JP2002068896A - Method and device for producing nitride single crystal - Google Patents

Method and device for producing nitride single crystal

Info

Publication number
JP2002068896A
JP2002068896A JP2000261669A JP2000261669A JP2002068896A JP 2002068896 A JP2002068896 A JP 2002068896A JP 2000261669 A JP2000261669 A JP 2000261669A JP 2000261669 A JP2000261669 A JP 2000261669A JP 2002068896 A JP2002068896 A JP 2002068896A
Authority
JP
Japan
Prior art keywords
crystal
raw material
temperature
seed crystal
nitride single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000261669A
Other languages
Japanese (ja)
Inventor
Kazuhiro Uehara
一浩 上原
Takatomo Sasaki
孝友 佐々木
Yusuke Mori
勇介 森
Masashi Yoshimura
政志 吉村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2000261669A priority Critical patent/JP2002068896A/en
Publication of JP2002068896A publication Critical patent/JP2002068896A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a production method for obtaining a bulky nitride single crystal, in which it is possible to control the generation of a nucleus and by which the nitride single crystal having a high quality and a large size can be obtained at a relatively low temperature and low pressure. SOLUTION: A seed crystal is placed in a raw material for growing the nitride single crystal and then a crystal is grown by locally heating the seed crystal. Especially, it is preferable that crystal growth is carried out in such a manner that the seed crystal is locally heated while maintaining the temperature of the raw material for growing the nitride single crystal at a temperature at which the crystal hardly grows so that the temperature of the raw material present in the vicinity of the seed crystal is maintained at a high temperature at which the crystal can grow.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は窒化物単結晶製造方
法及び製造装置に関する。
The present invention relates to a method and an apparatus for producing a nitride single crystal.

【0002】[0002]

【従来の技術】高輝度青色紫外発光デバイスとして近
年、例えば窒化ガリウム系発光ダイオード、レーザダイ
オードが注目されている。これらデバイスの作製には従
来、サファイア基板上へのエピタキシャル成長により窒
化ガリウム結晶薄膜を形成して行われている。このよう
な薄膜としての窒化ガリウムには、基板と薄膜との格子
定数差(13.8%)、熱膨張係数差(25.5%)、
及び壁開面の違いがネックとなり、基板との整合性が悪
いことから、十分な結晶性を得ることが難しいという問
題がある。
2. Description of the Related Art In recent years, for example, gallium nitride based light emitting diodes and laser diodes have attracted attention as high luminance blue ultraviolet light emitting devices. Conventionally, these devices are manufactured by forming a gallium nitride crystal thin film by epitaxial growth on a sapphire substrate. Gallium nitride as such a thin film has a lattice constant difference (13.8%) between the substrate and the thin film, a thermal expansion coefficient difference (25.5%),
In addition, there is a problem in that it is difficult to obtain sufficient crystallinity because the difference between the wall surface and the opening is a bottleneck and the consistency with the substrate is poor.

【0003】このような問題点を考慮して、窒化ガリウ
ム単結晶基板上にホモエピタキシャル成長によるデバイ
スを作製する方法が検討されており、その基板となるバ
ルク状窒化ガリウム単結晶の実現が重要な課題となって
いる。しかしながら、窒化ガリウム(GaN)、窒化ア
ルミニウム(AlN)等のバルク状の窒化物単結晶は、
融点における窒素の平衡蒸気圧が1万気圧以上であるた
め、GaNの融液成長では1200℃、8000気圧、
AlNではそれ以上の高温、高圧を必要とし、このよう
なバルク状単結晶の育成は極めて困難であった。
In consideration of such problems, a method of manufacturing a device by homoepitaxial growth on a gallium nitride single crystal substrate has been studied, and it is important to realize a bulk gallium nitride single crystal serving as the substrate. It has become. However, bulk nitride single crystals such as gallium nitride (GaN) and aluminum nitride (AlN)
Since the equilibrium vapor pressure of nitrogen at the melting point is equal to or higher than 10,000 atm, the temperature of 1200 ° C., 8000 atm.
AlN requires higher temperature and pressure, and it is extremely difficult to grow such a bulk single crystal.

【0004】一方、ごく最近になって、NaやK等をフ
ラックスにすると、800℃、100気圧という比較的
低温、低圧下で高品質のバルク状GaN単結晶を合成で
きることが見いだされている。
On the other hand, it has recently been found that a high quality bulk GaN single crystal can be synthesized at a relatively low temperature and low pressure of 800 ° C. and 100 atm by using a flux of Na, K or the like.

【0005】[0005]

【発明が解決しようとする課題】このバルク状GaN単
結晶の合成方法は注目されるものであるが、まだ多くの
問題点が残されていることが明らかとなってきた。とい
うのもGaN単結晶成長は、Na等のアルカリ金属の作
用によって窒素がガリウム融液に溶け込み、そして反応
することにより結晶化が起こるため、温度や圧力がある
一定値を超えなければ現実的な結晶成長は見られない。
よって、温度降下だけで過飽和状態へもっていって結晶
成長を行う通常の結晶成長とは異なると考えられる。
The method of synthesizing a bulk GaN single crystal has attracted attention, but it has become clear that many problems still remain. This is because GaN single crystal growth is not practical unless the temperature and pressure exceed a certain value because nitrogen dissolves in the gallium melt by the action of an alkali metal such as Na and reacts to cause crystallization. No crystal growth is observed.
Therefore, it is considered that this is different from normal crystal growth in which a supersaturated state is brought about only by a temperature drop and crystal growth is performed.

【0006】つまり本方式でのGaN単結晶育成では、
自然核発生条件を制御することが難しく、様々な場所で
核発生するために、多量に核が発生してしまう。従っ
て、合成されたGaN単結晶は、非常に小さい結晶とし
てしか得られない。本発明はかかる問題点を解決すべ
く、上記の結晶成長のメカニズムをふまえてなされたも
のであってその目的とするところは、核発生の制御を可
能とし、比較的低温、低圧下において、高品質で大きな
バルク状窒化物単結晶、例えばGaN単結晶等の製造方
法及び製造装置を提供することにある。
That is, in the GaN single crystal growth in this method,
It is difficult to control natural nucleation conditions, and nucleation occurs in various places, resulting in a large amount of nuclei. Therefore, the synthesized GaN single crystal can be obtained only as a very small crystal. The present invention has been made based on the above-described crystal growth mechanism in order to solve such a problem, and the object thereof is to enable control of nucleation and to achieve high temperature at relatively low temperature and low pressure. It is an object of the present invention to provide a method and an apparatus for producing a high quality bulk nitride single crystal, for example, a GaN single crystal.

【0007】[0007]

【課題を解決するための手段】上記問題点に鑑みて、本
発明においては以下の手段を採用した。すなわち、本発
明にかかる窒化物単結晶製造方法は、窒化物単結晶成長
原料中で種結晶を保持し、前記種結晶を局所的に加熱し
て結晶成長を行うことを特徴とする。この手段によれ
ば、結晶成長原料中において種結晶が局所的に加熱され
て、その近傍にある結晶原料のみから結晶成長が行われ
るので、前記原料中における結晶成長の位置や、結晶成
長速度を容易に制御できる。
In view of the above problems, the present invention employs the following means. That is, the method for producing a nitride single crystal according to the present invention is characterized in that a seed crystal is held in a nitride single crystal growth raw material, and the seed crystal is locally heated to grow the crystal. According to this means, the seed crystal is locally heated in the crystal growth raw material, and the crystal is grown only from the crystal raw material in the vicinity thereof. Therefore, the position of the crystal growth in the raw material and the crystal growth rate are reduced. Easy to control.

【0008】また前記窒化物単結晶成長原料を結晶が殆
ど成長しない低温度下に維持しておき、前記種結晶を局
所的に加熱して前記種結晶近傍の前記成長原料を結晶成
長可能な高温度下に維持して結晶成長を行うことが好ま
しい。この手段によれば、結晶成長原料と種結晶との間
で急激な温度差が生じることなく、結晶成長がスムーズ
に行われて好ましい。なお、本発明でいう「結晶が殆ど
成長しない低温度下」というのは、結晶成長原料におい
て現実的な結晶成長が見られない低温度下、すなわち結
晶原料が未反応のように観察される低温度下であること
を意味する。
The nitride single crystal growth material is maintained at a low temperature at which almost no crystal grows, and the seed crystal is locally heated so that the growth material near the seed crystal can grow. It is preferable to carry out crystal growth while maintaining the temperature. According to this means, it is preferable that the crystal growth is performed smoothly without a sharp temperature difference between the crystal growth raw material and the seed crystal. In the present invention, “at a low temperature at which almost no crystal grows” refers to a low temperature at which no realistic crystal growth is observed in the crystal growth raw material, that is, a low temperature at which the crystal raw material is observed as if it has not reacted. It means that it is under temperature.

【0009】本方式による結晶成長は化学反応的要素を
有しており、結晶成長がある温度から突然開始されるの
か、あるいは非常に遅い速度で徐々に進行しているため
開始時に気づかないのか、現時点においては不明である
ので、上述のように表現することとした。また前記種結
晶近傍の温度を測定し、前記種結晶への局所的な加熱温
度を制御して結晶成長を行うことが好ましい。この手段
によれば、種結晶のみの局所的な温度制御が可能なの
で、種結晶付近を常に結晶成長可能な温度下に維持する
ことができる。
[0009] The crystal growth according to the present method has a chemically reactive element, whether the crystal growth is suddenly started from a certain temperature, or not noticed at the start because the crystal growth is progressing slowly at a very slow speed. Since it is unknown at this time, it was decided to express as described above. Further, it is preferable that a temperature near the seed crystal is measured, and a local heating temperature for the seed crystal is controlled to perform crystal growth. According to this means, since local temperature control of only the seed crystal is possible, the vicinity of the seed crystal can always be maintained at a temperature at which crystal growth is possible.

【0010】また本発明にかかる窒化物単結晶成長装置
は、窒化物単結晶成長原料を収納する原料収納容器と、
前記原料収納容器を収容可能な圧力容器と、前記窒化物
単結晶成長原料を加熱する加熱装置とを備え、前記圧力
容器には前記種結晶を前記成長原料内で保持する保持部
が設けられ、前記保持部には前記種結晶を加熱する加熱
手段が設けられていることを特徴とする。この手段によ
れば、結晶成長原料は加熱装置により、種結晶は加熱手
段によりそれぞれ加熱されるので、種結晶は結晶成長可
能な高温度下に、成長原料は種結晶よりも低い、結晶が
殆ど成長しない低温度下に維持することができ、上述の
結晶成長方法を容易に実現できる。また、結晶成長原料
もある程度の温度に加熱するので、成長原料全体と成長
原料のうち種結晶近傍部分との間に急な温度変化が生じ
ることなく、スムーズな結晶成長が行われる。
[0010] The nitride single crystal growing apparatus according to the present invention comprises: a raw material storage container for storing a nitride single crystal growth raw material;
A pressure vessel capable of accommodating the raw material storage container, and a heating device for heating the nitride single crystal growth raw material, wherein the pressure vessel is provided with a holding unit for holding the seed crystal in the growth raw material, The holder is provided with heating means for heating the seed crystal. According to this means, since the crystal growth raw material is heated by the heating device and the seed crystal is heated by the heating means, the seed crystal is at a high temperature at which the crystal can be grown, and the growth raw material is lower than the seed crystal. It can be maintained at a low temperature at which growth does not occur, and the above-described crystal growth method can be easily realized. In addition, since the crystal growth material is also heated to a certain temperature, a smooth crystal growth can be performed without a sudden temperature change between the entire growth material and a portion near the seed crystal in the growth material.

【0011】また前記保持部は、前記圧力容器内におけ
る前記種結晶の位置を変えることができるように移動自
在に構成されていることが好ましい。この手段によれ
ば、結晶成長原料の量に応じて前記原料中での種結晶の
位置を変えることができ、また前記加熱装置による加熱
で前記原料に温度分布が与えられたときにも、その温度
分布に応じた好適な種結晶位置を制御できる。また、前
記加熱手段は前記種結晶を保持可能なヒータからなり、
このヒータは前記圧力容器外に設けられた移動装置から
延設された保持軸の先端に設けられ、前記移動装置によ
り前記保持軸を駆動して前記圧力容器内における前記種
結晶の位置を変えることができるように移動自在に構成
されていることが好ましい。
It is preferable that the holding portion is configured to be movable so that the position of the seed crystal in the pressure vessel can be changed. According to this means, the position of the seed crystal in the raw material can be changed according to the amount of the crystal growth raw material, and when the raw material is given a temperature distribution by heating by the heating device, A suitable seed crystal position can be controlled according to the temperature distribution. Further, the heating means comprises a heater capable of holding the seed crystal,
The heater is provided at a tip of a holding shaft extending from a moving device provided outside the pressure vessel, and drives the holding shaft by the moving device to change a position of the seed crystal in the pressure vessel. It is preferable that it is configured to be movable so that

【0012】この手段によれば、種結晶は圧力容器外に
設けられた移動装置から延設された保持軸の先端に設け
られたヒータにより保持され、この保持軸は圧力容器内
における種結晶の位置を変えることができるように移動
自在に構成されているので、保持軸を移動させるだけ
で、種結晶の位置制御を容易に行うことができる。ま
た、前記種結晶近傍の前記成長原料の温度を測定する測
定部と測定された温度に応じて前記加熱手段の温度を制
御する制御装置が更に設けられていることが好ましい。
According to this means, the seed crystal is held by the heater provided at the tip of the holding shaft extending from the moving device provided outside the pressure vessel, and the holding shaft is provided with the seed crystal in the pressure vessel. Since it is configured to be movable so that the position can be changed, the position of the seed crystal can be easily controlled only by moving the holding shaft. Further, it is preferable that a measuring unit for measuring the temperature of the growth raw material in the vicinity of the seed crystal and a control device for controlling the temperature of the heating means in accordance with the measured temperature are further provided.

【0013】この手段によれば、測定部により、種結晶
が保持される保持部の温度が測定され、この測定温度に
応じて制御装置により加熱手段の温度が制御されるの
で、種結晶は常に結晶成長に良好な温度下に維持され、
結晶成長が促進される。また前記原料収納容器は、この
収納容器を昇降自在に移動させる昇降軸を有する支持台
により支持されていることが好ましい。この手段によれ
ば、原料収納容器は昇降軸により加熱装置に対して上下
方向に移動されて、結晶成長原料に温度分布を与えるこ
とができるので、原料収納容器内における結晶成長原料
を、特に種結晶周囲の結晶成長原料を、結晶成長に好適
な温度に容易に制御できる。
According to this means, the temperature of the holding section for holding the seed crystal is measured by the measuring section, and the temperature of the heating means is controlled by the control device in accordance with the measured temperature. Maintained at a temperature favorable for crystal growth,
Crystal growth is promoted. Further, it is preferable that the raw material storage container is supported by a support having an elevating shaft for vertically moving the storage container. According to this means, the raw material storage container can be moved up and down with respect to the heating device by the elevating shaft to impart a temperature distribution to the crystal growth raw material. The crystal growth raw material around the crystal can be easily controlled to a temperature suitable for crystal growth.

【0014】[0014]

【発明の実施の形態】以下、本発明の窒化物単結晶製造
方法及び製造装置について、詳細に説明する。本発明に
おいて得ようとする窒化物単結晶は、先述したとおり、
通常の単結晶成長とは異なる過程で成長する。つまり、
条件がしきい値を超えると結晶成長が開始される化学反
応的な要素を有する。かかる成長形態の相違点に着目
し、本発明においては、窒化物単結晶成長原料(以下、
単に結晶成長原料という)中で種結晶を保持し、この種
結晶を局所的に加熱して結晶成長を行うこととした。局
所的な加熱により、結晶成長原料中の一定位置において
のみ結晶成長を行わせることができ、前記原料中のその
他の位置における自然核発生を防止することができる。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, a method and an apparatus for producing a nitride single crystal of the present invention will be described in detail. The nitride single crystal to be obtained in the present invention is, as described above,
It grows in a process different from normal single crystal growth. That is,
When the condition exceeds the threshold value, there is a chemically reactive element in which crystal growth is started. Focusing on this difference in the growth mode, in the present invention, a nitride single crystal growth material (hereinafter, referred to as
The seed crystal is held in a crystal growth raw material), and the seed crystal is locally heated to grow the crystal. By local heating, crystal growth can be performed only at a certain position in the crystal growth material, and generation of natural nuclei at other positions in the material can be prevented.

【0015】より詳細には、結晶成長原料の全体は結晶
が殆ど成長しない低温度下に維持しておき、種結晶を局
所的に加熱して、結晶成長原料のうち種結晶近傍を局所
的に結晶成長可能な高温度下に維持して、結晶成長を行
わせることにした。以下、図面に基づいて本発明につい
て説明する。図1は本発明の窒化物単結晶製造装置の第
1実施形態を示した模式図である。窒化物単結晶製造装
置(以下、単に製造装置という)1は、結晶成長原料2
を収納する原料収納容器としてのルツボ3と、このルツ
ボ3を収容可能な圧力容器7と、ルツボ3に収納された
結晶成長原料2を加熱する加熱装置6とを備えている。
More specifically, the entire crystal growth raw material is maintained at a low temperature at which almost no crystal grows, and the seed crystal is locally heated so that the vicinity of the seed crystal in the crystal growth raw material is locally formed. Crystal growth is performed while maintaining the temperature at a high temperature at which crystal growth is possible. Hereinafter, the present invention will be described with reference to the drawings. FIG. 1 is a schematic view showing a first embodiment of a nitride single crystal manufacturing apparatus according to the present invention. A nitride single crystal manufacturing apparatus (hereinafter simply referred to as a manufacturing apparatus) 1 includes a crystal growth raw material 2
A crucible 3 as a raw material storage container for storing the crucible 3, a pressure container 7 capable of storing the crucible 3, and a heating device 6 for heating the crystal growth raw material 2 stored in the crucible 3.

【0016】ルツボ3は、密閉容器である内側容器5内
に収納され、この内側容器5の周囲に加熱装置6が配設
されている。これらルツボ3、内側容器5、加熱装置6
のすべてが圧力容器7内に収容されている。内側容器5
は炭素、セラミックス、高融点金属及びその合金等によ
り形成され、圧力容器7は高強度鋼等により形成され
る。内側容器5は必ずしも設ける必要はないが、結晶成
長原料からの蒸発成分が加熱装置6に付着し、加熱装置
6の運転が満足にできないことがあるので、設ける方が
好ましい。
The crucible 3 is housed in an inner container 5 which is a closed container, and a heating device 6 is arranged around the inner container 5. These crucible 3, inner container 5, heating device 6
Are housed in the pressure vessel 7. Inner container 5
Is formed of carbon, ceramics, a high melting point metal and an alloy thereof, and the pressure vessel 7 is formed of high strength steel or the like. The inner container 5 is not necessarily provided, but it is preferable to provide the inner container 5 because the evaporation component from the crystal growth raw material may adhere to the heating device 6 and the operation of the heating device 6 may not be satisfactory.

【0017】圧力容器7には、種結晶4を成長原料2内
で保持する保持部10が設けられており、保持部10に
は種結晶4を加熱する加熱手段が設けられている。保持
部10は、圧力容器7内における種結晶4の位置を変え
ることができるように、移動自在に構成されている。よ
り具体的には、保持部10は、圧力容器7外に設けられ
た移動装置15から延設された保持軸11と、保持軸1
1の先端に設けられた加熱手段としてのヒータ12とを
有し、移動装置15により保持軸11を駆動して、圧力
容器7内における種結晶4の位置を変えることができる
ように移動自在に構成されている。種結晶4は、ヒータ
12により保持され、結晶成長可能な一定温度にまで加
熱される。
The pressure vessel 7 is provided with a holding unit 10 for holding the seed crystal 4 in the growth raw material 2, and the holding unit 10 is provided with heating means for heating the seed crystal 4. The holding unit 10 is configured to be movable so that the position of the seed crystal 4 in the pressure vessel 7 can be changed. More specifically, the holding unit 10 includes a holding shaft 11 extending from a moving device 15 provided outside the pressure vessel 7 and a holding shaft 1.
And a heater 12 provided as a heating means provided at the end of the pressure vessel 7. The holding shaft 11 is driven by a moving device 15 so as to be movable so that the position of the seed crystal 4 in the pressure vessel 7 can be changed. It is configured. Seed crystal 4 is held by heater 12 and is heated to a certain temperature at which crystal growth is possible.

【0018】このような保持軸11により、種結晶4の
ルツボ3内での位置調節を容易に行うことができ、成長
した結晶をルツボ4から取り出す作業も容易に行うこと
ができる。また、圧力容器7及び内側容器5の保持軸1
1が貫通する場所には、それぞれシール材18A、18
Bが設けられ、圧力容器7及び内側容器5内を気密に維
持できるようになっている。圧力容器7の外部には、種
結晶4近傍の結晶成長原料2の温度を測定する測定部
(図示略)と、測定された温度に応じてヒータ12の温
度を制御する制御装置16が設けられている。これによ
り、常に種結晶4とその近傍の結晶成長原料2を結晶成
長可能な温度下に維持できる。
With such a holding shaft 11, the position of the seed crystal 4 in the crucible 3 can be easily adjusted, and the operation of taking out the grown crystal from the crucible 4 can also be easily performed. The holding shaft 1 for the pressure vessel 7 and the inner vessel 5
1 penetrates the sealing materials 18A and 18A, respectively.
B is provided so that the inside of the pressure vessel 7 and the inside of the inner vessel 5 can be kept airtight. A measuring unit (not shown) that measures the temperature of the crystal growth raw material 2 near the seed crystal 4 and a control device 16 that controls the temperature of the heater 12 according to the measured temperature are provided outside the pressure vessel 7. ing. Thereby, the seed crystal 4 and the crystal growth raw material 2 in the vicinity thereof can always be maintained at a temperature at which the crystal can be grown.

【0019】次に、かかる製造装置を用いて結晶成長を
行う手順を具体的に説明する。まずルツボ3に、結晶成
長原料2としてGaとNaを収納する。Gaは結晶の直
接の原料であり、Naはフラックスとして使用する。次
にこのルツボ3を密閉容器である内側容器5内にセット
し、内側容器5を圧力容器7内に収容する。移動装置1
5から延設された保持軸11は圧力容器7と内側容器5
に貫通され、その先端にはヒータ12により種結晶4が
保持される。かかる構成により、種結晶4は成長原料2
内で保持される。
Next, a procedure for growing a crystal using the manufacturing apparatus will be specifically described. First, Ga and Na are stored in the crucible 3 as the crystal growth raw material 2. Ga is a direct raw material of the crystal, and Na is used as a flux. Next, the crucible 3 is set in the inner container 5 which is a closed container, and the inner container 5 is accommodated in the pressure container 7. Moving device 1
The holding shaft 11 extending from the pressure vessel 7 and the inner vessel 5
The seed crystal 4 is held by the heater 12 at the tip. With this configuration, the seed crystal 4 is used as the growth material 2
Held within.

【0020】電線によりヒータ12と制御装置16と接
続し、シール材18A、18Bにより、圧力容器7内と
内側容器5内を密閉状態に維持する。圧力容器7と内側
容器5内はそれぞれ配管20A、20Bにより排気さ
れ、その後配管21A、21Bを通じて、窒素ガスボン
ベ22A、22Bより窒素ガスが給気される。このと
き、圧力容器内と内側容器内の圧力は、50〜100気
圧である。結晶成長原料2は加熱装置6により加熱さ
れ、結晶が殆ど成長しない低温度下である600℃に維
持される。かかる低温度領域は、おおよそ150℃程度
〜600℃程度の範囲内であると考えられる。
The heater 12 and the control device 16 are connected by electric wires, and the inside of the pressure vessel 7 and the inside of the inner vessel 5 are maintained in a sealed state by the sealing members 18A and 18B. The inside of the pressure vessel 7 and the inside of the inner vessel 5 are exhausted by pipes 20A and 20B, respectively. Thereafter, nitrogen gas is supplied from nitrogen gas cylinders 22A and 22B through pipes 21A and 21B. At this time, the pressure in the pressure vessel and the pressure in the inner vessel are 50 to 100 atm. The crystal growth raw material 2 is heated by a heating device 6 and is maintained at 600 ° C., which is a low temperature at which crystals hardly grow. Such a low temperature region is considered to be in a range of about 150 ° C. to about 600 ° C.

【0021】また種結晶4はヒータ12によりおおよそ
800℃に加熱され、種結晶4近傍の結晶成長原料2も
種結晶4とほぼ同程度の温度になる。これにより、結晶
成長原料は600℃の低温に、種結晶は800℃の高温
に加熱され、結晶成長原料全体の温度と、結晶成長が行
われる種結晶4付近の温度との間に急な温度差は生じな
くなる。つまり、結晶成長原料は種結晶付近に向かって
徐々に高温に昇温される構成となり、結晶成長がスムー
ズに行われる。このとき、加熱装置6を上下にいくつか
の発熱ゾーンにわけ、各発熱ゾーンの温度を制御して結
晶成長原料2にある一定の温度分布を与えてもよい。こ
の構成によれば、ルツボ4を移動させずに、ルツボ4内
の結晶成長原料2に温度分布を与えることができる。そ
の結果、ルツボ4内において結晶成長原料2を、特に種
結晶4の周囲の結晶成長原料2を、結晶成長に好適な温
度に制御できる。
The seed crystal 4 is heated to about 800 ° C. by the heater 12, and the temperature of the crystal growth raw material 2 near the seed crystal 4 is almost the same as that of the seed crystal 4. As a result, the crystal growth raw material is heated to a low temperature of 600 ° C., and the seed crystal is heated to a high temperature of 800 ° C., so that the temperature of the crystal growth raw material as a whole and the temperature near the seed crystal 4 where the crystal growth is performed become abrupt. No difference is made. That is, the crystal growth raw material is configured to be gradually heated to a high temperature near the seed crystal, and the crystal growth is performed smoothly. At this time, the heating device 6 may be divided into several heating zones up and down, and the temperature of each heating zone may be controlled to give a certain temperature distribution to the crystal growth raw material 2. According to this configuration, the temperature distribution can be given to the crystal growth raw material 2 in the crucible 4 without moving the crucible 4. As a result, the temperature of the crystal growth raw material 2 in the crucible 4, particularly the temperature of the crystal growth raw material 2 around the seed crystal 4, can be controlled to a temperature suitable for crystal growth.

【0022】このとき、結晶成長原料2とルツボ4の境
界付近で温度を測定し、自然核発生が起こってしまうよ
うな高温にならないように加熱装置6の温度制御を行っ
て、緩やかな温度勾配を実現させることが望ましい。保
持軸11を移動させれば、結晶成長原料2中における種
結晶4の位置を、前記原料の量に応じて変えることがで
きる。また保持軸10の移動により、加熱装置6の加熱
による温度分布に応じた適切な種結晶位置を調節するこ
ともできる。結晶成長は、種結晶4近傍の温度を測定部
により測定し、測定された温度に応じて制御装置により
ヒータの温度を制御して、種結晶への局所的な加熱温度
を制御しながら行う。
At this time, the temperature is measured near the boundary between the crystal growth raw material 2 and the crucible 4, and the temperature of the heating device 6 is controlled so as not to reach a high temperature at which natural nucleation occurs. It is desirable to realize. By moving the holding shaft 11, the position of the seed crystal 4 in the crystal growth raw material 2 can be changed according to the amount of the raw material. In addition, by moving the holding shaft 10, an appropriate seed crystal position can be adjusted according to the temperature distribution due to the heating of the heating device 6. The crystal growth is performed while measuring the temperature in the vicinity of the seed crystal 4 by a measuring unit, controlling the temperature of the heater by a control device according to the measured temperature, and controlling the local heating temperature to the seed crystal.

【0023】次に、図2に基づき本発明の窒化物単結晶
製造装置の第2実施形態を説明する。本実施形態にかか
る製造装置は、通常の真空式垂直ブリッジマン炉を利用
したもので、原料収納容器であるルツボが昇降可能な構
成となっている。内側容器5の下部開口部5Aはフラン
ジ状となっており、この開口部5Aに着脱自在なプラグ
36とシール材37により、内側容器5内は気密に保た
れる。このプラグ36とシール材37を取り外して、ル
ツボ3の出し入れを行う。内側容器5は炭素材料、セラ
ミックス、高融点金属及びその合金の群から選ばれる材
料から構成される。
Next, a second embodiment of the nitride single crystal manufacturing apparatus of the present invention will be described with reference to FIG. The manufacturing apparatus according to the present embodiment utilizes a normal vacuum-type vertical Bridgman furnace, and has a configuration in which a crucible as a raw material storage container can be moved up and down. The lower opening 5A of the inner container 5 is formed in a flange shape, and the inside of the inner container 5 is kept airtight by a plug 36 and a sealing material 37 which are detachable from the opening 5A. The plug 36 and the sealing material 37 are removed, and the crucible 3 is taken in and out. The inner container 5 is made of a material selected from the group consisting of carbon materials, ceramics, high melting point metals and alloys thereof.

【0024】また、圧力容器7は高強度鋼等から構成さ
れ、シール材37は耐熱性高分子又は金属製ガスケット
等で構成される。内側容器5、内側容器5の外周に配設
された加熱装置6の全体は、第1実施形態と同様に圧力
容器7に収容されている。圧力容器7は上部が閉塞され
た円筒体であり、下部開口部7Aはこの開口部7Aに着
脱自在なプラグ38とシール材39により閉塞され、圧
力容器内7は気密に保たれる。このプラグ38とシール
材39を取り外して、ルツボ3と内側容器5の出し入れ
を行う。
The pressure vessel 7 is made of high-strength steel or the like, and the sealing member 37 is made of a heat-resistant polymer or a metal gasket. The entire inner container 5 and the heating device 6 arranged on the outer periphery of the inner container 5 are housed in a pressure container 7 as in the first embodiment. The pressure vessel 7 is a cylindrical body whose upper part is closed, and the lower opening 7A is closed by a plug 38 and a sealing material 39 which are detachable from the opening 7A, and the inside 7 of the pressure vessel is kept airtight. The plug 38 and the sealing material 39 are removed, and the crucible 3 and the inner container 5 are taken in and out.

【0025】また内側容器5内にはルツボ3を支持する
支持台34が備えられ、支持台34はルツボ3を昇降さ
せる昇降軸35を備えている。ルツボ3はこの昇降軸3
5を介して昇降装置(図示略)により昇降自在で、ルツ
ボ3内の結晶成長原料2に適当な温度分布を与えること
ができる。また昇降軸35は回転機能も有しており、ル
ツボ3を回転させて結晶成長原料2の水平方向における
温度分布を均一化し、成長中の結晶の成長界面形状の制
御を行うことができる。
Further, a support table 34 for supporting the crucible 3 is provided in the inner container 5, and the support table 34 is provided with an elevating shaft 35 for moving the crucible 3 up and down. The crucible 3 is this elevating shaft 3
The crystal growth raw material 2 in the crucible 3 can be given an appropriate temperature distribution by being vertically movable by an elevating device (not shown) through 5. The elevating shaft 35 also has a rotating function, and can rotate the crucible 3 to make the temperature distribution in the horizontal direction of the crystal growth raw material 2 uniform, thereby controlling the growth interface shape of the growing crystal.

【0026】給排気のための配管や、保持軸等のその他
の構造は第1実施形態と同様である。更に、第1実施形
態と同様の構成で保持部10が形成され、圧力容器7内
における種結晶4の位置を変えることができるような移
動自在の構成も同様である。これにより、第1実施形態
と同様、結晶成長原料2中における種結晶4の位置を、
前記原料の量に応じて変えること等ができる。更に、測
定部(図示略)と制御装置16により、ヒータの温度を
制御する点も同様である。
Other structures such as piping for supply and exhaust and a holding shaft are the same as those of the first embodiment. Further, the holding portion 10 is formed in the same configuration as in the first embodiment, and the movable configuration in which the position of the seed crystal 4 in the pressure vessel 7 can be changed is also the same. Thereby, similarly to the first embodiment, the position of the seed crystal 4 in the crystal growth raw material 2 is
It can be changed according to the amount of the raw material. Further, the same applies in that the temperature of the heater is controlled by a measuring unit (not shown) and the control device 16.

【0027】次に、本発明の実施例として、この製造装
置31を用いて単結晶を製造する工程を説明する。結晶
成長原料2として、Ga20gとNa4gをルツボ3に
入れ、内側容器5内にセットした。保持軸11の先端部
分にはヒータ12が設けられ、種結晶4はこのヒータ1
2に保持されている。保持軸11を降下させ、種結晶4
を結晶成長原料2中に入れておく。圧力容器7及び内側
容器5内を、配管20A及び配管20Bにより排気して
真空化し、次いで圧力容器7内には配管21Aにより、
内側容器5内には配管21Bにより、窒素源としてN2
ガスを導入した。炉体を50℃/hrで600℃まで昇
温し、60分保持した。また炉内は50気圧に維持し
た。
Next, as an embodiment of the present invention, a process of manufacturing a single crystal using the manufacturing apparatus 31 will be described. As the crystal growth raw material 2, 20 g of Ga and 4 g of Na were put in the crucible 3 and set in the inner container 5. A heater 12 is provided at the tip of the holding shaft 11, and the seed crystal 4
2 is held. The holding shaft 11 is lowered, and the seed crystal 4
Is placed in the crystal growth raw material 2. The inside of the pressure vessel 7 and the inside of the inner vessel 5 are evacuated and evacuated by the pipes 20A and 20B, and then the inside of the pressure vessel 7 is provided by the pipe 21A.
In the inner container 5, N 2 is used as a nitrogen source through a pipe 21B.
Gas was introduced. The furnace body was heated to 600 ° C. at 50 ° C./hr and held for 60 minutes. The inside of the furnace was maintained at 50 atm.

【0028】ヒータ12により種結晶を800℃にまで
昇温させ、800℃に維持したまま種結晶近傍の結晶成
長原料から結晶成長を行った。このとき、昇降軸35に
よりルツボ3を下降させてルツボに温度分布を与え、結
晶成長がより促進されるようにルツボ3の位置を調節し
てもよい。また、昇降軸35によりルツボ3を回転させ
て、結晶成長原料2の水平方向における温度の均一化を
促進させてもよい。結晶成長は、種結晶4近傍の温度を
測定部により測定し、測定された温度に応じて制御装置
16によりヒータ12の温度を制御して、種結晶4への
局所的な加熱温度を制御しながら行った。
The temperature of the seed crystal was raised to 800 ° C. by the heater 12, and the crystal was grown from the crystal growth raw material near the seed crystal while maintaining the temperature at 800 ° C. At this time, the crucible 3 may be lowered by the elevating shaft 35 to give a temperature distribution to the crucible, and the position of the crucible 3 may be adjusted so that crystal growth is further promoted. Further, the crucible 3 may be rotated by the elevating shaft 35 to promote the uniformization of the temperature of the crystal growth raw material 2 in the horizontal direction. In the crystal growth, the temperature in the vicinity of the seed crystal 4 is measured by a measuring unit, and the temperature of the heater 12 is controlled by the control device 16 according to the measured temperature to control the local heating temperature to the seed crystal 4. I went there.

【0029】ルツボ3内の融液がすべて結晶化した後、
50℃/hrで室温まで降温した。得られた結晶は、ホ
モエピタキシャル成長によるデバイス作製の基板として
十分な大きさを持つバルク状単結晶であった。また種結
晶以外の位置における核発生も見られなかった。得られ
たGaN単結晶のX線回折測定結果から、GaN(00
02)面に対応する回折ピークが観察され、このピーク
のロッキングカーブを測定したところ70秒という値が
得られた。更にカソードルミネッセンス測定を行ったと
ころ、3.4eVにピークを持つバンド端発光が観測さ
れた。また、欠陥や不純物に起因するエネルギー準位か
らの発光は観測されず、欠陥や不純物の少ない単結晶で
あると考えられる。これらの結果より、高品質なバルク
状結晶であることが判明した。
After all the melt in the crucible 3 has crystallized,
The temperature was lowered to room temperature at 50 ° C / hr. The obtained crystal was a bulk single crystal having a sufficient size as a substrate for device fabrication by homoepitaxial growth. No nucleation was observed at any position other than the seed crystal. From the X-ray diffraction measurement results of the obtained GaN single crystal, GaN (00
A diffraction peak corresponding to the 02) plane was observed, and a rocking curve of this peak was measured to give a value of 70 seconds. Further, when a cathodoluminescence measurement was performed, band edge emission having a peak at 3.4 eV was observed. In addition, light emission from an energy level due to defects and impurities is not observed, and it is considered that the single crystal has few defects and impurities. From these results, it was found that the crystals were high quality bulk crystals.

【0030】次に、本発明の比較例について説明する。
結晶成長原料としてのGaを20gと、フラックスとし
てのNa4gをルツボに収納した。ルツボを図2に示す
ような装置内にセットし、真空排気した後、窒素ガスを
導入し、50℃/hrの速度で800℃まで昇温した。
また炉内は50気圧に維持した。一方、種結晶4は保持
軸11先端のヒータ12に保持され、ヒータ12により
800℃まで昇温させ、結晶成長を行った。その結果、
数ミクロン程度の大きさの結晶がルツボ内に多数数えら
れ、種結晶部に成長した結晶も多結晶となっており、そ
の表面からも2次核形成が起こっていた。
Next, a comparative example of the present invention will be described.
20 g of Ga as a crystal growth raw material and 4 g of Na as a flux were stored in a crucible. The crucible was set in an apparatus as shown in FIG. 2 and evacuated, then nitrogen gas was introduced, and the temperature was raised to 800 ° C. at a rate of 50 ° C./hr.
The inside of the furnace was maintained at 50 atm. On the other hand, the seed crystal 4 was held by the heater 12 at the tip of the holding shaft 11 and was heated to 800 ° C. by the heater 12 to grow the crystal. as a result,
A large number of crystals having a size of about several microns were counted in the crucible, and the crystals grown in the seed crystal part were also polycrystals, and secondary nuclei were formed from the surface.

【0031】上記結果より、結晶成長原料全体が結晶成
長可能な高温度下にあれば、結晶成長原料のあらゆる箇
所において結晶成長が行われ、多数の小さな核が自然発
生してしまうことがわかる。その結果、種結晶の成長に
用いられる原料の量は減少し十分な大きさのバルク状結
晶を得にくい。また、本方式による結晶成長は高温下で
あればその成長速度も速くなるが、結晶成長原料の全体
が高温下にあると、原料中にある種結晶の成長速度を制
御することが非常に困難である。
From the above results, it can be seen that if the entire crystal growth raw material is at a high temperature at which the crystal can be grown, crystal growth is performed at all parts of the crystal growth raw material, and many small nuclei are spontaneously generated. As a result, the amount of the raw material used for growing the seed crystal is reduced, and it is difficult to obtain a bulk crystal having a sufficient size. In addition, the growth rate of the crystal grown by this method is high at high temperatures, but it is very difficult to control the growth rate of a seed crystal in the raw materials when the entire crystal growth raw material is at high temperatures. It is.

【0032】結晶としてのミクロな品質は、上記実施例
と比較例とは大きな差はないと考えられるが、実施例で
えられた結晶は、十分な大きさを有し、形状が整った美
しいものであった。これらの結果より、結晶成長原料を
種結晶よりも低温の、結晶成長が殆どみられない低温度
下に維持し、種結晶のみを結晶成長可能な高温度下に維
持して、種結晶の成長速度の制御を容易にし、また高品
質なバルク状単結晶を得られることがわかる。
Although the micro quality as a crystal is not considered to be significantly different from that of the above example and the comparative example, the crystal obtained in the example has a sufficient size and a beautiful shape. Was something. From these results, the growth of the seed crystal was maintained while maintaining the crystal growth raw material at a lower temperature than the seed crystal, where crystal growth was hardly observed, and maintaining only the seed crystal at a high temperature at which crystal growth was possible. It can be seen that the speed can be easily controlled and a high-quality bulk single crystal can be obtained.

【0033】更に、結晶成長原料が比較的に低温に維持
されるので、結晶成長の観察窓等の設置が行いやすく、
設備管理上も好ましい。なおフラックスとしては、その
他カリウム等も用いることができる。また、窒素源とし
ては、上述した窒素ガスの他にも、窒化物ガス、窒化物
含有ガス等も使用することができる。更に、上述した単
結晶製造方法及び製造装置は、AlN等の他の窒化物単
結晶の製造にも好適である。結晶成長を行う際の圧力は
50気圧以上であることが好ましく、一定値に保持しな
がら成長を行う。また、結晶成長可能な温度は700℃
以上であることが好ましい。
Further, since the crystal growth raw material is maintained at a relatively low temperature, it is easy to set up a crystal growth observation window and the like.
It is also preferable in equipment management. As the flux, potassium and the like can be used. Further, as the nitrogen source, a nitride gas, a nitride-containing gas, or the like can be used in addition to the nitrogen gas described above. Further, the above-described method and apparatus for producing a single crystal are also suitable for producing another nitride single crystal such as AlN. The pressure at which the crystal is grown is preferably at least 50 atm, and the growth is performed while maintaining a constant value. The temperature at which the crystal can be grown is 700 ° C.
It is preferable that it is above.

【0034】なお上述の説明では、保持軸は圧力容器の
上部から貫通して設けられているが、圧力容器の下部等
から貫通して設けられていてもよい。また保持部は上述
の構成に限定されることはなく、種結晶を結晶成長原料
内で保持でき、加熱できる構成であれば採用できる。
In the above description, the holding shaft is provided so as to penetrate from the upper part of the pressure vessel, but may be provided so as to penetrate from the lower part of the pressure vessel. Further, the holding portion is not limited to the above-described structure, and any structure that can hold the seed crystal in the crystal growth material and can be heated can be employed.

【0035】[0035]

【本発明の効果】本発明によれば、結晶成長原料中で保
持した種結晶を局所的に加熱して、種結晶近傍にある結
晶原料のみから結晶成長を行うので、結晶成長原料中に
おける結晶成長の位置や結晶成長速度を容易に制御で
き、高品質で大きなバルク状窒化物単結晶を得ることが
できる。
According to the present invention, the seed crystal held in the crystal growth raw material is locally heated to grow the crystal only from the crystal raw material in the vicinity of the seed crystal. The growth position and the crystal growth rate can be easily controlled, and a high quality and large bulk nitride single crystal can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明にかかる窒化物単結晶製造装置の第1実
施形態を示した概略図である。
FIG. 1 is a schematic view showing a first embodiment of a nitride single crystal manufacturing apparatus according to the present invention.

【図2】本発明にかかる窒化物単結晶製造装置の第2実
施形態を示した側断面図である。
FIG. 2 is a side sectional view showing a second embodiment of the nitride single crystal manufacturing apparatus according to the present invention.

【符号の説明】[Explanation of symbols]

1 窒化物単結晶製造装置 2 窒化物単結晶成長原料 3 ルツボ 4 種結晶 5 内側容器 6 加熱装置 7 圧力容器 10 保持部 11 保持軸 12 ヒータ 15 昇降装置 16 制御装置 34 支持台 35 昇降軸 DESCRIPTION OF SYMBOLS 1 Nitride single crystal manufacturing apparatus 2 Nitride single crystal growth raw material 3 Crucible 4 Seed crystal 5 Inner vessel 6 Heating apparatus 7 Pressure vessel 10 Holding section 11 Holding axis 12 Heater 15 Elevating apparatus 16 Control apparatus 34 Supporting stand 35 Elevating axis

───────────────────────────────────────────────────── フロントページの続き (71)出願人 500244540 吉村 政志 広島県福山市延広町2番10号 (72)発明者 上原 一浩 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 佐々木 孝友 大阪府吹田市山田西2−8 (72)発明者 森 勇介 大阪府交野市私市8−16−9 (72)発明者 吉村 政志 広島県福山市延広町2−10 Fターム(参考) 4G077 AA02 BE15 CF10 EA02 EA04 EG20 HA12  ──────────────────────────────────────────────────続 き Continued on the front page (71) Applicant 500244540 Masashi Yoshimura 2-10 Nobuhirocho, Fukuyama City, Hiroshima Prefecture (72) Inventor Kazuhiro Uehara 2-3-1 Shinhama, Araimachi Takasago City, Hyogo Prefecture Kobe Steel Takasago Co., Ltd. Inside the factory (72) Inventor Takatomo Sasaki 2-8 Yamada Nishi, Suita-shi, Osaka (72) Inventor Yusuke Mori 8-16-9, Private City, Katano-shi, Osaka (72) Inventor Masashi Yoshimura 2, Nobuhirocho, Fukuyama-shi, Hiroshima -10 F term (reference) 4G077 AA02 BE15 CF10 EA02 EA04 EG20 HA12

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 窒化物単結晶成長原料中で種結晶を保持
し、前記種結晶を局所的に加熱して結晶成長を行うこと
を特徴とする窒化物単結晶製造方法。
1. A method for producing a nitride single crystal, comprising: holding a seed crystal in a nitride single crystal growth raw material; and locally heating the seed crystal to grow the crystal.
【請求項2】 窒化物単結晶成長原料を結晶が殆ど成長
しない低温度下に維持しておき、前記種結晶を局所的に
加熱して前記種結晶近傍の前記成長原料を結晶成長可能
な高温度下に維持して結晶成長を行うことを特徴とする
請求項1に記載の窒化物単結晶製造方法。
2. A nitride single crystal growth raw material is maintained at a low temperature at which almost no crystal grows, and the seed crystal is locally heated so that the growth raw material near the seed crystal can be grown. 2. The method for producing a nitride single crystal according to claim 1, wherein the crystal is grown while maintaining the temperature.
【請求項3】 前記種結晶近傍の温度を測定し、前記種
結晶への局所的な加熱温度を制御して結晶成長を行うこ
とを特徴とする請求項1又は2に記載の窒化物単結晶製
造方法。
3. The nitride single crystal according to claim 1, wherein a temperature near the seed crystal is measured, and crystal growth is performed by controlling a local heating temperature of the seed crystal. Production method.
【請求項4】 窒化物単結晶成長原料を収納する原料収
納容器と、前記原料収納容器を収容可能な圧力容器と、
前記窒化物単結晶成長原料を加熱する加熱装置とを備
え、前記圧力容器には前記種結晶を前記成長原料内で保
持する保持部が設けられ、前記保持部には前記種結晶を
加熱する加熱手段が設けられていることを特徴とする窒
化物単結晶製造装置。
4. A raw material storage container for storing a nitride single crystal growth raw material, a pressure container capable of storing the raw material storage container,
A heating device for heating the nitride single crystal growth raw material, wherein the pressure vessel is provided with a holding unit for holding the seed crystal in the growth raw material, and the holding unit is a heating unit for heating the seed crystal. Means for producing a nitride single crystal.
【請求項5】 前記保持部は、前記圧力容器内における
前記種結晶の位置を変えることができるように移動自在
に構成されていることを特徴とする請求項4に記載の窒
化物単結晶製造装置。
5. The nitride single crystal production according to claim 4, wherein the holding unit is configured to be movable so that the position of the seed crystal in the pressure vessel can be changed. apparatus.
【請求項6】 前記加熱手段は前記種結晶を保持可能な
ヒータからなり、このヒータは前記圧力容器外に設けら
れた移動装置から延設された保持軸の先端に設けられ、
前記移動装置により前記保持軸を駆動して前記圧力容器
内における前記種結晶の位置を変えることができるよう
に移動自在に構成されていることを特徴とする請求項4
に記載の窒化物単結晶製造装置。
6. The heating means comprises a heater capable of holding the seed crystal, and the heater is provided at a tip of a holding shaft extending from a moving device provided outside the pressure vessel,
5. The apparatus according to claim 4, wherein the moving device drives the holding shaft to change the position of the seed crystal in the pressure vessel.
2. The nitride single crystal production apparatus according to 1.
【請求項7】 前記種結晶近傍の前記成長原料の温度を
測定する測定部と測定された温度に応じて前記加熱手段
の温度を制御する制御装置が更に設けられていることを
特徴とする請求項4〜6のいずれかに記載の窒化物単結
晶製造装置。
7. The apparatus according to claim 1, further comprising: a measuring unit for measuring a temperature of the growth raw material in the vicinity of the seed crystal; and a control device for controlling a temperature of the heating unit in accordance with the measured temperature. Item 7. An apparatus for producing a nitride single crystal according to any one of Items 4 to 6.
【請求項8】 前記原料収納容器は、この収納容器を昇
降自在に移動させる昇降軸を有する支持台により支持さ
れていることを特徴とする請求項4〜7のいずれかに記
載の窒化物単結晶製造装置。
8. The nitride monolith according to claim 4, wherein said raw material storage container is supported by a support having an elevating shaft for vertically moving said storage container. Crystal manufacturing equipment.
JP2000261669A 2000-08-30 2000-08-30 Method and device for producing nitride single crystal Pending JP2002068896A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000261669A JP2002068896A (en) 2000-08-30 2000-08-30 Method and device for producing nitride single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000261669A JP2002068896A (en) 2000-08-30 2000-08-30 Method and device for producing nitride single crystal

Publications (1)

Publication Number Publication Date
JP2002068896A true JP2002068896A (en) 2002-03-08

Family

ID=18749475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000261669A Pending JP2002068896A (en) 2000-08-30 2000-08-30 Method and device for producing nitride single crystal

Country Status (1)

Country Link
JP (1) JP2002068896A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004083498A1 (en) 2003-03-17 2004-09-30 Osaka Industrial Promotion Organization Method for producing group iii nitride single crystal and apparatus used therefor
JP2007186420A (en) * 2007-03-22 2007-07-26 Ricoh Co Ltd Method and apparatus for growing crystal, group iii nitride crystal, and group iii nitride semiconductor device
WO2007094126A1 (en) * 2006-02-13 2007-08-23 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP2008247729A (en) * 2007-03-07 2008-10-16 Ricoh Co Ltd Apparatus for manufacturing crystal
JP2009084154A (en) * 2009-01-09 2009-04-23 Sumitomo Electric Ind Ltd Method for etching surface of seed crystal
US7531038B2 (en) 2001-05-01 2009-05-12 Ricoh Company, Ltd. Crystal growth method
US7828896B2 (en) 2003-01-29 2010-11-09 Ricoh Company, Ltd. Methods of growing a group III nitride crystal
JP2011088822A (en) * 2011-01-28 2011-05-06 Ricoh Co Ltd Method for producing group iii nitride crystal
US8337617B2 (en) 2005-03-14 2012-12-25 Ricoh Company, Ltd. Manufacturing method and manufacturing apparatus of a group III nitride crystal
US8562737B2 (en) 2000-10-19 2013-10-22 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group III nitride semiconductor device
US8916124B2 (en) 2007-12-05 2014-12-23 Ricoh Company, Ltd. Group III nitride crystal, method for growing the group III nitride crystal, and apparatus for growing the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8562737B2 (en) 2000-10-19 2013-10-22 Ricoh Company, Ltd. Crystal growth method, crystal growth apparatus, group-III nitride crystal and group III nitride semiconductor device
US8623138B2 (en) 2001-05-01 2014-01-07 Ricoh Company, Ltd. Crystal growth apparatus
US7531038B2 (en) 2001-05-01 2009-05-12 Ricoh Company, Ltd. Crystal growth method
US7828896B2 (en) 2003-01-29 2010-11-09 Ricoh Company, Ltd. Methods of growing a group III nitride crystal
CN100368604C (en) * 2003-03-17 2008-02-13 财团法人大阪产业振兴机构 Method for producing group iii nitride single crystal and apparatus used therefor
WO2004083498A1 (en) 2003-03-17 2004-09-30 Osaka Industrial Promotion Organization Method for producing group iii nitride single crystal and apparatus used therefor
US7959729B2 (en) 2003-03-17 2011-06-14 Osaka University Method for producing group-III-element nitride single crystals and apparatus used therein
US8337617B2 (en) 2005-03-14 2012-12-25 Ricoh Company, Ltd. Manufacturing method and manufacturing apparatus of a group III nitride crystal
US9376763B2 (en) 2005-03-14 2016-06-28 Ricoh Company, Ltd. Manufacturing method and manufacturing apparatus of a group III nitride crystal, utilizing a melt containing a group III metal, an alkali metal, and nitrogen
US7670430B2 (en) 2006-02-13 2010-03-02 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP5024898B2 (en) * 2006-02-13 2012-09-12 日本碍子株式会社 Method for recovering sodium metal from flux
WO2007094126A1 (en) * 2006-02-13 2007-08-23 Ngk Insulators, Ltd. Method of recovering sodium metal from flux
JP2008247729A (en) * 2007-03-07 2008-10-16 Ricoh Co Ltd Apparatus for manufacturing crystal
JP2007186420A (en) * 2007-03-22 2007-07-26 Ricoh Co Ltd Method and apparatus for growing crystal, group iii nitride crystal, and group iii nitride semiconductor device
US8916124B2 (en) 2007-12-05 2014-12-23 Ricoh Company, Ltd. Group III nitride crystal, method for growing the group III nitride crystal, and apparatus for growing the same
JP2009084154A (en) * 2009-01-09 2009-04-23 Sumitomo Electric Ind Ltd Method for etching surface of seed crystal
JP2011088822A (en) * 2011-01-28 2011-05-06 Ricoh Co Ltd Method for producing group iii nitride crystal

Similar Documents

Publication Publication Date Title
JP4647525B2 (en) Method for producing group III nitride crystal
WO2005071143A1 (en) Process for producing single crystal of gallium-containing nitride
JP2002068896A (en) Method and device for producing nitride single crystal
JP5651481B2 (en) Group 3B nitride crystal
US20060048701A1 (en) Method of growing group III nitride crystals
JP2005187317A (en) Method of manufacturing single crystal, single crystal, and its composite
TWI580827B (en) Sapphire single crystal nucleus and its manufacturing method
TW202113167A (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP2004196591A (en) Method of manufacturing compound semiconductor single crystal and crystal growth system
JP2003286098A (en) Method and apparatus for growing group iii nitride crystal
JP2019172521A (en) Method for manufacturing oxide single crystal and crystal growth apparatus using the same
JP5428706B2 (en) Method for producing SiC single crystal
JP4670002B2 (en) Method for producing nitride single crystal
JP4426251B2 (en) Group III nitride crystal manufacturing method
JP5651480B2 (en) Method for producing group 3B nitride crystals
JP2011006309A (en) Method for manufacturing sapphire single crystal
RU2369669C2 (en) Substrate for growing of epitaxial layers of gallium nitride
JP3698109B2 (en) II-VI compound semiconductor crystal growth method
JP2019189466A (en) Method for manufacturing group iii nitride crystal
JP2004203721A (en) Apparatus and method for growing single crystal
JP2013049608A (en) Large-diameter sapphire single crystal substrate
RU2189405C1 (en) METHOD OF PREPARING COMPOUND LiInS2 MONOCRYSTALS
JP2010024125A (en) Method for growing group iii nitride crystal
US20080229549A1 (en) Method of growing group III nitride crystals
JPH08290991A (en) Method for growing compound semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040406

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061212

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070410