JP2019172521A - Method for manufacturing oxide single crystal and crystal growth apparatus using the same - Google Patents

Method for manufacturing oxide single crystal and crystal growth apparatus using the same Download PDF

Info

Publication number
JP2019172521A
JP2019172521A JP2018063894A JP2018063894A JP2019172521A JP 2019172521 A JP2019172521 A JP 2019172521A JP 2018063894 A JP2018063894 A JP 2018063894A JP 2018063894 A JP2018063894 A JP 2018063894A JP 2019172521 A JP2019172521 A JP 2019172521A
Authority
JP
Japan
Prior art keywords
foreign matter
crystal
oxide
melt
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018063894A
Other languages
Japanese (ja)
Inventor
雄大 旭
Takehiro Asahi
雄大 旭
直矢 領木
Naoya Ryoki
直矢 領木
宮野 謙太郎
Kentaro Miyano
謙太郎 宮野
政樹 信岡
Masaki Nobuoka
政樹 信岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2018063894A priority Critical patent/JP2019172521A/en
Publication of JP2019172521A publication Critical patent/JP2019172521A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a method for effectively removing a foreign matter floating on an oxide melt served as a raw material to manufacture a high quality oxide single crystal, and a crystal growth apparatus using the same.SOLUTION: The method for manufacturing an oxide single crystal, capable of contacting a seed crystal to an oxide melt in a crucible to pull the seed crystal comprises: the foreign matter removal step of landing a foreign matter removal component having a portion constituted of the same material as a foreign matter floating on the oxide melt to the oxide melt to deposit the foreign matter to the foreign matter removal component and extract the foreign matter removal component from the oxide melt; and the step of manufacturing the oxide single crystal from the oxide melt.SELECTED DRAWING: Figure 1

Description

本開示は、酸化物単結晶の製造方法、およびこれに用いる結晶育成装置に関する。   The present disclosure relates to a method for producing an oxide single crystal and a crystal growth apparatus used therefor.

従来、酸化物単結晶の製造方法として、チョクラルスキー法(以下、「CZ法」とも称する)が知られている。特許文献1には、CZ法を用いたScAlMgO単結晶の育成装置および育成方法が記載されている。当該文献に記載の方法では、加熱コイルを使用した高周波加熱方式でルツボを加熱し、原料を熔融させる。そして、得られた融液に種結晶を接触させて種結晶を引き上げ、所望の直径の単結晶を得る。 Conventionally, the Czochralski method (hereinafter also referred to as “CZ method”) is known as a method for producing an oxide single crystal. Patent Document 1 describes an apparatus and method for growing a ScAlMgO 4 single crystal using the CZ method. In the method described in the document, the crucible is heated by a high-frequency heating method using a heating coil to melt the raw material. Then, the seed crystal is brought into contact with the obtained melt to pull up the seed crystal to obtain a single crystal having a desired diameter.

一方で、原料を熔融する際のルツボの加熱方式として抵抗加熱方式も知られている。抵抗加熱方式によれば、結晶の大型化が可能になると考えられており、低コストでScAlMgO単結晶等の酸化物単結晶を育成することが可能となる。 On the other hand, a resistance heating method is also known as a method for heating a crucible when melting a raw material. According to the resistance heating method, it is considered that the crystal can be enlarged, and an oxide single crystal such as a ScAlMgO 4 single crystal can be grown at a low cost.

特開2015−48296号公報Japanese Patent Laying-Open No. 2015-48296

しかしながら、特許文献1に記載の方法や、抵抗加熱方式を利用した酸化物単結晶の製造方法では、原料を加熱熔融した際に融液内にルツボに起因する異物が発生することがある。そして、このような異物が浮遊した状態で結晶の育成を行うと、得られる酸化物単結晶の品質低下が生じる。例えば、内径が小さいルツボで酸化物単結晶の育成を行う場合、種結晶を引き上げる際(直径拡大時)に上記異物が付着しやすく、多結晶化等が生じる。一方、内径が大きいルツボで酸化物単結晶の育成を行う場合、通常、融液中心に向かう放射状の対流が発生する。したがって、異物が融液中心に集まりやすく、種結晶を接触させる際に異物が付着し、所望の酸化物単結晶が得られない、という課題があった。   However, in the method described in Patent Document 1 and the method for producing an oxide single crystal using a resistance heating method, foreign materials due to the crucible may be generated in the melt when the raw material is heated and melted. And, when the crystal is grown in a state where such foreign matters are floating, the quality of the obtained oxide single crystal is deteriorated. For example, when an oxide single crystal is grown with a crucible having a small inner diameter, the foreign matter is likely to adhere when the seed crystal is pulled up (when the diameter is enlarged), resulting in polycrystallization. On the other hand, when an oxide single crystal is grown with a crucible having a large inner diameter, radial convection toward the melt center usually occurs. Therefore, there is a problem that foreign matter is likely to gather at the melt center, and the foreign matter adheres when the seed crystal is brought into contact, and a desired oxide single crystal cannot be obtained.

本開示は、上記課題を解決するためになされたものであり、原料である酸化物融液上に浮遊する異物を効果的に取り除いて、高品質な酸化物単結晶を製造する方法、およびこれに用いる結晶育成装置の提供を目的とする。   The present disclosure has been made to solve the above-described problems, and a method for producing a high-quality oxide single crystal by effectively removing foreign matters floating on an oxide melt as a raw material, and the same An object of the present invention is to provide a crystal growth apparatus used for the above.

上記課題を解決するために、本開示は、以下の酸化物単結晶の製造方法を提供する。
ルツボ中の酸化物融液に種結晶を接触させて引き上げを行う、酸化物単結晶の製造方法において、前記酸化物融液に浮遊する異物と同物質で構成される部分を有する異物除去用部品を前記酸化物融液に着液させて、前記異物を前記異物除去用部品に付着させた後、前記異物除去用部品を前記酸化物融液から取り出す異物除去工程と、前記異物除去工程後、前記酸化物融液から酸化物単結晶を製造する工程と、を含む、酸化物単結晶の製造方法。
In order to solve the above problems, the present disclosure provides the following oxide single crystal manufacturing method.
In the method for producing an oxide single crystal, which is pulled up by bringing a seed crystal into contact with the oxide melt in the crucible, the foreign matter removing part having a portion composed of the same substance as the foreign matter floating in the oxide melt. A foreign matter removing step of removing the foreign matter removing component from the oxide melt, and after the foreign matter removing step. A process for producing an oxide single crystal from the oxide melt.

また、本開示は、以下の結晶育成装置も提供する。
上記の酸化物単結晶の製造方法に用いられる結晶育成装置であって、酸化物融液を保持するためのルツボと、前記ルツボを加熱するためのヒータと、前記ルツボ中の前記酸化物融液に種結晶を接触させて引き上げを行うための結晶引き上げ軸と、前記ルツボと同物質で構成される先端部を有し、前記酸化物融液に浮遊する異物を除去するための、異物除去用部品と、を備える、結晶育成装置。
The present disclosure also provides the following crystal growth apparatus.
A crystal growth apparatus used in the above method for producing an oxide single crystal, a crucible for holding an oxide melt, a heater for heating the crucible, and the oxide melt in the crucible For removing foreign matter, having a crystal pulling shaft for bringing a seed crystal into contact with the tip crystal and a tip portion made of the same material as the crucible, and for removing foreign matter floating in the oxide melt And a crystal growing apparatus.

本開示の酸化物単結晶の製造方法によれば、酸化物融液に浮遊する異物を効果的に除去することが可能であり、異物に起因する劣化が少ない、高品質な酸化物単結晶が得られる。   According to the method for producing an oxide single crystal of the present disclosure, a high-quality oxide single crystal that can effectively remove foreign matters floating in the oxide melt and has little deterioration due to the foreign matters is obtained. can get.

本開示の一実施の形態に係る結晶育成装置の構成を示す模式図Schematic diagram showing the configuration of a crystal growth apparatus according to an embodiment of the present disclosure 本開示の酸化物単結晶の製造方法の一実施の形態に係るフローチャートThe flowchart concerning one embodiment of the manufacturing method of the oxide single crystal of this indication 本開示の酸化物単結晶の製造方法の異物除去工程の詳細を示すフローチャートThe flowchart which shows the detail of the foreign material removal process of the manufacturing method of the oxide single crystal of this indication 異物除去用部品の先端部を示す模式図Schematic showing the tip of the foreign material removal component

以下、本開示の実施の形態について、図面を参照しながら説明する。   Hereinafter, embodiments of the present disclosure will be described with reference to the drawings.

まず、結晶育成装置について説明し、その後、当該結晶育成装置を用いた酸化物単結晶の製造方法を説明する。
図1は、本開示の一実施の形態に係る結晶育成装置100の構成を示す模式図である。結晶育成装置100は、CZ法による結晶引き上げ装置であり、断熱材110で形成された加熱室120と、当該加熱室120の内部に設けられたヒータ130と、当該ヒータ130によって周囲が覆われたルツボ140と、を備える。さらに、結晶育成装置100は、ルツボ140を支持するためのルツボ支持軸141や、ルツボ140とルツボ支持軸141との間に配置される耐火物142、ルツボ140とヒータ130との間に配置され、加熱室120内を分離するための遮蔽物180等も備える。
First, a crystal growth apparatus will be described, and then a method for manufacturing an oxide single crystal using the crystal growth apparatus will be described.
FIG. 1 is a schematic diagram illustrating a configuration of a crystal growth apparatus 100 according to an embodiment of the present disclosure. The crystal growing apparatus 100 is a crystal pulling apparatus based on the CZ method, and has a heating chamber 120 formed of a heat insulating material 110, a heater 130 provided in the heating chamber 120, and the surroundings covered by the heater 130. And a crucible 140. Further, the crystal growing apparatus 100 is disposed between the crucible support shaft 141 for supporting the crucible 140, the refractory 142 disposed between the crucible 140 and the crucible support shaft 141, and between the crucible 140 and the heater 130. Also, a shield 180 for separating the inside of the heating chamber 120 is provided.

またさらに、結晶育成装置100は、種結晶162を保持するためのシードホルダ161や、シードホルダ161と接続された結晶引き上げ軸160も備える。また、ルツボ140内に浮遊する異物190を除去するための異物除去用部品191も備える。   Furthermore, the crystal growing apparatus 100 also includes a seed holder 161 for holding the seed crystal 162 and a crystal pulling shaft 160 connected to the seed holder 161. Further, a foreign matter removing component 191 for removing the foreign matter 190 floating in the crucible 140 is also provided.

また、図示しないが、結晶育成装置100は、加熱室120を取り囲むチャンバ、加熱室120内を真空引きする真空ポンプ、加熱室120内にガスを供給するガス供給源、加熱室120内に供給するガスの流量を調整するガス流量調整部、加熱室120内からガスを排出するためのガス排気口、ヒータ電源、異物除去用部品191の動作や結晶引き上げ軸160の引上速度、ヒータ130の加熱温度、ガス流量(ガス流量調整部)を制御する制御装置(制御部)等を有していてもよい。   Although not shown, the crystal growth apparatus 100 supplies a chamber surrounding the heating chamber 120, a vacuum pump that evacuates the heating chamber 120, a gas supply source that supplies gas into the heating chamber 120, and the heating chamber 120. A gas flow rate adjusting unit for adjusting the gas flow rate, a gas exhaust port for discharging gas from the heating chamber 120, a heater power source, the operation of the foreign matter removing component 191, the pulling speed of the crystal pulling shaft 160, the heating of the heater 130 You may have a control apparatus (control part) etc. which control temperature and a gas flow rate (gas flow rate adjustment part).

当該結晶育成装置100の各構成について、酸化物単結晶としてScAlMgOを製造する例に、以下詳述する。 Each configuration of the crystal growth apparatus 100 will be described in detail below as an example of manufacturing ScAlMgO 4 as an oxide single crystal.

加熱室120は、チャンバ(不図示)内に設けられた、断熱材110で囲まれた加熱空間である。加熱室120を囲む断熱材110の上部には、加熱室120内にガス(不活性ガスまたは酸素)を供給するためのガス導入部170が設けられている。本実施の形態では、当該ガス導入部170が、結晶引き上げ軸160を通すための貫通孔も兼ねている。また、断熱材110の上部には、異物除去用部品191を通すための貫通孔も設けられている。一方、断熱材110の下部には、ルツボ支持軸141を通すための貫通孔がそれぞれ設けられている。   The heating chamber 120 is a heating space surrounded by a heat insulating material 110 provided in a chamber (not shown). A gas introduction part 170 for supplying gas (inert gas or oxygen) into the heating chamber 120 is provided on the heat insulating material 110 surrounding the heating chamber 120. In the present embodiment, the gas introduction part 170 also serves as a through hole through which the crystal pulling shaft 160 passes. In addition, a through-hole for allowing the foreign substance removing component 191 to pass therethrough is also provided in the upper portion of the heat insulating material 110. On the other hand, through holes for passing the crucible support shaft 141 are respectively provided in the lower part of the heat insulating material 110.

ルツボ140は、本実施の形態では、イリジウム製であるが、材質はこれに限らず、原料の熔融温度での耐熱性と原料との耐反応性を有する限りにおいて、種々の材質を使用できる。   The crucible 140 is made of iridium in the present embodiment, but the material is not limited to this, and various materials can be used as long as they have heat resistance at the melting temperature of the raw material and resistance to reaction with the raw material.

上記ルツボ140に充填される酸化物融液150は、酸化物単結晶を得るための原料を加熱熔融させたものである。本実施の形態のように、ScAlMgOを製造する場合、酸化スカンジウム(Sc)と酸化アルミニウム(Al)と酸化マグネシウム(MgO)と、を所定の比率で混合した混合物の加熱熔融物とすることができる。なお、酸化物融液150は、少なくとも一部に酸化物を含んでいればよく、酸化物以外のものを含んでいてもよい。 The oxide melt 150 filled in the crucible 140 is obtained by heating and melting a raw material for obtaining an oxide single crystal. When manufacturing ScAlMgO 4 as in the present embodiment, heating of a mixture in which scandium oxide (Sc 2 O 3 ), aluminum oxide (Al 2 O 3 ), and magnesium oxide (MgO) are mixed at a predetermined ratio It can be a melt. In addition, the oxide melt 150 should just contain the oxide in part at least, and may contain things other than an oxide.

ルツボ支持軸141は、本実施の形態ではタングステン製であるが、材質はこれに限らず、加熱室120内の温度に対する耐熱性とルツボ140および融液150を支持可能な強度とを有するものであれば、種々の材質を使用できる。ルツボ支持軸141は設定した速度で回転、昇降する機能を有する。   The crucible support shaft 141 is made of tungsten in the present embodiment, but the material is not limited to this, and has heat resistance against the temperature in the heating chamber 120 and strength capable of supporting the crucible 140 and the melt 150. If there are, various materials can be used. The crucible support shaft 141 has a function of rotating and moving up and down at a set speed.

耐火物142は本実施の形態では、ジルコニア製であり、ルツボ140の材質であるイリジウム、およびルツボ支持軸141の材質であるタングステンに対して、耐反応性を有する。   In the present embodiment, the refractory 142 is made of zirconia and has resistance to iridium, which is the material of the crucible 140, and tungsten, which is the material of the crucible support shaft 141.

ヒータ130は、本実施の形態では、円筒状のカーボン製であるが、材質はこれに限らず、ルツボ140内に充填された原料を熔融温度まで加熱できるものであれば、種々の材質からなるものを使用できる。加熱の際は、ヒータ130に電流を流すことで、ヒータ130が発熱し、断熱材110の内側(加熱室120)全体を加熱する。その結果、ルツボ140に装入された原料が加熱され、熔融する。なお、本実施の形態では、ヒータ130を遮蔽物180の外周にのみ配置しているが、加熱室120の内部にさらにヒータを設置してもよい。またヒータ130の配置位置は、当該位置に限定されず、例えば、ルツボ140の上方や下方であってもよい。   Although the heater 130 is made of cylindrical carbon in the present embodiment, the material is not limited to this, and any material can be used as long as the raw material filled in the crucible 140 can be heated to the melting temperature. Things can be used. At the time of heating, a current is passed through the heater 130 so that the heater 130 generates heat and heats the entire inside of the heat insulating material 110 (the heating chamber 120). As a result, the raw material charged in the crucible 140 is heated and melted. In the present embodiment, the heater 130 is disposed only on the outer periphery of the shield 180, but a heater may be further installed inside the heating chamber 120. Further, the arrangement position of the heater 130 is not limited to the position, and may be, for example, above or below the crucible 140.

結晶引き上げ軸160は上述のように、本実施の形態では、加熱室120内に、ガス導入部170を介して挿入されているが、ガス導入部170とは別に設けられた貫通孔を介して加熱室120内に挿入されていてもよい。結晶引き上げ軸160は、アルミナ製であり、設定した速度で回転、昇降する機能を有する。一方、シードホルダ161は、イリジウム製であり、結晶引き上げ軸160に接続され、先端に種結晶162をセットすることが可能である。なお、当該シードホルダ161に保持される種結晶162は、本実施の形態では、ScAlMgOであり、形状は正四角柱である。 As described above, the crystal pulling shaft 160 is inserted into the heating chamber 120 through the gas introduction unit 170 in the present embodiment, but through the through-hole provided separately from the gas introduction unit 170. It may be inserted into the heating chamber 120. The crystal pulling shaft 160 is made of alumina and has a function of rotating and moving up and down at a set speed. On the other hand, the seed holder 161 is made of iridium, is connected to the crystal pulling shaft 160, and can set the seed crystal 162 at the tip. Note that the seed crystal 162 held by the seed holder 161 is ScAlMgO 4 in the present embodiment and has a regular quadrangular prism shape.

遮蔽物180は、本実施の形態ではタングステン製の円筒状の部材であり、加熱室120内部のルツボ140とヒータ130との間に配置されている。ただし、遮蔽物180の材質はタングステンに限らず、加熱室120内の温度に対する耐熱性と、ガス雰囲気に対する耐反応性と、接触する部材(例えば断熱材110)に対する耐反応性と、を有するものであればよく、種々の材質を選択できる。遮蔽物180の材質は、例えばモリブデン、タンタル、イリジウム等であってもよい。   The shield 180 is a cylindrical member made of tungsten in the present embodiment, and is disposed between the crucible 140 and the heater 130 inside the heating chamber 120. However, the material of the shield 180 is not limited to tungsten, and has heat resistance to the temperature in the heating chamber 120, reaction resistance to the gas atmosphere, and reaction resistance to a contact member (eg, the heat insulating material 110). Any material can be selected. The material of the shield 180 may be molybdenum, tantalum, iridium or the like, for example.

一方、異物除去用部品191は、酸化物融液150に浮遊する異物190と同物質で構成される部分(後述の先端部192)を有する。ここで、酸化物融液150に浮遊する異物190の種類は特に制限されないが、通常、異物190はルツボ140に起因し、ルツボ140と同一の材料からなる。したがって、本実施形態では、イリジウム片である。異物190は、例えば以下のように発生する。ルツボ140に原料を充填し、これを加熱熔融させる際、原料およびルツボ140が膨張する。このとき、ルツボ140の内壁からその一部(イリジウム片)が欠落することがあり、これが酸化物融液150に浮遊する異物となる。また、熔融した原料のアタックにより、ルツボ140の内壁が欠落することもあり、これも酸化物融液150に浮遊する異物となる。   On the other hand, the foreign matter removing component 191 has a portion (a tip portion 192 described later) made of the same material as the foreign matter 190 floating in the oxide melt 150. Here, the type of foreign matter 190 floating in the oxide melt 150 is not particularly limited, but usually the foreign matter 190 is caused by the crucible 140 and is made of the same material as the crucible 140. Therefore, in this embodiment, it is an iridium piece. The foreign material 190 is generated as follows, for example. When the raw material is filled in the crucible 140 and heated and melted, the raw material and the crucible 140 expand. At this time, a part (iridium piece) of the crucible 140 may be missing from the inner wall of the crucible 140, which becomes a foreign substance floating in the oxide melt 150. Further, the inner wall of the crucible 140 may be lost due to the attack of the melted raw material, which also becomes a foreign matter floating in the oxide melt 150.

以下、異物除去用部品191について、図4を用いて詳しく説明する。図4は異物除去用部品191のルツボ140側の部分を示す図である。異物除去用部品191は、本実施の形態では、略円筒状の先端保持部193と、当該先端保持部193の一端に配置された先端部192とから構成されている。先端保持部193の他端は、後述の制御部(図示せず)等と接続されている。   Hereinafter, the foreign matter removing component 191 will be described in detail with reference to FIG. FIG. 4 is a view showing a portion on the crucible 140 side of the foreign matter removing component 191. In the present embodiment, the foreign matter removing component 191 includes a substantially cylindrical tip holding portion 193 and a tip portion 192 disposed at one end of the tip holding portion 193. The other end of the tip holding part 193 is connected to a control part (not shown) described later.

異物除去用部品191の先端部192は、異物190と同種の材料から構成され、通常、ルツボ140と同じ材質から構成される。異物除去用部品191の先端部192は、拡散結合によって、異物190を付着させる。拡散接合とは、接合面間に生じる原子の拡散を利用して金属同士を接合する方法である。本実施の形態において、酸化物融液150の温度は1800℃を超える温度とされるが、そのような温度では、各材料の原子の持つエネルギーが大きくなり、原子の運動が激しくなる。そのような状態で、イリジウムからなる先端部192と、ルツボ140に起因するイリジウムからなる異物190とを接触させると、同金属同士の原子の表面拡散が起こり、異物190が先端部192に容易に付着する。   The tip 192 of the foreign matter removing component 191 is made of the same material as the foreign matter 190 and is usually made of the same material as the crucible 140. The front end 192 of the foreign matter removing component 191 adheres the foreign matter 190 by diffusion bonding. Diffusion bonding is a method of bonding metals using diffusion of atoms generated between bonding surfaces. In this embodiment, the temperature of the oxide melt 150 is set to a temperature exceeding 1800 ° C. However, at such a temperature, the energy of atoms of each material increases and the movement of atoms becomes intense. In such a state, when the tip portion 192 made of iridium and the foreign material 190 made of iridium caused by the crucible 140 are brought into contact with each other, surface diffusion of atoms of the same metal occurs, and the foreign material 190 is easily attached to the tip portion 192. Adhere to.

ここで、本実施の形態の先端部192は、片端閉じのパイプ形状であり、その内部に、タングステン・レニウム熱電対(図示せず)が配置されている。先端部192内にタングステン・レニウム熱電対が配置されていると、異物除去用部品191に温度測定機能を付加することができ、酸化物融液150の温度や、加熱室120内の温度を測定することが可能となる。その結果、融液150の温度調整を行いながら、酸化物融液150内の異物190を除去することが可能となる。つまり、異物除去用部品191によって、酸化物融液150の温度が、種結晶162を着液させて結晶育成を開始させるのに適した温度になったかを確認したりすることが可能となる。   Here, the tip 192 of the present embodiment has a pipe shape that is closed at one end, and a tungsten-rhenium thermocouple (not shown) is disposed therein. When a tungsten-rhenium thermocouple is disposed in the tip 192, a temperature measuring function can be added to the foreign matter removing component 191, and the temperature of the oxide melt 150 and the temperature in the heating chamber 120 are measured. It becomes possible to do. As a result, the foreign matter 190 in the oxide melt 150 can be removed while adjusting the temperature of the melt 150. That is, it is possible to confirm whether the temperature of the oxide melt 150 has reached a temperature suitable for depositing the seed crystal 162 and starting crystal growth using the foreign matter removing component 191.

なお、本実施の形態では、異物除去用部品191は、融液150及び、異物190と接触する先端部192がイリジウム製(異物と同種の材料)であればよく、先端保持部193は、種々の材質からなるものとすることができる。   In the present embodiment, the foreign material removing component 191 may be made of iridium (a material of the same kind as the foreign material) with the tip portion 192 that contacts the melt 150 and the foreign material 190. It can be made of any material.

一方、制御部(不図示)は、上述のヒータ130の温度制御や、ガス流量の調整、結晶引き上げ軸160の引き上げ速度(種結晶162の引き上げ速度)の制御、上述の異物除去用部品191の動作を行うことが可能であれば、その構成は特に制限されない。当該制御部は、異物除去用部品191の先端部192に配置されたタングステン・レニウム熱電対からの信号を処理し、これに合わせて、上記ヒータ130の温度制御や、ガス流量等を調整してもよい。   On the other hand, the control unit (not shown) controls the temperature of the heater 130, adjusts the gas flow rate, controls the pulling speed of the crystal pulling shaft 160 (the pulling speed of the seed crystal 162), and controls the foreign matter removing component 191. The structure is not particularly limited as long as the operation can be performed. The control unit processes a signal from a tungsten-rhenium thermocouple disposed at the tip 192 of the foreign matter removing component 191 and adjusts the temperature control of the heater 130, the gas flow rate, and the like accordingly. Also good.

上述の構成を有する結晶育成装置100では、ルツボ140に酸化物を含む原料が装入される。当該原料をヒータ130で加熱し、熔融させることで、ルツボ140に酸化物融液(原料の融液)150が充填される。そして、異物除去用部品191を用いて、酸化物融液150に浮遊する異物190の除去と酸化物融液150の温度測定を行った後、融液150に種結晶162を接触させて種結晶162を引き上げることで単結晶が育成される。   In the crystal growth apparatus 100 having the above-described configuration, the crucible 140 is charged with a raw material containing an oxide. The crucible 140 is filled with the oxide melt (raw material melt) 150 by heating and melting the raw material with the heater 130. Then, after removing foreign matter 190 floating in the oxide melt 150 and measuring the temperature of the oxide melt 150 using the foreign matter removing component 191, the seed crystal 162 is brought into contact with the melt 150 to form a seed crystal. A single crystal is grown by pulling up 162.

上述の結晶育成装置100によれば、原融液150に浮遊する異物190を除去できるため、異物に起因する結晶品質の劣化を抑制できる。また、異物除去後、直ちに結晶の育成を開始することで、より確実に、高品質な酸化物単結晶を製造することができる。   According to the crystal growth apparatus 100 described above, since the foreign matter 190 floating in the raw melt 150 can be removed, it is possible to suppress the deterioration of crystal quality caused by the foreign matter. Moreover, by starting the crystal growth immediately after removing the foreign matter, a high-quality oxide single crystal can be manufactured more reliably.

以下、上述の異物除去用部品を有する結晶育成装置を用いた、酸化物単結晶の製造方法について、具体的に説明する。
酸化物単結晶の製造方法は、図2に示すように、酸化物を含む原料を加熱熔融させて酸化物融液150を得る加熱熔融工程(S001)と、得られた酸化物融液150に浮遊する異物190を除去する異物除去工程(S002)と、酸化物融液150から結晶を育成させる結晶育成工程(S003)とを有する。
Hereinafter, a method for producing an oxide single crystal using the above-described crystal growth apparatus having the foreign matter removing component will be specifically described.
As shown in FIG. 2, the oxide single crystal manufacturing method includes a heating and melting step (S001) in which a raw material containing an oxide is heated and melted to obtain an oxide melt 150, and the obtained oxide melt 150 A foreign matter removing step (S002) for removing the floating foreign matter 190 and a crystal growing step (S003) for growing crystals from the oxide melt 150 are included.

また、上記異物除去工程(S002)は、図3に示すように、酸化物融液150に浮遊する異物190に、異物除去用部品191を接触させて異物190を付着させる異物付着工程(S0021)と、結晶育成装置100(本実施の形態では、異物除去用部品191内)に備えられた温度測定機能とを用いて、酸化物融液150の温度が結晶育成に適した融液温度になるようにヒータ出力を調整する温度調節工程(S0022)と、を含む。   In the foreign matter removing step (S002), as shown in FIG. 3, the foreign matter attaching step (S0021) in which the foreign matter removing component 191 is brought into contact with the foreign matter 190 floating in the oxide melt 150 to attach the foreign matter 190. And the temperature measurement function provided in the crystal growth apparatus 100 (in the present embodiment, the foreign matter removing component 191), the temperature of the oxide melt 150 becomes a melt temperature suitable for crystal growth. And a temperature adjustment step (S0022) for adjusting the heater output.

ここで、本実施の形態の酸化物単結晶の製造方法では、原料の加熱熔融工程(S001)の前、上述の結晶育成装置100の加熱室120の内部の雰囲気を、所望の不活性ガスに置換する。具体的には、加熱室120(チャンバ)を真空引き後、所定の不活性ガスを導入し、加熱室120(またはチャンバ)内を常圧にする。   Here, in the oxide single crystal manufacturing method of the present embodiment, the atmosphere inside the heating chamber 120 of the crystal growth apparatus 100 described above is changed to a desired inert gas before the raw material heating and melting step (S001). Replace. Specifically, after evacuating the heating chamber 120 (chamber), a predetermined inert gas is introduced to bring the inside of the heating chamber 120 (or chamber) to normal pressure.

供給する不活性ガスは、作製する酸化物単結晶の種類に応じて適宜選択される。例えば、不活性ガスであるアルゴンを主成分として含み、必要に応じて微量成分として窒素、酸素、水素、二酸化炭素、水等をさらに含むガスとすることができる。なお、不活性ガスは、ヘリウムや窒素等であってもよい。本実施の形態では、ルツボ140の周囲に、不活性ガスもしくは酸素が添加された不活性ガスを供給する。   The inert gas to be supplied is appropriately selected according to the type of oxide single crystal to be manufactured. For example, an inert gas, argon, can be used as a main component, and a gas further including nitrogen, oxygen, hydrogen, carbon dioxide, water, or the like as a trace component can be used as necessary. The inert gas may be helium or nitrogen. In the present embodiment, an inert gas to which an inert gas or oxygen is added is supplied around the crucible 140.

続いて、原料の加熱熔融工程(S001)、異物除去工程(S002)および結晶育成工程(S003)を行う。なお加熱熔融工程(S001)、異物除去工程(S002)および結晶育成工程(S003)を行う間、不活性ガスが、加熱室120(チャンバ)外にある複数のガス供給源(図示せず)から、ガス導入部170を介して加熱室120の内部に供給される。当該不活性ガスは、加熱室120の下部(例えば、ルツボ支持軸141を通すための貫通孔など)から排出される。   Subsequently, a raw material heating and melting step (S001), a foreign matter removing step (S002) and a crystal growth step (S003) are performed. During the heating and melting step (S001), the foreign matter removing step (S002), and the crystal growth step (S003), the inert gas is supplied from a plurality of gas supply sources (not shown) outside the heating chamber 120 (chamber). The gas is supplied into the heating chamber 120 through the gas introduction unit 170. The inert gas is discharged from the lower part of the heating chamber 120 (for example, a through hole for passing the crucible support shaft 141).

原料の加熱熔融工程(S001)では、ヒータ130の電源投入後、ルツボ140に装入された原料が熔融するまで、ルツボ140に大きな負荷をかけない程度に時間をかけてヒータ130に与える電力を徐々に増やし、原料を熔融させる。原料の熔融とは、ルツボ140内の原料が融け、融液の対流が確認できることをいい、一部の原料の溶け残りが浮遊していても良い。原料の熔融確認は、カメラなどによる検出で行うことができる。   In the raw material heating and melting step (S001), after the heater 130 is turned on, the electric power applied to the heater 130 over a period of time so that a large load is not applied to the crucible 140 until the raw material charged in the crucible 140 is melted. Increase gradually to melt the raw material. The melting of the raw material means that the raw material in the crucible 140 is melted and the convection of the melt can be confirmed, and the unmelted part of the raw material may be floating. The melting confirmation of the raw material can be performed by detection with a camera or the like.

続いて、上記原料熔融工程(S001)で発生し、酸化物融液150に浮遊する異物190を、異物除去用部品191を用いて除去する異物除去工程(S002)を行う。異物除去工程(S002)は、上述のように異物付着工程(S0021)および温度調節工程(S0022)を含み、異物付着工程(S0021)では、上述の異物除去用部品191を融液150(浮遊する異物190)にゆっくりと近づけて接触させる。そして、異物190を異物除去用部品191の先端部192に、金属同士の拡散反応により付着させる。   Subsequently, a foreign matter removing step (S002) is performed in which the foreign matter 190 generated in the raw material melting step (S001) and floating in the oxide melt 150 is removed using the foreign matter removing component 191. The foreign matter removing step (S002) includes the foreign matter attaching step (S0021) and the temperature adjusting step (S0022) as described above. In the foreign matter attaching step (S0021), the foreign matter removing component 191 is melted with the melt 150 (floating). Slowly approach the foreign object 190) and bring it into contact. And the foreign material 190 is made to adhere to the front-end | tip part 192 of the component 191 for foreign material removal by the diffusion reaction of metals.

また、温度調節工程(S0022)では、異物除去用部品191の温度測定機能を用いて酸化物融液150の温度を測定する。そして、測定された温度に基づき、結晶育成装置100の制御部(図示せず)が、酸化物融液150の温度を調整する。具体的には、酸化物融液150の温度が結晶の引き上げに適当な温度になるように、ヒータ130に与える電力を調整する。そして、酸化物融液150の温度が結晶の引き上げに適当な温度になってから、異物除去用部品191を後述の結晶育成工程(S003)の結晶引き上げを阻害しない位置まで引き上げる。このとき、異物190は、異物除去用部品191と共に引き上げられ、酸化物融液150から除去される。   In the temperature adjustment step (S0022), the temperature of the oxide melt 150 is measured using the temperature measurement function of the foreign matter removing component 191. And based on the measured temperature, the control part (not shown) of the crystal growth apparatus 100 adjusts the temperature of the oxide melt 150. Specifically, the electric power applied to the heater 130 is adjusted so that the temperature of the oxide melt 150 becomes an appropriate temperature for pulling up the crystal. After the temperature of the oxide melt 150 reaches an appropriate temperature for pulling up the crystal, the foreign matter removing component 191 is pulled up to a position that does not hinder crystal pulling in the crystal growth step (S003) described later. At this time, the foreign matter 190 is pulled up together with the foreign matter removing component 191 and removed from the oxide melt 150.

結晶育成工程(S003)では、結晶引き上げ軸160を一定速度で回転させながら、酸化物融液150に種結晶162が接するまで、結晶引き上げ軸160を徐々に下降させる。種結晶162と酸化物融液150とが馴染んで安定するまで保持した後、結晶引き上げ軸160を一定速度で上昇させる。引き上げ開始後は、自動直径制御(Automatic Diameter Control(ADC))により酸化物単結晶の形状(直径等)を制御する。   In the crystal growth step (S003), while the crystal pulling shaft 160 is rotated at a constant speed, the crystal pulling shaft 160 is gradually lowered until the seed crystal 162 comes into contact with the oxide melt 150. After holding until the seed crystal 162 and the oxide melt 150 become familiar and stable, the crystal pulling shaft 160 is raised at a constant speed. After the start of the pulling, the shape (diameter and the like) of the oxide single crystal is controlled by automatic diameter control (Automatic Diameter Control (ADC)).

所望の長さまで酸化物単結晶を引き上げた後、当該酸化物単結晶を酸化物融液150から結晶を切り離す。その後、ルツボ140に大きな負荷をかけない程度に時間をかけてヒータ130に与える電力を徐々に減らして冷却する。   After pulling up the oxide single crystal to a desired length, the oxide single crystal is separated from the oxide melt 150. Thereafter, cooling is performed by gradually reducing the power applied to the heater 130 over time so that a large load is not applied to the crucible 140.

上記酸化物単結晶の製造方法によれば、結晶育成工程(S003)において、酸化物融液150に浮遊する異物190が無い状態で結晶育成を開始することができる。そのため、酸化物融液150に浮遊する異物を起因とする結晶品質の劣化が生じ難い。また、温度調節工程(S0022)後に結晶育成工程(S003)を行うことで、種結晶162の接触から引き上げまでの時間を短くすることができる。つまり、種結晶162を接触させてから結晶を引き上げるまでの間に新たな異物が発生することを抑制でき、より確実に高品質な酸化物単結晶を作製することができる。   According to the above oxide single crystal manufacturing method, crystal growth can be started in the crystal growth step (S003) without the foreign matter 190 floating in the oxide melt 150. Therefore, the crystal quality is hardly deteriorated due to the foreign matters floating in the oxide melt 150. Further, by performing the crystal growth step (S003) after the temperature adjustment step (S0022), the time from the contact of the seed crystal 162 to the pulling can be shortened. That is, it is possible to suppress the generation of new foreign substances between the time when the seed crystal 162 is brought into contact and the time when the crystal is pulled up, and a high-quality oxide single crystal can be manufactured more reliably.

なお、上述の実施の形態では、図1に示される結晶育成装置100を用いて酸化物単結晶を製造する例を示したが、結晶育成装置や、酸化物単結晶の製造方法は、上記装置や方法に限定されない。例えば、結晶育成装置のヒータは、高周波加熱方式のヒータであってもよい。   In the above-described embodiment, an example in which an oxide single crystal is manufactured using the crystal growth apparatus 100 illustrated in FIG. 1 has been described. However, the crystal growth apparatus and the method for manufacturing an oxide single crystal are described above. It is not limited to the method. For example, the heater of the crystal growing apparatus may be a high-frequency heating type heater.

また、上述の実施の形態では、酸化物単結晶としてScAlMgO単結晶を製造する例を示したが、これに限定されない。すなわち、本開示の製造方法で製造する酸化物単結晶は、ScAlMgO単結晶が最適であるが、一般式RAMOで表されるほぼ単一結晶材料から構成される結晶とすることもできる。上記一般式において、Rは、Sc,In,Y、及びランタノイド系元素(原子番号57−71)から選択される一つ又は複数の三価の元素を表し、Aは、Fe(III)、Ga、及びAlから選択される一つ又は複数の三価の元素を表し、MはMg、Mn、Fe(II)、Co、Cu、Zn、Cdから選択される一つ又は複数の二価の元素を表す。なお、ほぼ単一結晶材料とは、RAMOで表される構造が90at%以上含まれ、かつ、任意の結晶軸に注目したとき、どの部分においてもその向きが同一であるような結晶質固体をいう。ただし、局所的に結晶軸の向きが変わっているものや、局所的な格子欠陥が含まれるものも、単結晶として扱う。なお、Oは酸素である。また、上記の通り、RはSc、AはAl、MはMgとするのが好ましい。
また、上述の結晶育成装置や上述の製造方法で作製する酸化物単結晶は、サファイア(Al)等であってもよい。
In the above-described embodiment, the example in which the ScAlMgO 4 single crystal is manufactured as the oxide single crystal has been described. However, the present invention is not limited to this. That is, the oxide single crystal manufactured by the manufacturing method of the present disclosure is optimally a ScAlMgO 4 single crystal, but may be a crystal composed of a substantially single crystal material represented by the general formula RAMO 4 . In the above general formula, R represents one or more trivalent elements selected from Sc, In, Y, and a lanthanoid element (atomic number 57-71), and A represents Fe (III), Ga , And one or more trivalent elements selected from Al, and M is one or more divalent elements selected from Mg, Mn, Fe (II), Co, Cu, Zn, Cd Represents. Note that a substantially single crystal material is a crystalline solid that includes 90 at% or more of the structure represented by RAMO 4 and has the same orientation in any part when attention is paid to an arbitrary crystal axis. Say. However, those in which the orientation of the crystal axis is locally changed and those containing local lattice defects are also treated as single crystals. O is oxygen. As described above, R is preferably Sc, A is Al, and M is Mg.
Further, the oxide single crystal produced by the above crystal growth apparatus or the above production method may be sapphire (Al 2 O 3 ) or the like.

また、上述の実施の形態では、CZ法にて酸化物単結晶を製造する例を示したが、本開示の酸化物単結晶の製造方法は、CZ法に限定されるものではなく、原料を加熱熔融して得られた融液に種結晶を接触させて結晶を得る、他の単結晶の製造方法にも適用可能である。   In the above-described embodiment, an example in which an oxide single crystal is manufactured by a CZ method has been described. However, a method for manufacturing an oxide single crystal according to the present disclosure is not limited to the CZ method, and a raw material is used. The present invention can also be applied to other single crystal manufacturing methods in which a seed crystal is brought into contact with a melt obtained by heat-melting to obtain a crystal.

また、上記では、結晶育成装置の異物除去用部品が、先端部に熱電対を有する例を示したが、異物除去用部品は、必ずしも温度測定のための熱電対等を有していなくてもよい。例えば、結晶育成装置は、他の温度測定手段等を有していてもよく、当該温度測定手段によって、酸化物融液の温度を測定してもよい。   Further, in the above, an example has been shown in which the foreign matter removing component of the crystal growing apparatus has a thermocouple at the tip, but the foreign matter removing component does not necessarily have a thermocouple for temperature measurement. . For example, the crystal growth apparatus may have other temperature measurement means and the like, and the temperature of the oxide melt may be measured by the temperature measurement means.

また、上述の酸化物単結晶の製造方法では、異物除去工程で異物付着工程および温度調節工程を行うことを説明したが、温度調節工程は必須ではなく、必要に応じて行えばよい。ただし、温度調節工程を行った後に結晶育成工程を行うことで、上述のように、結晶育成工程までの間に新たな異物が発生することを抑制することが可能となり、より確実に高品質な酸化物単結晶を製造することが可能となる。   In the above-described method for manufacturing an oxide single crystal, it has been described that the foreign matter attaching step and the temperature adjusting step are performed in the foreign matter removing step, but the temperature adjusting step is not essential and may be performed as necessary. However, by performing the crystal growth step after performing the temperature adjustment step, as described above, it is possible to suppress the generation of a new foreign material before the crystal growth step, and it is possible to ensure high quality. An oxide single crystal can be manufactured.

以下に、実際にScAlMgO結晶を製造した実施例を用いて、本開示を更に詳細に説明するが、本開示は、この実施例によって限定されるものではない。 Hereinafter, the present disclosure will be described in more detail by using examples in which ScAlMgO 4 crystals were actually manufactured. However, the present disclosure is not limited to the examples.

(実施例1)
温度測定機能を有しない異物除去用部品191を有すること以外は図1に示される結晶育成装置100と同様の結晶育成装置を用い、以下のようにScAlMgO単結晶の育成を行った。
Example 1
A ScAlMgO 4 single crystal was grown as follows using a crystal growth apparatus similar to the crystal growth apparatus 100 shown in FIG. 1 except that the foreign matter removing component 191 having no temperature measurement function was provided.

まず、チャンバ内の真空引きを実施し、チャンバ内をアルゴン雰囲気に置換した。その後、ヒータ130に電流を流し、ルツボ140に充填した原料を加熱熔融させ、原料の熔融確認を行った(加熱熔融工程)。得られた酸化物融液150を目視で確認したところ、酸化物融液150内に浮遊する異物190があった。   First, the inside of the chamber was evacuated, and the inside of the chamber was replaced with an argon atmosphere. Thereafter, an electric current was passed through the heater 130 to heat and melt the raw material filled in the crucible 140, and the melting of the raw material was confirmed (heating and melting step). When the obtained oxide melt 150 was visually confirmed, there was a foreign matter 190 floating in the oxide melt 150.

そこで、結晶育成装置100の異物除去用部品191を融液150に浮遊する異物190にゆっくりと近づけ、異物190を異物除去用部品191に付着させて、融液内から異物190を取り除いた(異物除去工程)。   Therefore, the foreign matter removing component 191 of the crystal growing apparatus 100 is slowly brought close to the foreign matter 190 floating in the melt 150, and the foreign matter 190 is attached to the foreign matter removing component 191 to remove the foreign matter 190 from the melt (foreign matter). Removal step).

その後、結晶引上げ軸を回転させながら徐々に下降させ、融液150に異物190が浮遊していない状態で種結晶162を融液150に接触させた。その後、種結晶162と融液150の状態を目視で観察し、半日〜1日かけて結晶育成に適した状態となるようにヒータ130に流す電力を調節した。ヒータ電力を調整している際に異物190が発生し、種結晶162に付着する様子が確認されたが、微量であったため、略透明な単結晶が得られた。   Thereafter, the crystal pulling shaft was gradually lowered while rotating, and the seed crystal 162 was brought into contact with the melt 150 in a state where the foreign matter 190 was not suspended in the melt 150. Thereafter, the state of the seed crystal 162 and the melt 150 was visually observed, and the power supplied to the heater 130 was adjusted so as to be in a state suitable for crystal growth over half a day to one day. While adjusting the heater power, it was confirmed that foreign matter 190 was generated and adhered to the seed crystal 162. However, since the amount was very small, a substantially transparent single crystal was obtained.

(実施例2)
図1に示す結晶育成装置100で、ScAlMgO結晶の育成を行った。加熱熔融工程まで、実施例1と同様に行ったところ、酸化物融液150内に浮遊する異物190があった。
(Example 2)
The ScAlMgO 4 crystal was grown using the crystal growth apparatus 100 shown in FIG. When the heating and melting process was performed in the same manner as in Example 1, there was a foreign matter 190 floating in the oxide melt 150.

そこで結晶育成装置100の異物除去用部品191を融液150に浮遊する異物190にゆっくりと近づけ、異物190を異物除去用部品191に付着させた。その後、異物除去用部品191の温度測定機能を用いて酸化物融液150の温度を測定した。そして、結晶育成に適した融液温度となるようにヒータ電力を調整した(温度調節工程)。その後、異物除去用部品191を上昇させて、融液150内の異物190を取り除いた。   Therefore, the foreign matter removing component 191 of the crystal growing apparatus 100 was slowly brought close to the foreign matter 190 floating in the melt 150 to attach the foreign matter 190 to the foreign matter removing component 191. Thereafter, the temperature of the oxide melt 150 was measured using the temperature measuring function of the foreign matter removing component 191. And heater electric power was adjusted so that it might become the melt temperature suitable for crystal growth (temperature adjustment process). Thereafter, the foreign matter removing component 191 was raised to remove the foreign matter 190 in the melt 150.

異物の除去後すぐに、種結晶162を融液150に接触させ、種結晶162と融液150が馴染ませ、直ちに結晶引き上げを開始した。結晶を引き上げた後、結晶を酸化物融液150から引き離し、ヒータ電力を徐々に下げて徐冷し、育成した結晶を取り出した。取り出した結晶を目視で確認したところ、透明な単結晶であった。   Immediately after the removal of the foreign matter, the seed crystal 162 was brought into contact with the melt 150, the seed crystal 162 and the melt 150 became familiar, and crystal pulling was started immediately. After pulling up the crystal, the crystal was pulled away from the oxide melt 150 and gradually cooled by lowering the heater power, and the grown crystal was taken out. When the taken-out crystal | crystallization was confirmed visually, it was a transparent single crystal.

(比較例1)
異物除去用部品191を有しない以外は図1に示される結晶育成装置と同様の結晶育成装置で、ScAlMgO結晶の育成を行った。
加熱熔融工程まで、実施例1と同様に行ったところ、酸化物融液150内に浮遊する異物190があった。
(Comparative Example 1)
A ScAlMgO 4 crystal was grown by a crystal growth apparatus similar to the crystal growth apparatus shown in FIG. 1 except that the foreign matter removing component 191 was not provided.
When the heating and melting process was performed in the same manner as in Example 1, there was a foreign matter 190 floating in the oxide melt 150.

加熱熔融工程後、異物除去工程を行わずに、結晶引上げ軸を回転させながら徐々に下降させ、種結晶162を酸化物融液150に接触させた。その際に、異物190が種結晶162に付着する様子が確認された。その後、種結晶162と酸化物融液150の状態を目視で観察し、半日〜1日かけて結晶育成に適した状態となるようにヒータ130に流す電力を調節した。酸化物融液150の温度が結晶育成に適した温度となったところで、結晶引き上げを開始した。自動直径制御により、所望の結晶を引き上げた後、結晶を酸化物融液150から引き離し、ヒータ電力を徐々に下げて徐冷し、育成した結晶を取り出した。
取り出した結晶を目視で確認したところ、異物の付着が原因と考えられる多結晶化が生じる白濁した結晶であった。
After the heating and melting step, the seed crystal 162 was brought into contact with the oxide melt 150 by gradually lowering the crystal pulling shaft without rotating the foreign matter removing step. At that time, it was confirmed that the foreign matter 190 adhered to the seed crystal 162. Thereafter, the state of the seed crystal 162 and the oxide melt 150 was visually observed, and the power supplied to the heater 130 was adjusted so as to be in a state suitable for crystal growth over half a day to one day. When the temperature of the oxide melt 150 reached a temperature suitable for crystal growth, crystal pulling was started. After pulling up a desired crystal by automatic diameter control, the crystal was pulled away from the oxide melt 150 and gradually cooled by lowering the heater power, and the grown crystal was taken out.
When the taken-out crystal | crystallization was confirmed visually, it was the cloudy crystal | crystallization which polycrystallization considered to be due to adhesion of a foreign material occurred.

本開示によれば、酸化物単結晶の高品質化ができるので、発光ダイオード(LED)などの下地基板に用いる酸化物単結晶の製造に有用である。   According to the present disclosure, it is possible to improve the quality of an oxide single crystal, which is useful for manufacturing an oxide single crystal used for a base substrate such as a light emitting diode (LED).

100 結晶育成装置
110 断熱材
120 加熱室
130 ヒータ
140 ルツボ
141 ルツボ支持軸
142 耐火物
150 融液
160 結晶引き上げ軸
161 シードホルダ
162 種結晶
170 ガス導入部
180 遮蔽物
190 異物
191 異物除去用部品
192 先端部
193 先端保持部
DESCRIPTION OF SYMBOLS 100 Crystal growth apparatus 110 Heat insulating material 120 Heating chamber 130 Heater 140 Crucible 141 Crucible support shaft 142 Refractory 150 Melt 160 Crystal pulling shaft 161 Seed holder 162 Seed crystal 170 Gas introduction part 180 Shield 190 Foreign material 191 Foreign material removal part 192 Tip Part 193 Tip holding part

Claims (5)

ルツボ中の酸化物融液に種結晶を接触させて引き上げを行う、酸化物単結晶の製造方法において、
前記酸化物融液に浮遊する異物と同物質で構成される部分を有する異物除去用部品を前記酸化物融液に着液させて、前記異物を前記異物除去用部品に付着させた後、前記異物除去用部品を前記酸化物融液から取り出す異物除去工程と、
前記異物除去工程後、前記酸化物融液から酸化物単結晶を製造する工程と、
を含む、酸化物単結晶の製造方法。
In the method for producing an oxide single crystal, the seed crystal is brought into contact with the oxide melt in the crucible and pulled up.
The foreign matter removing component having a portion composed of the same substance as the foreign matter floating in the oxide melt is deposited on the oxide melt, and the foreign matter is attached to the foreign matter removing component. A foreign matter removing step of taking out the foreign matter removing component from the oxide melt;
A step of producing an oxide single crystal from the oxide melt after the foreign matter removing step;
A method for producing an oxide single crystal comprising:
前記異物除去工程において、前記酸化物融液の温度測定を行い、所定温度になってから前記異物除去用部品を前記酸化物融液から取り出す、
請求項1に記載の酸化物単結晶の製造方法。
In the foreign matter removing step, the temperature of the oxide melt is measured, and the foreign matter removing component is taken out from the oxide melt after reaching a predetermined temperature.
The manufacturing method of the oxide single crystal of Claim 1.
前記酸化物融液の温度測定を、前記異物除去用部品により行う、
請求項2に記載の酸化物単結晶の製造方法。
The temperature measurement of the oxide melt is performed by the foreign matter removing component.
The manufacturing method of the oxide single crystal of Claim 2.
前記ルツボが、イリジウムで構成され、
前記異物が前記ルツボ由来のイリジウム片である、
請求項1〜3のいずれか一項に記載の酸化物単結晶の製造方法。
The crucible is made of iridium;
The foreign matter is an iridium piece derived from the crucible,
The manufacturing method of the oxide single crystal as described in any one of Claims 1-3.
請求項1〜4いずれかの酸化物単結晶の製造方法に用いられる結晶育成装置であって、
酸化物融液を保持するためのルツボと、
前記ルツボを加熱するためのヒータと、
前記ルツボ中の前記酸化物融液に種結晶を接触させて引き上げを行うための結晶引き上げ軸と、
前記ルツボと同物質で構成される先端部を有し、前記酸化物融液に浮遊する異物を除去するための、異物除去用部品と、
を備える、結晶育成装置。


A crystal growth apparatus used in the method for producing an oxide single crystal according to claim 1,
A crucible for holding the oxide melt;
A heater for heating the crucible;
A crystal pulling shaft for pulling by bringing a seed crystal into contact with the oxide melt in the crucible;
A foreign matter removing component for removing foreign matter floating in the oxide melt, having a tip composed of the same material as the crucible,
A crystal growing apparatus comprising:


JP2018063894A 2018-03-29 2018-03-29 Method for manufacturing oxide single crystal and crystal growth apparatus using the same Pending JP2019172521A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018063894A JP2019172521A (en) 2018-03-29 2018-03-29 Method for manufacturing oxide single crystal and crystal growth apparatus using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018063894A JP2019172521A (en) 2018-03-29 2018-03-29 Method for manufacturing oxide single crystal and crystal growth apparatus using the same

Publications (1)

Publication Number Publication Date
JP2019172521A true JP2019172521A (en) 2019-10-10

Family

ID=68169209

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018063894A Pending JP2019172521A (en) 2018-03-29 2018-03-29 Method for manufacturing oxide single crystal and crystal growth apparatus using the same

Country Status (1)

Country Link
JP (1) JP2019172521A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022028800A1 (en) * 2020-08-05 2022-02-10 Forschungsverbund Berlin E.V. Method and device for growing a rare earth sesquioxide crystal
CN114232072A (en) * 2021-12-13 2022-03-25 新美光(苏州)半导体科技有限公司 Method for removing foreign matter on surface of silicon melt, and method for growing single crystal silicon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022028800A1 (en) * 2020-08-05 2022-02-10 Forschungsverbund Berlin E.V. Method and device for growing a rare earth sesquioxide crystal
CN114232072A (en) * 2021-12-13 2022-03-25 新美光(苏州)半导体科技有限公司 Method for removing foreign matter on surface of silicon melt, and method for growing single crystal silicon
CN114232072B (en) * 2021-12-13 2023-02-10 新美光(苏州)半导体科技有限公司 Method for removing foreign matter on surface of silicon melt, and method for growing single crystal silicon

Similar Documents

Publication Publication Date Title
JP6606638B2 (en) Method and apparatus for growing Fe-Ga based alloy single crystal
JP2006131433A (en) Method of producing silicon carbide single crystal
JP2007126335A (en) Manufacturing facility for manufacturing silicon carbide single crystal by means of solution method
JP5418385B2 (en) Method for producing silicon carbide single crystal ingot
JP5359796B2 (en) Method for producing SiC single crystal
JP2019172521A (en) Method for manufacturing oxide single crystal and crystal growth apparatus using the same
JP4595909B2 (en) Method for producing aluminum nitride single crystal
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP2010059031A (en) Aluminum oxide single crystal and method for manufacturing the same
JP2017178764A (en) Oxide single crystal production method, and oxide single crystal production apparatus
JP2002068896A (en) Method and device for producing nitride single crystal
JP2009269799A (en) Method for growing single crystal and apparatus for pulling single crystal
JP6344401B2 (en) Method for producing SiC single crystal
JP2017222537A (en) Crucible, and single crystal growing unit and growing method
JP4788444B2 (en) Method for producing silicon single crystal
WO2011067894A1 (en) Device for producing single crystals and method for producing single crystals
JP5761264B2 (en) Method for manufacturing SiC substrate
JP2009249207A (en) Method for manufacturing silicon carbide single crystal ingot
JP5428706B2 (en) Method for producing SiC single crystal
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP4426251B2 (en) Group III nitride crystal manufacturing method
JP4720672B2 (en) Method for producing aluminum nitride single crystal
JP2019112252A (en) Production method of oxide single crystal, and crystal growth apparatus
JP2019163184A (en) ScAlMgO4 SINGLE CRYSTAL SUBSTRATE, AND PRODUCTION METHOD THEREOF
WO2010084681A1 (en) Group iiib nitride crystal manufacturing method

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190718

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20191121