JPH08217589A - Production of single crystal - Google Patents

Production of single crystal

Info

Publication number
JPH08217589A
JPH08217589A JP4506695A JP4506695A JPH08217589A JP H08217589 A JPH08217589 A JP H08217589A JP 4506695 A JP4506695 A JP 4506695A JP 4506695 A JP4506695 A JP 4506695A JP H08217589 A JPH08217589 A JP H08217589A
Authority
JP
Japan
Prior art keywords
single crystal
ampoule
raw material
temperature
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4506695A
Other languages
Japanese (ja)
Inventor
Kenji Kohiro
健司 小廣
Akira Noda
朗 野田
Masayuki Uchida
正之 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP4506695A priority Critical patent/JPH08217589A/en
Publication of JPH08217589A publication Critical patent/JPH08217589A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE: To produce a compd. semiconductor single crystal having a high m.p. and high dissociation pressure with good reproducibility at a low cost by dissolving the crystal to be grown into a solvent to form a satd. soln. and growing the crystal from the soln. by a horizontal temp. gradient method and horizontal Bridgeman method. CONSTITUTION: Single crystal raw material and its solvent are put into an ampoule and a board arranged with a seed crystal is installed at its one end. After the ampoule is vacuum sealed, the ampoule is heated in a heating furnace to dissolve the raw material into the solvent to prepare a raw material soln. The single crystal is grown by gradually lowering the temp. of the heating furnace while the temp. distribution in the horizontal direction of the heating furnace is so controlled that the temp. on the seed crystal side falls below the temp on the raw material soln. side. Fig. illustrates a single crystal growth method by the horizontal temp. gradient method. The raw material and the solvent are put into the boat 3 and the seed crystal 6 is placed in the prescribed position of the boat 3. The boat is then vacuum sealed into the ampoule 2. The ampoule is heated by a heater 1 and the raw material soln. 5 made into a satd. concn. is brought into contact with the seed crystal 6. The single crystal 4 is then grown by gradually lowering the temp.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は単結晶の製造方法に関
し、特に水平温度勾配法(HGF法)、水平ブリッジマン法
(HB法)による単結晶の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a single crystal, particularly a horizontal temperature gradient method (HGF method) and a horizontal Bridgman method.
The present invention relates to a method for producing a single crystal by (HB method).

【0002】[0002]

【従来の技術】II-VI族やIII-V族化合物半導体は融点に
おける蒸気圧が高いため、単結晶の育成には種々の工夫
がなされている。III-V族化合物半導体は、B2O3などの
封止剤を用いて結晶を引き上げる液体封止チョクラルス
キー(LEC)法が、III-V族化合物半導体単結晶の製造に工
業的に用いられている。一方、II-VI族化合物半導体
は、III-V族化合物半導体と比較し熱伝導率が著しく低
く、B2O3と比較しても低いので液体封止チョクラルスキ
ー(LEC)法ではII-VI族化合物半導体単結晶の育成はでき
ない。そこで、CdTeなどでは、石英アンプルを用い、垂
直温度勾配法(VGF法)や垂直ブリッジマン法(VB法)での
育成が一般的に行われている。
2. Description of the Related Art Since II-VI group and III-V group compound semiconductors have a high vapor pressure at the melting point, various measures have been taken to grow single crystals. The III-V compound semiconductor is a liquid-encapsulated Czochralski (LEC) method in which a crystal is pulled by using a sealing agent such as B 2 O 3 and is industrially used for the production of a III-V compound semiconductor single crystal. Has been. On the other hand, II-VI group compound semiconductors have significantly lower thermal conductivity than III-V group compound semiconductors, and are also lower than B 2 O 3 in liquid-encapsulated Czochralski (LEC) method. Group VI compound semiconductor single crystals cannot be grown. Therefore, for CdTe and the like, a quartz ampoule is generally grown by the vertical temperature gradient method (VGF method) or the vertical Bridgman method (VB method).

【0003】しかしながら、同じII-VI族化合物半導体
のZnTeやZnSeでは融点が石英ガラスの軟化点よりも著し
く高く、しかも蒸気圧も〜10atmと高いため石英アンプ
ルに封止する方法は使用できない。そこで、Moなどの高
融点金属容器に化合物半導体原料を封入しての育成方法
などが開発されている(特開昭63-310786)。しかし、こ
の方法は、Moなどが高価であるためコスト的に不利であ
る。そこで、垂直温度勾配法(VGF法)や垂直ブリッジマ
ン法(VB法)で、化合物半導体原料を溶媒に溶かし飽和溶
液とし、これを徐々に冷却することにより単結晶を育成
する方法が開発された。この方法では、原料を融解する
必要がないため石英ガラスの軟化点よりも低温での結晶
育成が可能であり、しかも蒸気圧も1atm以下にできるた
め高圧容器の必要も無い。しかし、この方法は、縦型炉
であるためにガス対流が生じやすく、また原料容器も縦
型なため熱対流が大きく温度が変動するため、単結晶が
得にくい。種付けについても、種を原料底部にセットす
るため特別の方法を取らなければならない(石川、「「高
純度化合物半導体結晶」プロジェクト研究概要集」((財)
神奈川科学技術アカデミー)、P19〜P33)などの欠点があ
った。
However, since the melting points of ZnTe and ZnSe which are the same II-VI group compound semiconductors are remarkably higher than the softening point of quartz glass and the vapor pressure is as high as -10 atm, the method of encapsulating in a quartz ampoule cannot be used. Therefore, a growth method in which a compound semiconductor raw material is sealed in a high melting point metal container such as Mo has been developed (JP-A-63-310786). However, this method is disadvantageous in cost because Mo and the like are expensive. Therefore, by the vertical temperature gradient method (VGF method) and the vertical Bridgman method (VB method), a method of growing a single crystal by dissolving a compound semiconductor raw material in a solvent to form a saturated solution and gradually cooling it was developed. . With this method, it is possible to grow crystals at a temperature lower than the softening point of the silica glass because it is not necessary to melt the raw material, and there is no need for a high-pressure container because the vapor pressure can be 1 atm or less. However, in this method, since a vertical furnace is used, gas convection easily occurs, and since the raw material container is also vertical, thermal convection is large and the temperature fluctuates, so that it is difficult to obtain a single crystal. Regarding seeding as well, a special method must be taken to set the seed on the bottom of the raw material (Ishikawa, "High-Purity Compound Semiconductor Crystals Project Research Summary" ((Fund))
There were drawbacks such as Kanagawa Academy of Science and Technology), P19-P33).

【0004】[0004]

【発明が解決しようとする課題】本発明は上記の問題点
を解決したもので、その目的は、高融点で高解離圧を有
する化合物半導体単結晶を低コストで再現性良く作製す
ることにある。
SUMMARY OF THE INVENTION The present invention solves the above problems, and an object thereof is to produce a compound semiconductor single crystal having a high melting point and a high dissociation pressure at low cost and with good reproducibility. .

【0005】[0005]

【課題を解決するための手段】上記問題点を解決する手
段として、溶媒に原料を溶解し、水平温度勾配法(HGF
法)、水平ブリッジマン法(HB法)により単結晶を育成す
る手段を考案した。すなわち、本発明は、アンプル内
に、単結晶用原料とその溶媒を入れその一端に種結晶を
配置したボートを設置し、該アンプルを真空封印した
後、該アンプルを加熱炉内で加熱して前記原料を溶媒中
に溶解させ原料溶液とし、該加熱炉の水平方向の温度分
布を種結晶側の温度が前記原料溶液側の温度より低くな
るように制御しながら、該加熱炉の温度を徐々に下げな
がら単結晶を育成することを特徴とする単結晶の製造方
法、及びアンプル内に、単結晶用原料とその溶媒を入れ
たボートを設置し、該アンプルを真空封印した後、該ア
ンプルを加熱炉内で加熱して前記原料を溶媒中に溶解さ
せ原料溶液とし、該加熱炉の水平方向の温度分布を前記
ボートの片側の温度が他方側の温度より高くなるように
制御しながら、該加熱炉の温度を徐々に下げながら単結
晶を育成することを特徴とする単結晶の製造方法、及び
アンプル内に、単結晶用原料および溶媒を入れその一端
に種結晶を配置したボートを設置し、該アンプルを真空
封印した後、該アンプルを加熱炉内で加熱して前記原料
を溶媒中に融解し原料溶液とし、該加熱炉の水平方向の
温度分布を種結晶側の温度が前記原料溶液側の温度より
低くなるように制御しながら、該アンプルと該加熱炉と
を相対的に移動させて単結晶を育成することを特徴とす
る単結晶の製造方法を提供するものである
[Means for Solving the Problems] As a means for solving the above problems, the raw material is dissolved in a solvent and the horizontal temperature gradient method (HGF
Method) and a horizontal Bridgman method (HB method) were devised. That is, the present invention, in the ampoule, a single crystal raw material and its solvent is placed and a boat in which a seed crystal is placed at one end thereof is installed, the ampoule is vacuum-sealed, and then the ampoule is heated in a heating furnace. The raw material is dissolved in a solvent to form a raw material solution, and the temperature of the heating furnace is gradually controlled while controlling the temperature distribution in the horizontal direction of the heating furnace so that the temperature on the seed crystal side is lower than the temperature on the raw material solution side. The method for producing a single crystal, which is characterized by growing a single crystal while lowering, and a boat containing the single crystal raw material and its solvent is installed in the ampoule, and the ampoule is vacuum-sealed. While heating in a heating furnace to dissolve the raw material in a solvent to form a raw material solution, while controlling the temperature distribution in the horizontal direction of the heating furnace so that the temperature on one side of the boat is higher than the temperature on the other side, Gradually lower the temperature of the heating furnace While producing a single crystal characterized by growing a single crystal, and in the ampoule, put a single crystal raw material and solvent put a boat with a seed crystal placed at one end thereof, after vacuum sealing the ampoule , Heating the ampoule in a heating furnace to melt the raw material in a solvent to form a raw material solution, so that the temperature distribution in the horizontal direction of the heating furnace is such that the temperature on the seed crystal side is lower than the temperature on the raw material solution side. A method for producing a single crystal, which is characterized in that the ampoule and the heating furnace are relatively moved while being controlled to grow the single crystal.

【0006】垂直温度勾配法(VGF法)や垂直ブリッジマ
ン法(VB法)は、円形のウェハーを歩留まりよく取得でき
る他、熱応力のかかり方が均等であるため低転移密度の
結晶を得やすいという長所がある。欠点としては、炉が
縦型であるためガス対流が激しいため、原料の融液の対
流が起こりやすく結晶に双晶や多結晶が発生するなどが
ある。溶媒を用いる方法では、融液の場合よりも組成的
過冷却が生じやすいため温度勾配を大きく付ける必要が
あるが、垂直温度勾配法(VGF法)や垂直ブリッジマン法
(VB法)などは、ガス対流の影響で温度勾配が小さくなり
やすく、これを防止するためにはヒーターを細かく分割
する必要がある。このような欠点は、縦型炉を使用する
ために生じた欠点であり横型炉を使用すればよい。
In the vertical temperature gradient method (VGF method) and the vertical Bridgman method (VB method), a circular wafer can be obtained with a high yield, and the thermal stress is evenly applied, so that a crystal with a low dislocation density is easily obtained. There is an advantage called. As a disadvantage, since the furnace is vertical and gas convection is intense, convection of the melt of the raw material is likely to occur, and twin crystals and polycrystals are generated in the crystal. In the method using a solvent, compositional supercooling is more likely to occur than in the case of a melt, so it is necessary to increase the temperature gradient, but the vertical temperature gradient method (VGF method) or the vertical Bridgman method
In the (VB method) and the like, the temperature gradient tends to be small due to the influence of gas convection, and in order to prevent this, it is necessary to divide the heater into fine pieces. Such a defect is caused by using the vertical furnace, and the horizontal furnace may be used.

【0007】水平温度勾配法(HGF法)による単結晶の育
成方法について図1を用いて説明する。原料と溶媒をボ
ートに入れ、種結晶6をボートの所定の位置に設置して
アンプル2、例えば石英アンプル内に真空封入する。こ
のアンプル2をヒーター1で加熱し、溶媒を融解しこれ
に原料を溶解する。この融液を飽和濃度となるように温
度を保ちながら、種結晶6と接触させた後、徐々に温度
を下げて単結晶4を育成する。なお、種結晶6は必要に
応じて用いられる。
A method for growing a single crystal by the horizontal temperature gradient method (HGF method) will be described with reference to FIG. The raw material and the solvent are put in a boat, the seed crystal 6 is set at a predetermined position of the boat, and the ampoule 2, for example, a quartz ampoule is vacuum-sealed. The ampoule 2 is heated by the heater 1 to melt the solvent and dissolve the raw material therein. The melt is brought into contact with the seed crystal 6 while maintaining the temperature so as to have a saturated concentration, and then the temperature is gradually lowered to grow the single crystal 4. The seed crystal 6 is used if necessary.

【0008】この方法では800℃を下回るような温度で
もZnTe、ZnSe、GaAs、GaP等の単結晶の育成が可能であ
るが、原料の溶解度、成長速度など考えると、800℃〜1
200℃での育成が好ましい。また、この方法では温度勾
配を大きくできるため、成長速度もかなり早くできる
が、あまり早すぎると双晶や多結晶が発生したり、転位
密度が高くなったりするため、5mm/hr以下の成長速度が
好ましい。
According to this method, it is possible to grow single crystals of ZnTe, ZnSe, GaAs, GaP, etc. even at a temperature below 800 ° C. However, considering the solubility of raw materials and the growth rate, 800 ° C. to 1 ° C.
Growth at 200 ° C is preferred. In addition, since the temperature gradient can be made large by this method, the growth rate can be made quite fast, but if it is too fast, twins and polycrystals will be generated, and the dislocation density will become high, so the growth rate of 5 mm / hr or less. Is preferred.

【0009】水平ブリッジマン法(HB法)でも同様である
(図2)。原料と溶媒をボートに入れ、種結晶6をボート
3の所定の位置に設置してアンプル2内に真空封入す
る。適切な温度、温度勾配となるようにヒータ1a、1bを
調整し、種結晶6を低温側に位置するようにアンプル2
を設置後、アンプル2と加熱炉とを相対的に移動させて
単結晶3を育成する。
The same applies to the horizontal Bridgman method (HB method)
(Figure 2). The raw material and the solvent are put in a boat, the seed crystal 6 is set at a predetermined position of the boat 3, and the ampoule 2 is vacuum-sealed. The heaters 1a and 1b are adjusted so that the temperature and the temperature gradient are appropriate, and the ampoule 2 is placed so that the seed crystal 6 is located on the low temperature side.
After the installation, the ampoule 2 and the heating furnace are relatively moved to grow the single crystal 3.

【0010】これらの方法では、ボートの深さが浅いた
め、上下の温度差により溶液の熱対流が起こりにくく温
度変動が小さいので双晶や多結晶が発生しにくい。ま
た、ガス対流も発生しにくいため成長方向の温度勾配を
大きくでき組成的過冷却も生じにくい。ボートの断面が
D型であるため円形ウェハを取得すると原料の歩留まり
が低下するが、多結晶の発生確率が垂直温度勾配法(VGF
法)や垂直ブリッジマン法(VB法)と比較してそれを補う
にあまりあるほど低い。また、転位密度は垂直温度勾配
法(VGF法)や垂直ブリッジマン法(VB法)と同様であり、
液体封止チョクラルスキ−法(LEC法)などど比較して著
しく低いものが得られる。
In these methods, since the depth of the boat is shallow, thermal convection of the solution is unlikely to occur due to the temperature difference between the upper and lower sides, and the temperature fluctuation is small, so twins and polycrystals are less likely to occur. Further, since gas convection is unlikely to occur, the temperature gradient in the growth direction can be increased and compositional supercooling is unlikely to occur. The yield of raw materials decreases when a circular wafer is obtained because the cross section of the boat is D-shaped, but the probability of polycrystal formation depends on the vertical temperature gradient method (VGF).
Method) or the vertical Bridgman method (VB method), which is low enough to make up for it. The dislocation density is similar to the vertical temperature gradient method (VGF method) and the vertical Bridgman method (VB method),
Compared to the liquid-encapsulated Czochralski method (LEC method) and other methods, extremely low values can be obtained.

【0011】[0011]

【実施例】【Example】

(実施例1)ZnTe単結晶の育成を例に取って説明する。
ZnTeの融点は1295℃、融点における蒸気圧は約4気圧
で、石英ガラスアンプルを使用すると軟化破裂を起こし
てしまう。そこで、溶媒として金属Teを用い、Te:Zn=7:
3(モル比)の比で混合した。この時のZnTeの飽和温度は1
080℃、蒸気圧は約0.7atmである。
(Example 1) The growth of a ZnTe single crystal will be described as an example.
ZnTe has a melting point of 1295 ° C and a vapor pressure at the melting point of about 4 atm, and it causes softening and rupture when a quartz glass ampoule is used. Therefore, using Te as a solvent, Te: Zn = 7:
Mixed at a ratio of 3 (molar ratio). The saturation temperature of ZnTe at this time is 1
080 ℃, vapor pressure is about 0.7atm.

【0012】まず、ZnTe;500 gとTe;440 gをボートに入
れ、ボートの所定の位置にZnTeの種結晶を設置する。こ
のボートを石英アンプル内にセットした後、石英アンプ
ル内を真空排気しながら酸水素バーナーによって真空封
印する。これを炉内にセットしヒーターでボートの温度
を1085℃まで上げてZnTeをTe溶媒に溶かしこむ。その
後、ボートの種結晶側の温度を1080℃、他端を1100℃と
してボート内に温度勾配をつけ(図3中の実線)、融液と
種結晶を接触させる。種結晶を十分なじませてから、炉
内の温度を図3のように徐々に下げて、ZnTe単結晶を育
成した。得られた結晶は、種結晶側の約半分がZnTe単結
晶、他はTeであった。同様に実験を5回行ったが、石英
アンプルが破裂するなどのトラブルは発生せず、また5
回とも単結晶が育成できた。単結晶が高い確率で育成で
きたのは、先に述べた温度変動が小さい他、結晶の成長
が溶液表面からボートの底に向かって進行するため、ボ
ートと融液の接触点からの多結晶成長が起こらないこと
によるものである。
First, ZnTe; 500 g and Te; 440 g are put into a boat, and a ZnTe seed crystal is set at a predetermined position of the boat. After setting this boat in a quartz ampoule, the interior of the quartz ampoule is evacuated and vacuum sealed with an oxyhydrogen burner. This is set in the furnace and the temperature of the boat is raised to 1085 ° C with a heater to dissolve ZnTe in the Te solvent. After that, the temperature on the seed crystal side of the boat is set to 1080 ° C. and the other end is set to 1100 ° C. to make a temperature gradient in the boat (solid line in FIG. 3) to bring the melt into contact with the seed crystal. After allowing the seed crystal to sufficiently adjust, the temperature inside the furnace was gradually lowered as shown in FIG. 3 to grow a ZnTe single crystal. About half of the seed crystal of the obtained crystal was ZnTe single crystal, and the other was Te. Similarly, the experiment was repeated 5 times, but no trouble such as bursting of the quartz ampoule occurred.
A single crystal could be grown over and over. The single crystal could be grown with a high probability because, in addition to the small temperature fluctuations mentioned above, the growth of the crystal proceeds from the solution surface toward the bottom of the boat, so the polycrystal from the contact point between the boat and the melt. This is because growth does not occur.

【0013】(実施例2)実施例1と同様に、ZnTe;500
gとTe;440 gをボートに入れ、このボートを石英アンプ
ル内にセットした後、石英アンプル内を真空排気しなが
ら酸水素バーナーによって真空封印する。これを炉内に
セットしヒーターでボートの温度を1085℃まで上げてZn
TeをTe溶媒に溶かしこむ。その後、ボートの低温側の温
度を1080℃、他端を1100℃としてボート内に温度勾配を
つける。そして、温度勾配の低温側に成長核が生成する
ように徐々に低温度帯を高温側に移動していくようにヒ
ータを制御する。本育成方法は、溶液成長で行っている
ためZnの拡散速度を考慮して、成長速度は0.36mm/hrと
した。育成された結晶は、低温に設定した方の約半分が
ZnTe単結晶、他はTeであった。同様に実験を5回行った
が、石英アンプルが破裂するなどのトラブルは発生せ
ず、また5回ともZnTe単結晶が育成でき再現性が確認で
きた。また、育成した結晶の品質を調べるために、液体
窒素温度である77Kにおけるフォトルミネッセンス法に
よる発光を調べた結果、530nm付近に鋭いピークを持っ
た純緑色の単一ピークが観測され、高純度で低転位な単
結晶であることがわかった。
Example 2 As in Example 1, ZnTe; 500
After placing g and Te; 440 g in a boat and setting the boat in a quartz ampoule, the interior of the quartz ampoule is vacuum-exhausted and vacuum sealed with an oxyhydrogen burner. Set this in the furnace and raise the boat temperature to 1085 ℃ with a heater
Dissolve Te in Te solvent. After that, the temperature on the low temperature side of the boat is set to 1080 ° C. and the other end is set to 1100 ° C., so that a temperature gradient is formed in the boat. Then, the heater is controlled so as to gradually move the low temperature zone to the high temperature side so that the growth nuclei are generated on the low temperature side of the temperature gradient. Since this growth method is performed by solution growth, the growth rate was set to 0.36 mm / hr in consideration of the diffusion rate of Zn. About half of the grown crystals are the ones set at low temperature
ZnTe single crystal, other was Te. Similarly, the experiment was conducted 5 times, but no trouble such as bursting of the quartz ampoule occurred, and ZnTe single crystals could be grown and reproducibility could be confirmed 5 times. In addition, in order to investigate the quality of the grown crystal, as a result of examining the light emission by the photoluminescence method at a liquid nitrogen temperature of 77 K, a pure green single peak having a sharp peak near 530 nm was observed, and with high purity. It was found to be a single crystal with low dislocation.

【0014】(実施例3)pBNボートにGa:GaAs=75:25(a
t%)で予めGa溶媒に多結晶を溶解した原料を1500g入れ、
石英アンプル内を2×10-6torrまで排気してから封止し
た。ヒータ1aで高温均熱帯1100℃、ヒータ1bで低温均熱
帯1000℃となるようにした。ヒータ1bに種結晶が位置す
るように石英アンプルを設置して、石英アンプルを0.1m
m/hrで移動させGaAs単結晶を育成した。得られたGaAs単
結晶の<100>面出しを行い溶融KOHでエッチングして転位
密度を測定したところ100個/cm3以下であった。このよ
うに本発明は、II-VI族化合物半導体以外のIII-V族化合
物半導体にも応用可能である。
(Example 3) Ga: GaAs = 75: 25 (a) in a pBN boat
(t%) put 1500 g of raw material in which polycrystal is dissolved in Ga solvent in advance,
The quartz ampoule was evacuated to 2 × 10 -6 torr and then sealed. The heater 1a was set to high temperature soaking 1100 ° C, and the heater 1b was set to low temperature soaking 1000 ° C. Place the quartz ampoule so that the seed crystal is positioned on the heater 1b, and set the quartz ampoule to 0.1 m.
It was moved at m / hr to grow a GaAs single crystal. The <100> surface of the obtained GaAs single crystal was exposed, and the dislocation density was measured by etching with molten KOH and found to be 100 dislocations / cm 3 or less. As described above, the present invention can be applied to III-V group compound semiconductors other than II-VI group compound semiconductors.

【0015】[0015]

【発明の効果】以上説明したように、本発明では高融点
で高解離圧を有する化合物半導体単結晶を育成するにあ
たり、育成する結晶を溶媒に溶かし飽和溶液としこれを
水平温度勾配法(HGF法)、水平ブリッジマン法(HB法)に
より結晶を育成するため、高純度で低転位密度の単結晶
が安価に得られることがわかった。
As described above, in the present invention, when growing a compound semiconductor single crystal having a high melting point and a high dissociation pressure, the growing crystal is dissolved in a solvent to obtain a saturated solution, which is then subjected to the horizontal temperature gradient method (HGF method). ), Since it was grown by the horizontal Bridgman method (HB method), it was found that a single crystal with high purity and low dislocation density can be obtained at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】水平温度勾配法(HGF法)(種結晶;有り)による
単結晶の育成を示した図である。
FIG. 1 is a diagram showing the growth of a single crystal by a horizontal temperature gradient method (HGF method) (seed crystal; present).

【図2】水平ブリッジマン法(HB法)による単結晶の育成
を示した図である。
FIG. 2 is a diagram showing growth of a single crystal by a horizontal Bridgman method (HB method).

【図3】実施例1における、水平温度勾配法(HGF法)(種
結晶;有り)による単結晶の育成時の温度変化を示した
図である。実線は育成前の温度分布、点線は育成中時の
温度分布である。
FIG. 3 is a diagram showing a temperature change during growth of a single crystal by a horizontal temperature gradient method (HGF method) (seed crystal; present) in Example 1. The solid line shows the temperature distribution before growing, and the dotted line shows the temperature distribution during growing.

【符号の説明】[Explanation of symbols]

1 ヒータ 1a ヒータ 1b ヒータ 2 アンプル 3 ボート 4 単結晶 5 原料融液 6 種結晶 1 heater 1a heater 1b heater 2 ampoule 3 boat 4 single crystal 5 raw material melt 6 seed crystal

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】アンプル内に、単結晶用原料とその溶媒を
入れその一端に種結晶を配置したボートを設置し、該ア
ンプルを真空封印した後、該アンプルを加熱炉内で加熱
して前記原料を溶媒中に溶解させ原料溶液とし、該加熱
炉の水平方向の温度分布を種結晶側の温度が前記原料溶
液側の温度より低くなるように制御しながら、該加熱炉
の温度を徐々に下げながら単結晶を育成することを特徴
とする単結晶の製造方法。
1. A boat in which a raw material for a single crystal and a solvent for the single crystal are placed in an ampoule and a seed crystal is placed at one end of the ampoule, the ampoule is vacuum-sealed, and then the ampoule is heated in a heating furnace to obtain the aforesaid product. The raw material is dissolved in a solvent to form a raw material solution, and the temperature of the heating furnace is gradually controlled while controlling the temperature distribution in the horizontal direction of the heating furnace so that the temperature on the seed crystal side is lower than the temperature on the raw material solution side. A method for producing a single crystal, which comprises growing the single crystal while lowering it.
【請求項2】アンプル内に、単結晶用原料とその溶媒を
入れたボートを設置し、該アンプルを真空封印した後、
該アンプルを加熱炉内で加熱して前記原料を溶媒中に溶
解させ原料溶液とし、該加熱炉の水平方向の温度分布を
前記ボートの片側の温度が他方側の温度より高くなるよ
うに制御しながら、該加熱炉の温度を徐々に下げながら
単結晶を育成することを特徴とする単結晶の製造方法。
2. A boat containing a raw material for a single crystal and a solvent for the single crystal is placed in an ampoule, and the ampoule is vacuum-sealed.
The ampoule is heated in a heating furnace to dissolve the raw material in a solvent to form a raw material solution, and the horizontal temperature distribution of the heating furnace is controlled so that the temperature on one side of the boat is higher than the temperature on the other side. However, the method for producing a single crystal is characterized by growing the single crystal while gradually lowering the temperature of the heating furnace.
【請求項3】アンプル内に、単結晶用原料および溶媒を
入れその一端に種結晶を配置したボートを設置し、該ア
ンプルを真空封印した後、該アンプルを加熱炉内で加熱
して前記原料を溶媒中に溶解し原料溶液とし、該加熱炉
の水平方向の温度分布を種結晶側の温度が前記原料溶液
側の温度より低くなるように制御しながら、該アンプル
と該加熱炉を相対的に移動させて単結晶を育成すること
を特徴とする単結晶の製造方法。
3. A raw material for a single crystal and a solvent are placed in an ampoule, and a boat having a seed crystal is placed at one end of the ampoule. The ampoule is vacuum-sealed, and then the ampoule is heated in a heating furnace. Is dissolved in a solvent as a raw material solution, and while controlling the horizontal temperature distribution of the heating furnace so that the temperature on the seed crystal side is lower than the temperature on the raw material solution side, the ampoule and the heating furnace are relatively A method for producing a single crystal, characterized in that the single crystal is grown by moving the single crystal.
JP4506695A 1995-02-10 1995-02-10 Production of single crystal Pending JPH08217589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4506695A JPH08217589A (en) 1995-02-10 1995-02-10 Production of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4506695A JPH08217589A (en) 1995-02-10 1995-02-10 Production of single crystal

Publications (1)

Publication Number Publication Date
JPH08217589A true JPH08217589A (en) 1996-08-27

Family

ID=12708986

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4506695A Pending JPH08217589A (en) 1995-02-10 1995-02-10 Production of single crystal

Country Status (1)

Country Link
JP (1) JPH08217589A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105401216A (en) * 2015-12-15 2016-03-16 河南西格马晶体科技有限公司 Method and device for preparing sheet-shaped monocrystallines through temperature field gradient horizontal moving method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105401216A (en) * 2015-12-15 2016-03-16 河南西格马晶体科技有限公司 Method and device for preparing sheet-shaped monocrystallines through temperature field gradient horizontal moving method

Similar Documents

Publication Publication Date Title
EP0986655B1 (en) THE METHOD OF FABRICATION OF HIGHLY RESISTIVE GaN BULK CRYSTALS
US20060260536A1 (en) Vessel for growing a compound semiconductor single crystal, compound semiconductor single crystal, and process for fabricating the same
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
JPH10218699A (en) Growth of compound semiconductor single crystal
US20070079751A1 (en) Inp single crystal, gaas single crystal, and method for production thereof
JPH08217589A (en) Production of single crystal
JPH11147785A (en) Production of single crystal
JPS6090897A (en) Method and apparatus for manufacturing compound semiconductor single crystal
KR920010134B1 (en) As gas pressure controlling method of epitaxial growing process
JPS5983999A (en) Preparation of single crystal of compound of iii-v group
JP2773441B2 (en) Method for producing GaAs single crystal
JPH08290991A (en) Method for growing compound semiconductor single crystal
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JP2781857B2 (en) Single crystal manufacturing method
JP2000327496A (en) Production of inp single crystal
JP2002029881A (en) Method of producing compound semiconductor single crystal
JPH08104591A (en) Apparatus for growing single crystal
JP2005132717A (en) Compound semiconductor single crystal and its manufacturing method
JPH0867593A (en) Method for growing single crystal
JPH06102588B2 (en) Method for growing compound semiconductor crystal
JPH0952789A (en) Production of single crystal
JPS6065794A (en) Production of high-quality gallium arsenide single crystal
JP2002241199A (en) METHOD FOR PRODUCING ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL AND ZnTe-BASED COMPOUND SEMICONDUCTOR SINGLE CRYSTAL
JPH0535720B2 (en)