KR920010134B1 - As gas pressure controlling method of epitaxial growing process - Google Patents

As gas pressure controlling method of epitaxial growing process Download PDF

Info

Publication number
KR920010134B1
KR920010134B1 KR1019890015225A KR890015225A KR920010134B1 KR 920010134 B1 KR920010134 B1 KR 920010134B1 KR 1019890015225 A KR1019890015225 A KR 1019890015225A KR 890015225 A KR890015225 A KR 890015225A KR 920010134 B1 KR920010134 B1 KR 920010134B1
Authority
KR
South Korea
Prior art keywords
single crystal
vapor pressure
quartz tube
gaas
temperature
Prior art date
Application number
KR1019890015225A
Other languages
Korean (ko)
Other versions
KR910008812A (en
Inventor
오명환
고한준
이호성
박기석
Original Assignee
금성전선주식회사
홍종선
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 금성전선주식회사, 홍종선 filed Critical 금성전선주식회사
Priority to KR1019890015225A priority Critical patent/KR920010134B1/en
Publication of KR910008812A publication Critical patent/KR910008812A/en
Application granted granted Critical
Publication of KR920010134B1 publication Critical patent/KR920010134B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/34Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies not provided for in groups H01L21/0405, H01L21/0445, H01L21/06, H01L21/16 and H01L21/18 with or without impurities, e.g. doping materials
    • H01L21/46Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/428

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

The GaAs single crystl is grown by horizontal bridgman (HB), vertical bridgman (VB), or gradient freeze (GF) method using the quartz tube (1). The excess As, which can maintain the As vapor pressure for offseting the equilibrium dissociation pressure of the raw material solution (3), is loaded into the quartz tube by considering the volume, the temperature and the control pressure of the quartz tube and, followed by controlling the As vapor pressure to obtain the GaAs single crystal of good quality. The Si doped GaAs single crystal grown by this method have the electron mobility of 2,000-4,000 cm/v.sec. and the electron concentration of 1017-1018 cm-3.

Description

GaAs단결정 성장시 단결정 확보를 위한 As증기압 제어방법As vapor pressure control method to secure single crystal when growing GaAs single crystal

제1도는 본 발명을 설명하기 위한 HB단결정 제조장치의 단면도.1 is a cross-sectional view of an HB single crystal manufacturing apparatus for explaining the present invention.

제2도는 본 발명의 설명을 위한 VB 단결정 제조장치의 단면도.2 is a cross-sectional view of the VB single crystal manufacturing apparatus for explaining the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1 : 석영관 2 : GaAs다결정1: quartz tube 2: GaAs polycrystalline

3 : 결정 원료 용액 4 : 과잉As3: crystal raw material solution 4: excess As

5 : 고온 서스텝터 6 : 저온 서스텝터5: high temperature susceptor 6: low temperature susceptor

8 : 석영 보우트 9 : 관측창8: quartz boat 9: observation window

본 발명은 GaAs단결정 성장시 양질의 단결정성 확보를 위한 As 증기압 제어방법에 관한 것이다.The present invention relates to a method of controlling As vapor pressure for securing high quality single crystals when growing GaAs single crystals.

이것은 수평브리지만(Horizontal Bridgman : 이하 HB라 약칭함) 법이나 경사응고(Gradient Freeze : 이하 GF라 약칭함)법에서 석영 반응관을 이용한 GaAs단결정 성장시 GaAs(갈륨 비소) 단결정 성장의 성패를 기본적으로 좌우하는 As(비소)증기압 유지를 위한 방법으로 As원소(5족 화합물)가 갖는 고유 특성을 감안하여 원하고자 하는 제어가 용이하게 하여 양질의 단결정성을 얻게 하는데 있는 것이다.This is based on the success or failure of GaAs (gallium arsenide) single crystal growth during the growth of GaAs single crystal using quartz reaction tube in horizontal bridgman (abbreviated as HB) method or gradient freeze (abbreviated as GF) method. As a method for maintaining As (arsenic) vapor pressure depending on the intrinsic characteristics of the As element (group 5 compound), the desired control is facilitated to obtain high quality single crystallinity.

이것에 의해 고체 As가 밀폐된 석영관안 또는 석영 도가니내에 필요 용량만큼 정산. 장입되어 저온부가 610-630℃ 고온부가 1240-1260℃만큼 가열되어 GaAs 용액이 형성되었을때 As 증기가 적당한 증기압(약 1기압)을 갖게 함으로써 원하고자 하는 단결정 성장을 가능하게 한다.As a result, the solid As is settled in the sealed quartz tube or the quartz crucible by the required capacity. When the low temperature part is charged and the 610-630 ° C. high temperature part is heated by 1240-1260 ° C., when the GaAs solution is formed, the As vapor has an appropriate vapor pressure (about 1 atm) to enable desired single crystal growth.

즉 본 발명에서는 이러한 As증기압 제어방법에 의해 GaAs단결정이 얻어지는 과정을 제시하는 것이다.That is, the present invention proposes a process for obtaining a GaAs single crystal by the As vapor pressure control method.

종래 진행되어져 왔던 GaAs단결정 성장실험의 기본 방법은 본 방법과 달리 외부적 온도제어에 의해서만 증기압 제어를 하는 방법이다. 따라서 장치에의 종속성이 컸다.The basic method of the GaAs single crystal growth experiment that has been conventionally performed is a method of controlling the vapor pressure only by external temperature control, unlike the present method. Therefore, the dependency on the device was large.

이것은 밀봉된 석영관에 GaAs원료를 장입하여 1250℃-1260℃ 정도의 고온부와 610℃-630℃ 정도의 저온부로 나누어 각 부위별 온도제어를 하여 단결정을 성장시키는 방법이다.This is a method of growing a single crystal by charging GaAs raw material into a sealed quartz tube and dividing it into a high temperature part of about 1250 ° C-1260 ° C and a low temperature part of about 610 ° C-630 ° C.

여기에서 저온부 온도를 제어하는 목적은 석영관내의 As 증기압을 일정하게 유지하게 하여 GaAs가 용해되면서 생성될때 표면에서 해리되어 As 성분이 이탈되고자 하는 경향을 억제하기 위한 것이다.Here, the purpose of controlling the temperature of the low temperature part is to keep the As vapor pressure in the quartz tube constant so as to suppress the tendency of the As component to dissociate from the surface when GaAs is generated while it is dissolved.

그런데 As 원소가 고체 상태에서 As단원자(mono-atam) 상태이나 기체 상태에서는 As4 또는 As2등의 다원자(Poly-atom) 상태를 이루는 고상, 기상간의 외부적인 온도만으로는 일정한 평형 증기압을 유지할 수 없다.However, the As equilibrium vapor pressure cannot be maintained only by the external temperature between the solid and gaseous phases in which the As element forms a poly-atom state such as As4 or As2 in the As-atom state in the solid state or the gas state. .

이러한 종래 방법은 증기압의 기본 정의와도 위배되는 것으로 일정 온도에서 고유하게 갖는 평형 증기압을 유지하기가 어렵다는 것을 말해준다.This conventional method also violates the basic definition of vapor pressure, which indicates that it is difficult to maintain the equilibrium vapor pressure inherent at a certain temperature.

따라서 그동안의 많은 실험 보고서에 의하여 같은 성장조건이라해도 결과가 서로 다르거나 또한 증기압 데이타에 대한 일관적 근거가 없는 것이 바로 이러한 As 원소의 난해한 특성에 기인하기 때문이다.Therefore, many experimental reports have been based on the difficult characteristics of the As element because the same growth conditions have different results or no consistent basis for vapor pressure data.

즉 이것을 다시 설명한다면 GaAs 성장법의 경우엔 GaAs 융액-고체-As 증기상간의 3상 평형상태의 관건이 저온부의 As온도에 따라 좌우된다는 매우 단편적인 사실에 근거하는데, 이 방법의 경우 장입된 GaAs량, 석영관 부피, 내부진공도, 내부 청정도및 성장온도 분포, 성장시간등의 헤아릴수 없는 정도의 많은 변수에 따라 같은 저온부 온도라도 증기압이 달라지기 때문이다.In other words, the GaAs growth method is based on the very fragmented fact that the key to the three-phase equilibrium between GaAs melt-solid-As vapor phase depends on the As temperature of the low temperature part. This is because the vapor pressure varies even at the same low temperature, depending on many variables such as quantity, quartz tube volume, internal vacuum degree, internal cleanliness, growth temperature distribution, and growth time.

따라서 원하고자하는 증기압 제어및 단결정 성장의 재현성을 위해서는 상기한 공정 영향에 의한 편차를 없애주어야 한다.Therefore, in order to control desired vapor pressure and reproducibility of single crystal growth, it is necessary to eliminate the deviation caused by the above-described process influence.

그러므로 전술한바에 의해 As원소가 기화되어 As, As4, As2등으로 변할때 이들은 주변온도에 따라 평형 분압을 다르게 가지므로 종래 방법대로 단결정을 성장시킬 경우에는 석영 반응관내에 As-증기상들의 불안정성이 야기되어 원하고자 하는 조성비 제어가 불가능한 문제점이 있는 것이다.Therefore, as described above, when the As element is vaporized and changed to As, As4, As2, etc., they have different equilibrium partial pressures according to the ambient temperature. Therefore, when growing single crystals according to the conventional method, instability of As-vapor phases occurs in the quartz reaction tube. There is a problem that it is impossible to control the composition ratio desired.

이에 본 발명에서는 종래의 결점을 해결하기 위해 상기와 같은 기존 증기압 제어와는 달리 역의 방법으로서 주어진 석영관 부피와 온도분포 및 제어압력을 감안한 As2 및 As3 기체상의 몰수를 정산하여 장입함으로써 해소될수 있도록 하기 위한 것이다.Therefore, in order to solve the drawbacks of the present invention, in contrast to the conventional vapor pressure control as described above, it can be solved by calculating and charging the number of moles of As2 and As3 gas phases in consideration of the given quartz tube volume, temperature distribution, and control pressure. It is to.

이를 위해 제1도 또는 제2도에 도시한 바와같이 GaAs단결정제조 장치가 구비되어진다.For this purpose, as shown in FIG. 1 or 2, a GaAs single crystal manufacturing apparatus is provided.

여기에서 제1도는 본 발명의 설명을 위해 나타낸 GaAs의 수평 브리지만 단결정 제조장치의 단면도이며, 제2도는 GaAs성장용 수직 브릿지만 단결정 제조장치의 단면도이다.Here, FIG. 1 is a cross-sectional view of the GaAs horizontal bridge only single crystal manufacturing apparatus shown for explanation of the present invention, and FIG. 2 is a cross-sectional view of the GaAs growth vertical bridge only single crystal manufacturing apparatus.

이러한 단결정 제조장치에 의한 본 발명의 특징인 점은 As원소들의 불안정한 열화학적 특성을 감안하여 미리 석영관을 채울만한 As증기상의 총 몰수를 정산하여 장입하므로, As 고체가 기화하여 내부 분위기를 채웠을때 저온부가 ±10℃의 온도 편차가 있어도 내부기압상으로는 ±0.01기압 정도의 편차만이 발생하게 하려는 것이다.The characteristic of the present invention by such a single crystal manufacturing apparatus is that in consideration of the unstable thermochemical properties of As elements, the total number of moles of As vapor phase to fill a quartz tube is calculated and charged in advance, so that when the As solid is vaporized to fill the internal atmosphere. Even if the low temperature part has a temperature deviation of ± 10 ° C, only the deviation of ± 0.01 atmosphere is generated on the internal pressure.

이것은 기존 방법에 의해 ±10℃의 저온부온도 편차가 있을때 ±0.2기압만큼 변한다. 반면에 본 발명에 의해서는 1/20 정도로 그 영향이 감소하므로 정확한 조성비. 제어가 가능하게 되는 것이고, 온도 편차등에 의한 증기압의 불안정성및 부정확성을 제거할 수 있게 되는 것이다.This is changed by ± 0.2 atm when there is a deviation of the cold zone temperature of ± 10 ℃ by the conventional method. On the other hand, according to the present invention, since the effect is reduced to about 1/20, the correct composition ratio. It becomes possible to control, and it becomes possible to eliminate the instability and inaccuracy of the vapor pressure due to temperature variation or the like.

이하 제1도와 제2도를 동시에 설명하면 다음과 같다.1 and 2 will be described below.

단 여기에서 HB또는 수직 브리지만(VB)법, GF법에 의한 단결정 제조방법에 관해서는 이미 공지된 사항이므로 그 구체적인 설명을 생략한다.However, since the HB, the vertical bridge only (VB) method, and the single crystal production method using the GF method are already known, detailed description thereof is omitted.

우선 HB, VB, GF법에 의한 단결정 제조를 위해서는 세척된 석연관(1)내에 미리 준비된 GaAs다결정(2)과 결정 원료 용액(3)이 배치된다.First, a GaAs polycrystal 2 prepared in advance and a crystal raw material solution 3 are disposed in the washed quartz tube 1 for producing single crystals by the HB, VB, and GF methods.

또한 석연관(1) 일측에는 6N이상의 고순도 과잉 As(4)가 약 5-15g정도 장입되어진다. 이러한 상태에서 석영관(1)의 양끝은 밀봉이 되고, 도시되지 않은 진공펌프에 의해 그 석영관(1) 내부 기압이 10-6torr정도가 되도록 진공상태를 유지시킨다.In addition, about 5-15g of high purity excess As (4) of 6N or more is charged on one side of the quartz tube (1). In this state, both ends of the quartz tube 1 are sealed, and a vacuum pump (not shown) is maintained in a vacuum state such that the internal pressure of the quartz tube 1 is about 10 −6 torr.

석영관(1)이 진공을 유지하면 그의 석영관(1)과 장입원료의 휘발성 산화물, 습기, 탄소질의 물질등을 제거하기 위해 진공상에 가열. 황원된다.When the quartz tube 1 maintains a vacuum, it is heated in a vacuum phase to remove volatile oxides, moisture, carbonaceous substances, etc., from the quartz tube 1 and the charged raw materials. It is yellow.

이 진공된 석영관(1)은 히타(5)가 장착된 2영역 경사동결용 저온 서스텝터(6)와 고온 서스텝터(5)에 배치시킨다.This vacuum quartz tube 1 is disposed on the low temperature susceptor 6 and the high temperature susceptor 5 for inclined freezing in which the heater 5 is mounted.

이때 과잉 As(4)는 2영역을 갖는 서스텝터에서 저온 서스텝터(6)에 위치하게 되며 그의 온도는 610℃-630℃로서 1atm의 비소증기압을 산출하기 위해 조절된다.At this time, the excess As (4) is located in the low temperature susceptor 6 in the susceptor having two zones and its temperature is adjusted to calculate the arsenic vapor pressure of 1 atm as 610 ° C-630 ° C.

또한 Ga를 포함하는 석영보우트(8)는 고온 서스텝터(5)의 고열한계의 위치하여 1250℃-1260℃까지 가열된다. 고저온 서스텝터(5, 6)가 가열이되면, 과잉 As(4)는 증기상에 의해 고온 갈륨으로 이동되고, 그 곳에서 서로 반응하여 GaAs를 형성한다. 그 결과로서 GaAs다결정(2)은 저전위밀도의 GaAs 종자결정을 사용하여 단결정 성장을 시작한다.In addition, the quartz boat 8 including Ga is heated to 1250 ° C.-1260 ° C. at the high temperature limit of the high temperature susceptor 5. When the cryogenic susceptors 5 and 6 are heated, excess As (4) is moved to hot gallium by the vapor phase, where they react with each other to form GaAs. As a result, the GaAs polycrystal 2 starts single crystal growth using GaAs seed crystals of low potential density.

이 GaAs단결정 성장 과정은 고온 서스텝터(5)의 상단에 설치된 관측창(9)을 통해서 관찰할 수 있게된다. 고온영역온도는 제어된 비유로 감소되어 단결정 성장을 초래한다.This GaAs single crystal growth process can be observed through the observation window 9 provided on the upper end of the high temperature susceptor 5. The hot zone temperature is reduced to a controlled analogy resulting in single crystal growth.

한편, 석영관(1)내에서 GaAs 융액의 조성을 결정짓는 것은 저온 서스텝터(6)의 온도 기울기에 따른 As 증기압인데, 전술한 바와같이 본 발명에서는 결정원료용액(3)이 갖는 평형 해리압을 상쇄할만한 As 증기압 유지 분량만큼의 총몰수에 해당되는 과잉 As(4)를 미리 정산하여 장입하게된다.On the other hand, the composition of the GaAs melt in the quartz tube 1 is the As vapor pressure according to the temperature gradient of the low temperature susceptor 6. As described above, in the present invention, the equilibrium dissociation pressure of the crystal raw material solution 3 The excess As (4) corresponding to the total number of moles of the As vapor pressure maintaining amount, which is enough to offset the amount, will be charged in advance.

그러므로 과잉 As(4)고체가 저온 서스텝터(6)의 610℃-630℃ 단결정(2)은 2-3℃/cm의 온도구배, 3-5mm/hr의 성장속도로 성장되어진다.Therefore, the excess As (4) solid is grown at a temperature gradient of 2-3 ° C./cm and a growth rate of 3-5 mm / hr in the 610 ° C.-630 ° C. single crystal 2 of the low temperature susceptor 6.

이때 저온 서스텝터(6)의 저온부가 ±10℃의 온도편차가 있어도 As 증기압의 영향에 의해 실질적으로는 ±0.01기압 정도의 편차만이 있게되는 것이다.At this time, even if the low temperature portion of the low temperature susceptor 6 has a temperature deviation of ± 10 ° C, only the deviation of the order of ± 0.01 atm is substantially affected by the As vapor pressure.

이러한 As증기압에 따라 고온 서스탭터(5)와 저온 서스텝터(6)에 의한 온도편차에 의해서 석영관(1)내에서의 평형 해리압이 유지되어져 결정 원료용액(3)중 As원소가 기화되어 As4, As2등으로 변할때 As 증기상들의 불안정성을 해소시키게 되는 것이다.As a result of the As vapor pressure, the equilibrium dissociation pressure in the quartz tube 1 is maintained by the temperature deviation caused by the high temperature susceptor 5 and the low temperature susceptor 6, and As element in the crystal raw material solution 3 When vaporized and changed to As4, As2, etc., the instability of As vapor phases is eliminated.

이후 냉각방법은 GaAs고체의 소성변형영역인 800℃까지는 1℃/min으로 유지시키고 그 이하는 5℃/min정도로 석역관(1)의 내부온도를 하강시킨다.Afterwards, the cooling method is maintained at 1 ° C./min up to 800 ° C., which is the plastic deformation region of the GaAs solid, and the temperature is lowered to about 5 ° C./min.

이렇게 성장시킨 결과 Si첨가된 GaAs에서 103-104cm-2의 EPD. 1017-1018cm-3의 전자 농도및 2,000-4,000Cm/V, sec의 전자이동도를 갖는 양질의 저전위 밀도의 단결정을 얻을수 있게된다.This growth resulted in 10 3 -10 4 cm -2 EPD in Si-added GaAs. High-quality low-potential single crystals with electron concentrations of 10 17 -10 18 cm -3 and electron mobility of 2,000-4,000 Cm / V, sec can be obtained.

이상에서와 같이 본발명에 의한 As증기압 제어방법에 의하면 GaAs융액이 생성될때 표면에서 해리되어 As 성분이 이탈되는 결점을 해소할 수 있으며, 또한 반응관내의 안정성 유지와 조성비 제어로서 양질의 GaAs 단결정성을 얻을수 있는 효과가 있는 것이다.As described above, according to the method for controlling the As vapor pressure according to the present invention, the GaAs melt can be dissociated from the surface to remove As components from the surface, and the GaAs single crystallinity of high quality is maintained as stability and composition ratio control in the reaction tube. The effect is to get.

Claims (1)

석영관(1)을 사용하는 HB, VB, GF법에 의한 GaAs단결정 성장시 단결정 확보를 위한 As 증기압 제어방법에 있어서, 결정원료용액(3)이 갖는 평형 해리압을 상쇄할만한 As 증기압을 유지할 수 있는 분량만큼의 과잉 As(4)를 석영관(1)의 부피, 온도 및 제어압력을 고려하여 석영관(1)내에 정산. 장입하여 As 증기압을 제어하는 것을 특징으로 하는 GaAs 단결정 성장시 단결정 확보를 위한 As 증기압 제어방법.In the As vapor pressure control method for securing single crystal during GaAs single crystal growth by HB, VB, and GF method using quartz tube (1), As vapor pressure that can offset the equilibrium dissociation pressure of the crystalline raw material solution (3) can be maintained. Excessive As (4) is calculated in the quartz tube 1 in consideration of the volume, temperature and control pressure of the quartz tube 1 as much as there is. As vapor pressure control method for securing a single crystal during GaAs single crystal growth, characterized in that the charging by controlling the As vapor pressure.
KR1019890015225A 1989-10-21 1989-10-21 As gas pressure controlling method of epitaxial growing process KR920010134B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019890015225A KR920010134B1 (en) 1989-10-21 1989-10-21 As gas pressure controlling method of epitaxial growing process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019890015225A KR920010134B1 (en) 1989-10-21 1989-10-21 As gas pressure controlling method of epitaxial growing process

Publications (2)

Publication Number Publication Date
KR910008812A KR910008812A (en) 1991-05-31
KR920010134B1 true KR920010134B1 (en) 1992-11-16

Family

ID=19290932

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019890015225A KR920010134B1 (en) 1989-10-21 1989-10-21 As gas pressure controlling method of epitaxial growing process

Country Status (1)

Country Link
KR (1) KR920010134B1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010091386A (en) * 2000-03-15 2001-10-23 오명환 Method for Controlling As Vapor Pressure to Ensure Monocrystal on Growing GaAs Monocrystal by Means of VGF Method

Also Published As

Publication number Publication date
KR910008812A (en) 1991-05-31

Similar Documents

Publication Publication Date Title
US6780243B1 (en) Method of silicon carbide monocrystalline boule growth
US3520810A (en) Manufacture of single crystal semiconductors
Bockowski Growth and doping of GaN and AlN single crystals under high nitrogen pressure
JP4120016B2 (en) Method for producing semi-insulating GaAs single crystal
JP2007106669A (en) METHOD FOR MANUFACTURING SEMI-INSULATING GaAs SINGLE CRYSTAL
KR920010134B1 (en) As gas pressure controlling method of epitaxial growing process
JP2010059052A (en) METHOD AND APPARATUS FOR PRODUCING SEMI-INSULATING GaAs SINGLE CRYSTAL
US4946544A (en) Crystal growth method
US5240685A (en) Apparatus for growing a GaAs single crystal by pulling from GaAs melt
JPH10218699A (en) Growth of compound semiconductor single crystal
JPH11147785A (en) Production of single crystal
Bernardi Slider LPE growth of MCT using in situ Te-solution preparation
KR20010091386A (en) Method for Controlling As Vapor Pressure to Ensure Monocrystal on Growing GaAs Monocrystal by Means of VGF Method
JPS58156598A (en) Method for crystal growth
JPH08217589A (en) Production of single crystal
JP2887978B2 (en) Method for synthesizing III-V compound semiconductor composition
JPH0529639B2 (en)
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JPH0535720B2 (en)
Plaskett The Synthesis of Bulk GaP from Ga Solutions
JPH10212200A (en) Production of semi-insulating gallium arsenide single crystal
JPH08109094A (en) Production of compound semiconductor single crystal
JPS5895698A (en) Crystal growing method of inp and growing apparatus therefor
KR930000903B1 (en) Temperature control method of low temperature part in simple crystal manufacture of iii-v compound semiconductor
JPS61117198A (en) Melt for growth of inp single crystal and method for using said melt

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
G160 Decision to publish patent application
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20060926

Year of fee payment: 15

LAPS Lapse due to unpaid annual fee