192A - Method for growing crystal of compound semiconductor - Google Patents

Method for growing crystal of compound semiconductor

Info

Publication number
JPS62153192A
JPS62153192A JP29740585A JP29740585A JPS62153192A JP S62153192 A JPS62153192 A JP S62153192A JP 29740585 A JP29740585 A JP 29740585A JP 29740585 A JP29740585 A JP 29740585A JP S62153192 A JPS62153192 A JP S62153192A
Authority
JP
Japan
Prior art keywords
crystal
seed crystal
temperature
bulk
zns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP29740585A
Other languages
Japanese (ja)
Other versions
JPH0341440B2 (en
Inventor
Masahiko Kitagawa
雅彦 北川
Tomoji Yamagami
山上 智司
Yoshitaka Tomomura
好隆 友村
Shigeo Nakajima
中島 重夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP29740585A priority Critical patent/JPS62153192A/en
Publication of JPS62153192A publication Critical patent/JPS62153192A/en
Publication of JPH0341440B2 publication Critical patent/JPH0341440B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To grow bulk single crystal having high quality and sufficient dimension, by controlling and setting each temperature of seed crystal growth part, a bulk crystal growth part and a growing raw material parat independently and growing the seed crystal in such a way that the tip is made acute. CONSTITUTION:For example, in a method for growing crystal of II-VI compound semiconductor (e.g., ZnS) using no seed crystal, ZnS of a raw material 13 heated by temperature T3' in a third zone Z3 is raised in a molecular state, cooled by a quartz heat sink 10 and a seed crystal nucleus is produced at the tip face of the heat sink 10. Seed crystal 11 is grown around the nucleus as a center and the seed crystal 11 is made acute. Bulk crystal 12 of ZnS is grown from the acute face. Since the formed bulk crystal 12 is grown from the face of the seed crystal 11 having very small area at a constant temperature T2', it receives neither lattice defect nor crystal strain, etc., of the seed crystal 11 and high-quality bulk single crystal having sufficient dimension can be obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、昇華法(昇華再結晶法)またはノ・ロダン輸
送法を用いたII −■族化合物(ZnS、Zn5e。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention is directed to the production of II-III group compounds (ZnS, Zn5e, etc.) using the sublimation method (sublimation recrystallization method) or the Rodan transport method.

Z n T e + Cd S r・・・)のバルク単
結晶成長方法に関するものである。
The present invention relates to a method for growing a bulk single crystal of ZnTe+CdSr...).

〈従来技術とその問題点〉 Zn5s Zn5e等のバルク単結晶は、従来よジ、高
圧浴融法、昇華法、ハロゲン輸送法の1つである沃素輸
送法等を用いることKjり結晶成長されている0高圧溶
融法で得られたZnS結晶は、成長温度(約1800℃
)よりも低い温度(約1040℃)に結晶構造の相転位
点があるため、積層欠陥を高濃度に含み、半導体デバイ
ス製作用あるいは半導体結晶成長基板用の結晶材料とし
て使用する上で大きな難点を有していた。一方昇華法や
沃素輸送法は相転位点以下の温度で成長を行なうため高
濃度の積層欠陥は避けられるが、第3図に示すような従
来用いられてきた製造装置においては、例えば石英製結
晶成長容器(アンプル)l内の底に貯留されているZn
S原料2が種結晶保持管5内の種結晶押棒6の先端に位
置するZnS種結晶3を核として結晶成長し、ZnSバ
ルク成長結晶4となる。
<Prior art and its problems> Bulk single crystals such as Zn5s and Zn5e have conventionally been grown using methods such as dithering, high-pressure bath melting, sublimation, and iodine transport, which is one of the halogen transport methods. The ZnS crystal obtained by the zero-pressure melting method is grown at a growth temperature of about 1800℃.
), it has a phase transition point in its crystal structure at a temperature lower than had. On the other hand, in the sublimation method and the iodine transport method, growth is performed at a temperature below the phase transition point, so a high concentration of stacking faults can be avoided. Zn stored at the bottom of the growth container (ampule)
The S raw material 2 grows crystals using the ZnS seed crystal 3 located at the tip of the seed crystal push rod 6 in the seed crystal holding tube 5 as a nucleus, and becomes a ZnS bulk grown crystal 4.

しかしながら、このような方法では自然傾斜による温度
匂配(図中に直線7で示す)中に、取置されたアンプル
lの器壁上あるいは種結晶3上にそのまま成長させるた
め、成長後のバルク結晶4は、成長初期に存在する乱れ
た(結晶性の低い)状態をそのまま引き継いだ形態とな
り、多くの場合双晶やボイド等を含んでおり、さらに上
記温度分布のため、成長につれて成長条件が徐々に変化
するので均質な十分に径大の単結晶を得ることはできな
かった。即ち、成長に従って結晶成長部と原料部の温度
が夫々変化しながら、双方の温度差も)新城することに
より成長が自然に停止してしまい、得られるバルク結晶
4としては形状、寸法ともに限界があった。そのため、
実用上最底限必要とされる15以上の単結晶を再現性良
く得ることさえ困難であり、しかも、均質な高品質結晶
は到底得られなかった。これらの問題点は材料が上記Z
nSの場合に限らず、多くの■−■族化合物の場合に現
出する。
However, in such a method, the bulk after growth is grown directly on the vessel wall of the ampoule L or on the seed crystal 3 during the temperature gradient due to the natural gradient (indicated by the straight line 7 in the figure). Crystal 4 takes on the disordered (low crystallinity) state that exists at the initial stage of growth, and often contains twins and voids.Furthermore, due to the temperature distribution mentioned above, the growth conditions change as it grows. Because of the gradual change, it was not possible to obtain a homogeneous single crystal with a sufficiently large diameter. In other words, as the temperature of the crystal growing part and the raw material part change as the crystal grows, the temperature difference between the two also stops naturally, and the resulting bulk crystal 4 has its limits in terms of shape and size. there were. Therefore,
It is difficult to obtain 15 or more single crystals with good reproducibility, which is the minimum requirement for practical use, and moreover, it has been impossible to obtain homogeneous high-quality crystals. These problems arise when the material is
This phenomenon occurs not only in the case of nS but also in many ■-■ group compounds.

〈発明の目的〉 本発明は斯る点に鑑みてなされ念もので、アンプル中の
ZnS、Zn5e等■−■族化合物半導体の昇華法およ
びハロゲン輸送法による成長に際して一定温度領域中で
定常的に結晶成長させることにより均質な高品質単結晶
を得ることのできるバルク単結晶成長方法を提供するこ
とを目的とするものである。
<Objective of the Invention> The present invention has been made in view of the above points, and is intended to provide a constant temperature range during the growth of ■-■ group compound semiconductors such as ZnS and Zn5e in an ampoule by the sublimation method and the halogen transport method. The object of the present invention is to provide a method for growing a bulk single crystal, which allows a homogeneous, high-quality single crystal to be obtained through crystal growth.

〈発明の概要〉 本発明の結晶成長方法は、種結晶(自然核発生による種
結晶を含む)から伸長する結晶がバルク゛として太る以
前にネックを形成することにより結晶粒の選択が行なわ
れる種空間(若しくは自然核発生の場合ヒートシンク空
間)、選択された結晶粒が一定の条件(温度、過飽和度
)下で定常に成長する成長空間及び成長中に一定の原料
蒸気を供給し得る原料空間を3ゾーンの温度分布により
夫々独立に制御することによって高品質かつ高生産性を
付加したもので、更に具体的には種結晶(若しくは種結
晶発生用ヒートシンク)での局所的熱吸収を可能とする
アングル構造を用いて種結晶部で成長空間と原料空間の
両部を独立して加熱(冷却)することにより、先細りす
るネッキング成長を生ぜしめ、その先端(終端)結晶か
ら一定条件下で定常的に結晶成長が可能となるように温
度分布を設定している。本発明はアンプル状の閉管構造
の系のみでなく、開閉可能な開管系での成長にも同一原
理で適用される。
<Summary of the Invention> The crystal growth method of the present invention is based on a seed space in which crystal grains are selected by forming a neck before the crystal elongating from a seed crystal (including a seed crystal due to natural nucleation) thickens as a bulk. (or a heat sink space in the case of natural nucleation), a growth space where selected crystal grains grow steadily under certain conditions (temperature, degree of supersaturation), and a raw material space where a certain amount of raw material vapor can be supplied during growth. High quality and high productivity are achieved by controlling each zone's temperature distribution independently, and more specifically, it is an angle that enables local heat absorption in the seed crystal (or heat sink for seed crystal generation). By heating (cooling) both the growth space and the raw material space independently in the seed crystal part using the structure, tapering necking growth is produced, and steady growth is generated from the tip (terminal) crystal under certain conditions. The temperature distribution is set to enable crystal growth. The present invention can be applied not only to systems with ampoule-like closed tube structures, but also to growth in open tube systems that can be opened and closed, using the same principle.

〈実施例〉 ZnSの沃素輸送法による単結晶成長を例にとって本発
明の詳細な説明する。
<Example> The present invention will be explained in detail by taking as an example the single crystal growth of ZnS by the iodine transport method.

実施例(1)一種結晶を用いない(ヒートシンクによる
自然核発生結晶を利用する)場 合 第1図は本発明の1実施例の説明に供する沃素輸送法を
用いた結晶成長装置の構成図である。
Example (1) Case in which one type of crystal is not used (naturally nucleated crystal is used by a heat sink) Figure 1 is a block diagram of a crystal growth apparatus using an iodine transport method to explain one example of the present invention. .

石英アンプル8は直径30聰で長さloomの中空胴部
とこれより細いネッキング長10+o+の中空ネック部
9より成り、゛ネック部9円には上方より石英ヒートシ
ンク10が垂設されている。ヒートシンク10は種結晶
自然核発生用として用いられ、その先端には自然核発生
により得られる種結晶11が形成されている。この種結
晶11はネック部って下方に移行するに従って漸次径小
となり、先端で最小径となる。この先端に続いて成長結
晶12が得られる。石英アンプル8の底部には原料13
としてZnS材が載置されている。また、石英アンプル
8には上下方向に曲線14で示す温度分布が付与されて
いる。図中の温度はT1′〈TイくT3′に設定されて
おり、また種結晶11に相当する領域の第1ゾーンZ1
 と成長結晶12に相当する領域の第2ゾーンZ2と原
料13に相当する領域の第3ゾーンZ3でそれぞれ独立
して個別に温度制御が行なわれる。、第1ゾーンZ、は
TI′乃至T2′の温度、第2ゾーンZ はT′の温度
、第3ゾーンz3はT3′の温度に自動制御されている
。ZnSを原料13として結晶成長させる場合、T I
’、T 2’* T 3の各温度は600〜1000℃
の範囲で適宜選定される。
The quartz ampoule 8 consists of a hollow body part with a diameter of 30 cm and a length of loom, and a hollow neck part 9 with a necking length of 10 + o+, which is thinner than the body part, and a quartz heat sink 10 is hung from above on the neck part 9 circles. The heat sink 10 is used for natural seed crystal nucleation, and a seed crystal 11 obtained by natural nucleation is formed at its tip. The diameter of this seed crystal 11 gradually decreases as it moves downward from the neck, and reaches its minimum diameter at the tip. A grown crystal 12 is obtained following this tip. Raw material 13 is placed at the bottom of quartz ampoule 8.
A ZnS material is placed thereon. Further, the quartz ampoule 8 is provided with a temperature distribution shown by a curve 14 in the vertical direction. The temperature in the figure is set to T1'<T3', and the temperature in the first zone Z1 of the area corresponding to the seed crystal 11 is
Temperature control is performed independently and individually in the second zone Z2 corresponding to the grown crystal 12 and the third zone Z3 corresponding to the raw material 13, respectively. , the first zone Z is automatically controlled to a temperature of TI' to T2', the second zone Z is automatically controlled to a temperature of T', and the third zone z3 is automatically controlled to a temperature of T3'. When growing crystals using ZnS as the raw material 13, T I
', T2'*T3 temperature is 600~1000℃
Appropriately selected within the range.

第3ゾーンZ で温度T3′により加熱された原料13
のZnSは分子状になって上昇し、石英ヒートシンク1
0で冷却され種結晶部がヒートシンク10の先端面に発
生する。この核を中心として種結晶11が成長するが、
種結晶11の成長部は温度匂配を有し、下方へ移行する
に従って漸次温度が高くなっている。従って温度が高く
なる領域はど自然核発生の確率も小さくなり、ヒートシ
ンク10の下端面に得られる種結晶11は下方が漸次径
小となる先鋭化されたものとなる。この尖端面よf)Z
nSのバルク結晶13が沃素輸送法により成長すること
となる。形成されるバルク結晶13は極めて微小な面積
の種結晶11面より一定温度T21のもとで成長するた
め種結晶璽1の有する格子欠陥や結晶歪等を引き継ぐこ
とがなく良好な結晶性を有する六方晶系の結晶となる。
Raw material 13 heated at temperature T3' in third zone Z
ZnS becomes molecular and rises, and the ZnS of quartz heat sink 1
0, and a seed crystal portion is generated on the tip surface of the heat sink 10. A seed crystal 11 grows around this nucleus, but
The growing portion of the seed crystal 11 has a temperature gradient, and the temperature gradually increases as it moves downward. Therefore, the probability of spontaneous nucleation decreases in regions where the temperature is high, and the seed crystal 11 obtained on the lower end surface of the heat sink 10 becomes sharp with a diameter that gradually decreases downward. This tip surface f)Z
An nS bulk crystal 13 is grown by the iodine transport method. The bulk crystal 13 that is formed grows at a constant temperature T21 from the surface of the seed crystal 11 with an extremely small area, so it does not inherit the lattice defects or crystal distortion of the seed crystal 1 and has good crystallinity. It becomes a hexagonal crystal.

また結晶サイズも大きくすることができ、IC−以上の
結晶を容易に得ることが可能である0 実施例(2)一種結晶を用いる場合 第2図は本実施例の説明に供する沃素輸送法を用いた結
晶成長装置の構、成因であ、る。本実施例においては石
英ヒートシンク10の下端面に予め種結晶11を装着し
、この種結晶11を核として種結晶I+の成長を行なう
。種結晶11を予め装着する以外は実施例(])と同じ
条件とする0種結晶11は実施例(11と同じ第1ゾー
ンの温度領域で順次径小となるように下方へ結晶成長さ
れ、下端面は尖鋭化された微小面積となる0この下端面
に上記実施例[11と同様に第2ゾーンの温度領域(温
度T2′)でバルク結晶12を成長させる0結晶成長用
ZnS原料13はアンプル8の底部で第3ゾーンの温度
領域(温度T3′)に設定されている。
In addition, the crystal size can be increased, and it is possible to easily obtain crystals of IC- or higher.Example (2) When using a type of crystal This is the configuration and origin of the crystal growth apparatus used. In this embodiment, a seed crystal 11 is attached in advance to the lower end surface of a quartz heat sink 10, and a seed crystal I+ is grown using this seed crystal 11 as a nucleus. The conditions were the same as in Example (]) except that the seed crystal 11 was installed in advance. The seed crystal 11 was grown downward so that the diameter became smaller in sequence in the same temperature range of the first zone as in Example (11). The lower end surface has a sharpened minute area.The bulk crystal 12 is grown on this lower end surface in the temperature range of the second zone (temperature T2') in the same manner as in Example 11 above.The ZnS raw material 13 for crystal growth is At the bottom of the ampoule 8, the temperature is set in the third zone temperature range (temperature T3').

本実施例においても実施例+1+と同様に結晶性の良好
なバルク結晶が得られる。尚、上記各実扇例は、縦型炉
を用いた場合のアンプル配置として記載したが、水平型
炉を用いた場合あるいは回転可能な炉を用いた場合、種
結晶と原料の上下(天理の関係は任意に選ぶことができ
る0 〈発明の効果〉 以上説明したように本発明によれば、種結晶の有無にか
かわらず種結晶伸長時のネッキングと結晶成長を独立に
、しかも一定の定常条件下で制御しつつ行なうことが可
能であり、その結果、高品質でしかも十分な寸法を有す
るバルク単結晶を得ることができ、化合物半導体デバイ
ス用及び結晶成長基板用の結晶材料として産業上実用的
な単結晶を提供することが可能となる。
In this example as well, a bulk crystal with good crystallinity can be obtained as in Example +1+. In addition, each of the above actual fan examples is described as an ampoule arrangement when using a vertical furnace, but when using a horizontal furnace or a rotatable furnace, the upper and lower positions of the seed crystal and raw material (Tenri's The relationship can be arbitrarily selected. <Effects of the Invention> As explained above, according to the present invention, necking during seed crystal elongation and crystal growth can be performed independently and under constant steady conditions regardless of the presence or absence of a seed crystal. As a result, bulk single crystals of high quality and sufficient dimensions can be obtained, making them industrially practical as crystal materials for compound semiconductor devices and crystal growth substrates. This makes it possible to provide a single crystal.

【図面の簡単な説明】[Brief explanation of drawings]

第1割及び第2図はそれぞれ本発明の詳細な説明に供す
る成長装置の構成図である。 第3図は従来の沃素輸送法忙用いられている結晶成長石
英アンプルと成長時の温度分布を示す構成図である。 l・・・石英製結晶成長容器(アンプル)、2・・・原
料ZnS、3・・・種結晶Zn5.5・・・種結晶保持
管、6・・・種結晶押棒、8・・・石英製結晶成長容器
(アンプル)、9・・・ネック部、IO・・・石英ヒー
トシンク、11・・・種結晶ZnS、12・・・成長結
晶ZnS、13・・・原料ZnS。 代理人 弁理士 福 士 愛 彦 (他2名)Tコ 第1図 第2図 第3図
FIG. 10 and FIG. 2 are block diagrams of a growth apparatus provided for detailed explanation of the present invention, respectively. FIG. 3 is a block diagram showing a crystal-growing quartz ampoule used in the conventional iodine transport method and the temperature distribution during growth. l... Quartz crystal growth container (ampule), 2... Raw material ZnS, 3... Seed crystal Zn5.5... Seed crystal holding tube, 6... Seed crystal push rod, 8... Quartz crystal growth container (ampule), 9... neck portion, IO... quartz heat sink, 11... seed crystal ZnS, 12... growing crystal ZnS, 13... raw material ZnS. Agent Patent Attorney Aihiko Fukushi (and 2 others) Tco Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、昇華法またはハロゲン輸送法を用いたII−VI族化合
物半導体の結晶成長方法において、種結晶成長部、バル
ク結晶成長部及び成長原料部の各温度を独立に制御設定
し、種結晶を先端が尖鋭化するように成長させ該種結晶
の先端よりバルク結晶を成長させることを特徴とする化
合物半導体の結晶成長方法。
1. In a crystal growth method for II-VI compound semiconductors using the sublimation method or halogen transport method, the temperatures of the seed crystal growth section, bulk crystal growth section, and growth raw material section are independently controlled and set, and the seed crystal is placed at the tip. A method for growing a compound semiconductor crystal, the method comprising growing a bulk crystal from the tip of the seed crystal so that the seed crystal becomes sharp.
JP29740585A 1985-12-26 1985-12-26 Method for growing crystal of compound semiconductor Granted JPS62153192A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29740585A JPS62153192A (en) 1985-12-26 1985-12-26 Method for growing crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29740585A JPS62153192A (en) 1985-12-26 1985-12-26 Method for growing crystal of compound semiconductor

Publications (2)

Publication Number Publication Date
JPS62153192A true JPS62153192A (en) 1987-07-08
JPH0341440B2 JPH0341440B2 (en) 1991-06-24

Family

ID=17846074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29740585A Granted JPS62153192A (en) 1985-12-26 1985-12-26 Method for growing crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPS62153192A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670219A1 (en) * 1990-12-07 1992-06-12 Europ Propulsion APPARATUS AND CRUCIBLE FOR STEAM DEPOSITION.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2670219A1 (en) * 1990-12-07 1992-06-12 Europ Propulsion APPARATUS AND CRUCIBLE FOR STEAM DEPOSITION.
US5140939A (en) * 1990-12-07 1992-08-25 Societe Europeenne De Propulsion Apparatus and crucible for vapor deposition

Also Published As

Publication number Publication date
JPH0341440B2 (en) 1991-06-24

Similar Documents

Publication Publication Date Title
Epelbaum et al. On the mechanisms of micropipe and macrodefect transformation in SiC during liquid phase treatment
JP2002068896A (en) Method and device for producing nitride single crystal
JPS62153192A (en) Method for growing crystal of compound semiconductor
US4869776A (en) Method for the growth of a compound semiconductor crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JPH06125148A (en) Low-resistance semiconductor crystal substrate and manufacture thereof
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH0597566A (en) Method for growing single crystal and device therefor
JPH0371399B2 (en)
JPH05319973A (en) Single crystal production unit
JPS6335492A (en) Growth of compound semiconductor crystal
JPS5938186B2 (en) Method for producing inorganic compound single crystals
JPH0259485A (en) Growing method for crystal
JPH10212192A (en) Method for growing bulk crystal
JPH04187585A (en) Device of growing crystal
JPH08217589A (en) Production of single crystal
JPH0371400B2 (en)
JPH0867593A (en) Method for growing single crystal
JPH11322489A (en) Production of semiconductor single crystal
JPH03261699A (en) Growth of znse single crystal
JPS62143898A (en) Production of iii-v compound semiconductor single crystal
JPS60118700A (en) Production of semiconductor crystal
JPH03247588A (en) Method for growing single crystal
JPH06168890A (en) Crystal growth method for compound semiconductor