WO2010084681A1 - Group iiib nitride crystal manufacturing method - Google Patents

Group iiib nitride crystal manufacturing method Download PDF

Info

Publication number
WO2010084681A1
WO2010084681A1 PCT/JP2009/071232 JP2009071232W WO2010084681A1 WO 2010084681 A1 WO2010084681 A1 WO 2010084681A1 JP 2009071232 W JP2009071232 W JP 2009071232W WO 2010084681 A1 WO2010084681 A1 WO 2010084681A1
Authority
WO
WIPO (PCT)
Prior art keywords
growth
group
seed crystal
crystal substrate
mixed melt
Prior art date
Application number
PCT/JP2009/071232
Other languages
French (fr)
Japanese (ja)
Inventor
崇行 平尾
真 岩井
克宏 今井
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2010547413A priority Critical patent/JP5651480B2/en
Publication of WO2010084681A1 publication Critical patent/WO2010084681A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B19/00Liquid-phase epitaxial-layer growth
    • C30B19/10Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B9/00Single-crystal growth from melt solutions using molten solvents
    • C30B9/04Single-crystal growth from melt solutions using molten solvents by cooling of the solution
    • C30B9/08Single-crystal growth from melt solutions using molten solvents by cooling of the solution using other solvents
    • C30B9/10Metal solvents

Definitions

  • the present invention relates to a method for producing a group 3B nitride crystal such as gallium nitride.
  • gallium nitride-based semiconductor devices are mainly manufactured by a vapor phase method. Specifically, a gallium nitride thin film is heteroepitaxially grown on a sapphire substrate or silicon carbide substrate by metal organic vapor phase epitaxy (MOVPE) or the like.
  • MOVPE metal organic vapor phase epitaxy
  • the thermal expansion coefficient and the lattice constant of the substrate and the gallium nitride thin film are greatly different, high-density dislocations (a kind of lattice defects in the crystal) are generated in the gallium nitride. For this reason, it has been difficult to obtain high-quality gallium nitride having a low dislocation density by the vapor phase method.
  • a liquid phase method has also been developed.
  • the flux method is one of the liquid phase methods. In the case of gallium nitride, the temperature required for crystal growth of gallium nitride is reduced to about 800 ° C. and the pressure is reduced to several MPa to several hundred MPa by using metallic sodium as the flux.
  • gallium nitride becomes supersaturated and grows as crystals.
  • dislocations are less likely to occur than in a gas phase method, so that high-quality gallium nitride having a low dislocation density can be obtained.
  • Patent Document 1 discloses a method for producing a group 3B nitride crystal for the purpose of improving the crystal growth rate and the crystallinity / uniformity of a semiconductor crystal. Specifically, a method of crystal growth of gallium nitride on a seed crystal substrate by disposing a seed crystal substrate diagonally or straightly in a mixed melt of metal sodium and metal gallium is disclosed. According to this method, since the mixed melt flows along the crystal growth surface by thermal convection, the mixed melt is sufficiently and uniformly supplied to each part of the crystal growth surface.
  • JP 2008-290929 (for example, paragraph 0009)
  • Patent Document 1 Although a gallium nitride crystal having a large grain size (area surrounded by grain boundaries) can be obtained, an area having a low dislocation density, such as an etch pit density (EPD), is obtained. An area with an order of 10 4 / cm 2 or less may not exist.
  • a gallium nitride crystal having a high dislocation density is used, for example, in a power control device to which a high voltage is applied, there are many holes penetrating in the thickness direction, and leakage current may flow through the holes. Therefore, there is a problem that a high voltage cannot be applied.
  • a gallium nitride crystal having a low dislocation density is present, there is a possibility that a leakage current may flow through the grain boundary if the grain size is small, so that a high voltage cannot be applied.
  • the main object of the present invention is to provide a group 3B nitride crystal having a large grain size and a low dislocation density.
  • the present inventors have found that the flow direction of the mixed melt in the growth vessel and the concentration of metal gallium in the mixed melt affect the grain size and the dislocation density, and have completed the present invention. .
  • a seed crystal substrate is immersed in a mixed melt having a concentration of Group 3B metal of 22 to 32 mol% in a growth vessel, and the surface of the seed crystal substrate is aligned.
  • the group 3B nitride is crystallized on the seed crystal substrate by supplying nitrogen gas to the growth vessel while generating a flow in the direction of the mixed melt.
  • the method for producing a group 3B nitride crystal of the present invention when growing a group 3B nitride crystal, a nitrogen gas is supplied to the growth vessel while generating a flow in a direction along the surface of the seed crystal substrate in the mixed melt. Grain size tends to increase.
  • the grain size of the group 3B nitride crystal can be set to include a circle of ⁇ 1 mm. The reason for this is not clear, but crystals generally grow easily along the normal direction of the surface of the seed crystal substrate, so if the mixed melt is stationary, crystallization occurs at multiple locations on the surface of the seed crystal substrate. It is considered that the boundaries between many crystals eventually become grain boundaries and the grain size does not increase.
  • the mixed melt flows in a direction along the surface of the seed crystal substrate, growth along the normal direction of the surface is suppressed and growth in a direction parallel to the surface is promoted. Therefore, it is considered that the crystal tends to be large and the grain size is large.
  • the dislocation density usually tends to be high, but by setting the concentration of the group 3B metal in the mixed melt to 22 to 32 mol%, The dislocation density can be kept low. Specifically, the order of the etch pit density (EPD) in the circle of ⁇ 1 mm described above can be suppressed to 10 4 / cm 2 or less. The reason for this is not clear, but according to the examples described later, the dislocation density increases when the concentration of the group 3B metal is lower than 22 mol% or higher than 32 mol%. It can be kept low. In consideration of such an effect of suppressing the dislocation density, 25 to 30 mol% is preferable, and 25 to 28 mol% is more preferable.
  • the dislocations existing in the seed crystal substrate are considered to penetrate the nucleus in the vertical direction, the amount of dislocation increases when the amount of nucleus generation is large, and the amount of dislocation decreases when the amount of nucleus generation is small. For these reasons, it is considered that the dislocation density is high when the Ga concentration is less than 22 mol%, and the dislocation density is low when the Ga concentration is 22 to 32 mol%.
  • the nucleus is considered to be a truncated pyramid
  • crystal growth includes growth in a direction perpendicular to the C plane (C axis growth) and growth in a direction perpendicular to the side surface (lateral growth).
  • the lateral growth width is narrow, so the C-axis direction growth has priority over the lateral growth, and in the latter, the lateral growth is wide, so the lateral growth is promoted.
  • the dislocation density increases, but the mechanism is considered as follows. That is, when the Ga concentration exceeds 32 mol%, it is considered that the amount of nuclei generated is too small and lateral growth becomes dominant, and there is almost no growth in the C-axis direction, and a sword mountain type crystal grows. At this time, since the GaN concentration at the time of saturation is too low, the grains are separated too much from each other, so that dislocations generated from adjacent nuclei are difficult to associate with each other. As a result, the width of the grain boundary is widened, and dislocations that should have converged at the grain boundary remain without being converged, and the dislocation density is increased.
  • examples of the group 3B nitride include boron nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), and thallium nitride (TlN). preferable.
  • the seed crystal substrate for example, a sapphire substrate, a silicon carbide substrate, a silicon substrate or the like on which a thin film of the same type as the Group 3B nitride is formed may be used, or the same type as the Group 3B nitride may be used.
  • a substrate may be used.
  • the flux may be appropriately selected from various metals according to the type of the group 3B metal. For example, when the group 3B metal is gallium, an alkali metal is preferable, metal sodium or metal potassium is more preferable, and metal sodium is preferable. Further preferred.
  • the seed crystal substrate when generating a flow in a direction along the surface of the seed crystal substrate in the mixed melt, is inclined with respect to the horizontal direction in the growth vessel.
  • the lower part is higher than the upper part with respect to the temperature of the mixed melt in the growth container.
  • the mixed melt When supported, the mixed melt easily flows along the surface of the seed crystal substrate by thermal convection, so that it is easy to ensure an appropriate flow rate.
  • the seed crystal substrate may be supported at preferably 10 to 90 °, more preferably 45 to 90 °. In this way, the flow rate of the mixed melt can be increased.
  • the temperature of the mixed melt when using the thermal convection of the mixed solution, it is preferable to set the temperature of the mixed melt so that the lower portion is 1 to 8 ° C. higher than the upper portion. If the temperature is lower than 1 ° C., thermal convection does not occur so much and it is difficult to obtain the effect of increasing the grain size. If it exceeds 8 ° C., the flux is transported along the inner wall to the upper part of the growth container having a low temperature, and it becomes difficult to secure a sufficient amount of flux necessary for the growth.
  • the supersaturation degree at the gas-liquid interface is too higher than the region where the seed crystal substrate is disposed, miscellaneous crystals are likely to be generated at the gas-liquid interface, and gallium nitride is deposited on the seed crystal substrate. Since it will be inhibited, it is not preferable. Furthermore, since the gas-liquid interface is lower in temperature than the growth region, the dissolution rate of nitrogen is slow, and the growth rate is slow.
  • a partition plate that prevents gas flow between the upper and lower portions of the growth vessel, an upper heater that heats the upper portion of the growth vessel, and a lower heater that heats the lower portion of the growth vessel is provided around the growth vessel. The set temperature of the lower heater may be higher than that of the upper heater. In this way, compared to the case without a partition plate, a temperature difference is likely to occur between the upper part and the lower part of the mixed melt, and the degree of thermal convection can be easily controlled by the temperature difference of the heater.
  • FIG. 1 is an explanatory diagram showing an overall configuration of a crystal plate manufacturing apparatus 10.
  • FIG. It is explanatory drawing (sectional drawing) of the growth container 12.
  • FIG. 2 is a photograph of a fluorescence microscope image of the gallium nitride crystal of Example 1.
  • FIG. 2 is an appearance photograph of a gallium nitride crystal etched in Example 1.
  • FIG. It is a photograph which shows the expansion visual field image of an area with many etch pits and an area with few.
  • FIG. 5 is a graph in which EPD of each area of Examples 1 to 4 and Comparative Examples 1 and 2 is plotted on the vertical axis and the value of x is plotted on the horizontal axis. It is a photograph of the fluorescence microscope image of the gallium nitride crystal at the time of growing on soaking conditions without providing a temperature gradient in Example 1. It is explanatory drawing which shows the whole structure of the crystal plate manufacturing apparatus. It is explanatory drawing of the crystal growth mechanism in case Ga concentration is less than 22 mol%.
  • FIG. 6 is an explanatory diagram of a crystal growth mechanism when a Ga concentration is 22 to 32 mol%.
  • FIG. 1 is an explanatory view showing the overall configuration of the crystal plate manufacturing apparatus 10
  • FIG. 2 is an explanatory view (cross-sectional view) of the growth vessel 12.
  • the crystal plate manufacturing apparatus 10 includes a growth vessel 12, a reaction vessel 20 that houses the growth vessel 12, an electric furnace 24 in which the reaction vessel 20 is arranged, a nitrogen cylinder 42, and stainless steel. And a pressure controller 40 provided in the middle of the pipe connecting the reaction vessel 20.
  • the growth container 12 is a bottomed cylindrical alumina crucible. As shown in FIG. 2, a seed crystal substrate 18 in which a thin film 16 of the same type as the group 3B nitride is formed on the surface of the sapphire substrate 14 is disposed in the growth container 12. The seed crystal substrate 18 is arranged so that the surface has an angle with respect to the horizontal direction (that is, obliquely). Further, the growth container 12 accommodates a group 3B metal and flux. What is necessary is just to select suitably according to the kind of 3B group metal from various metals, for example, when a 3B group metal is a gallium, as a flux, an alkali metal is preferable as a flux, and metal sodium and metal potassium are more preferable. More preferably, sodium metal is used. The group 3B metal or flux becomes a mixed melt by heating.
  • the reaction vessel 20 is made of stainless steel and has an inlet pipe 22 into which nitrogen gas can be introduced.
  • the lower end of the inlet pipe 22 is located in the reaction vessel 20 and in the upper space of the growth vessel 12.
  • the upper end of the inlet pipe 22 is connected to the pressure controller 40.
  • the electric furnace 24 includes a hollow cylindrical body 26 in which the reaction vessel 20 is disposed, and an upper lid 28 and a lower lid 30 that block the upper opening and the lower opening of the cylindrical body 26, respectively.
  • the electric furnace 24 is a three-zone heater type, and is divided into three zones, an upper zone 34, an intermediate zone 35, and a lower zone 36, by two ring-shaped partition plates 32 and 33 provided on the inner wall of the cylindrical body 26. It has been.
  • An upper heater 44 is embedded in an inner wall surrounding the upper zone 34
  • an intermediate heater 45 is embedded in an inner wall surrounding the middle zone 35
  • a lower heater 46 is embedded in an inner wall surrounding the lower zone 36.
  • Each heater 44, 45, 46 is controlled so as to have a target temperature set individually in advance by a heater control device (not shown).
  • the reaction vessel 20 is accommodated so that the upper end is located in the upper zone 34 and the lower end is located in the lower zone 36.
  • the pressure controller 40 performs control so that the pressure of the nitrogen gas supplied to the reaction vessel 20 becomes a preset target pressure.
  • This crystal plate manufacturing apparatus 10 is used for manufacturing a group 3B nitride by a flux method.
  • a gallium nitride crystal plate is manufactured will be described as an example.
  • a sapphire substrate 14 having a gallium nitride thin film 16 formed on the surface thereof is prepared and placed in the growth vessel 12. At this time, the seed crystal substrate 18 is supported at an angle with respect to the horizontal direction. Further, metallic gallium is prepared as the group 3B metal and metallic sodium is prepared as the flux, and these are weighed to a desired molar ratio and accommodated in the growth vessel 12.
  • the growth vessel 12 is placed in the reaction vessel 20, the inlet pipe 22 is connected to the reaction vessel 20, and nitrogen gas is charged into the reaction vessel 20 from the nitrogen cylinder 42 via the pressure controller 40.
  • the reaction vessel 20 is accommodated from the upper zone 34 in the cylindrical body 26 of the electric furnace 24 through the middle zone 35 to the lower zone 36, and the lower lid 30 and the upper lid 28 are closed.
  • the pressure controller 40 controls the inside of the reaction vessel 20 to have a predetermined nitrogen gas pressure
  • a heater control device causes the upper heater 44, the middle heater 45, and the lower heater 46 to have predetermined target temperatures, respectively.
  • the nitrogen gas pressure is preferably set to 1 to 7 MPa, more preferably 2 to 6 MPa.
  • the average temperature of the three heaters is preferably set to 700 to 1000 ° C, more preferably set to 800 to 900 ° C.
  • the growth time of the gallium nitride crystal may be appropriately set according to the heating temperature and the pressure of the pressurized nitrogen gas, and may be set in the range of several hours to several hundred hours, for example.
  • each target temperature is set so that the temperature of the lower heater 46 is higher than that of the upper heater 44 and the middle heater 45. Due to the heat convection generated in this way, the mixed melt flows along the surface of the thin film 16 of the seed crystal substrate 18 as shown by the one-dot chain line arrow in FIG. Specifically, it is preferable to set the temperatures of the upper, middle and lower heaters 44 to 46 so that the temperature of the mixed melt is 1 to 8 ° C. higher in the lower part than in the upper part.
  • the grain size of the group 3B nitride crystal can be set to include a circle of ⁇ 1 mm.
  • the concentration of the group 3B metal in the mixed melt is preferably 22 to 32 mol% (preferably 25 to 30 mol). %, More preferably 25 to 28 mol%), the dislocation density can be kept low.
  • the order of the etch pit density (EPD) in the circle of ⁇ 1 mm described above can be suppressed to 10 4 / cm 2 or less.
  • the mixed melt flows along the surface of the seed crystal substrate 18 by thermal convection, it is not necessary to use an external power source such as a motor, and the configuration of the manufacturing apparatus is simplified.
  • the mixed melt easily flows along the surface of the seed crystal substrate 18 by thermal convection, so that it is easy to ensure an appropriate flow rate.
  • the seed crystal substrate 18 may be supported at preferably 10 to 90 °, more preferably 45 to 90 °. In this way, the flow rate of the mixed melt can be increased.
  • the partition plates 32 and 33 are provided inside the electric furnace 24, the upper part of the mixed melt in the growth vessel 12 accommodated in the reaction vessel 20 is compared with the case where these partition plates are not provided. It is easy to control the temperature difference between the upper and lower heaters, and the degree of thermal convection can be easily controlled by the temperature difference between the upper, middle and lower heaters 44 to 46.
  • thermal convection is used to generate a flow in the direction along the surface of the seed crystal substrate 18 in the mixed melt.
  • a rotary table with a shaft that is rotated by an external motor is used as the electric furnace 24.
  • the reaction vessel 20 that is provided inside and accommodates the growth vessel 12 is placed on this turntable and rotated to cause the mixed melt in the growth vessel 12 to flow in the direction along the surface of the seed crystal substrate 18. Also good.
  • a specific example is shown in FIG. Since the crystal plate manufacturing apparatus 110 of FIG. 14 is the same as the crystal plate manufacturing apparatus 10 except that the reaction vessel 20 is rotatable, only the differences from the crystal plate manufacturing apparatus 10 will be described below.
  • the reaction vessel 20 is placed on a disc-shaped turntable 50 having a rotary shaft 52 attached to the lower surface.
  • the rotating shaft 52 has an internal magnet 54 and rotates as the external magnet 56 arranged in a ring shape outside the cylindrical casing 58 is rotated by an external motor (not shown).
  • the inlet pipe 22 inserted into the reaction vessel 20 is cut in the upper zone 34. For this reason, when the rotation shaft 52 rotates, the reaction vessel 20 placed on the turntable 50 also rotates without any trouble.
  • nitrogen gas filled in the electric furnace 24 from the nitrogen cylinder 42 via the pressure controller 40 is introduced into the reaction vessel 22 from the inlet pipe 22.
  • this crystal plate manufacturing apparatus 110 By using this crystal plate manufacturing apparatus 110, a flow in the direction along the surface of the seed crystal substrate 18 can be generated in the mixed melt in the growth vessel 12.
  • a gallium nitride crystal was grown under predetermined growth conditions.
  • the growth conditions were a nitrogen pressure of 4.5 MPa and an average temperature of 875 ° C., and the growth was performed for 100 hours.
  • the set temperature of the upper heater 44 and the middle heater 45 is 865 ° C.
  • the set temperature of the lower heater 46 is 885 ° C.
  • the temperature gradient ( ⁇ T) from the upper end of the upper heater 44 to the lower end of the lower heater 46 is set to 20 ° C. did.
  • the temperature difference between the gas-liquid interface in the mixed melt in the growth vessel 12 and the bottom portion of the growth vessel was about 5 ° C.
  • the reaction vessel 20 is naturally cooled to room temperature, the reaction vessel 20 is opened, the growth vessel 12 is taken out, ethanol is introduced into the growth vessel 12, metal sodium is dissolved in ethanol, and then the grown gallium nitride crystal plate is removed. It was collected.
  • FIG. 3 A photograph of a fluorescence microscope image of the gallium nitride crystal of Example 1 is shown in FIG.
  • the photograph of the fluorescence microscope image shows the fluorescence emitted when irradiated with ultraviolet rays having a wavelength of 330 to 385 nm.
  • FIG. 3 is displayed in gray scale for the sake of convenience, the grain boundaries can be confirmed from the impurity band emission that actually shines pale, and the approximate grain size can be estimated. From FIG. 3, it was confirmed that a large gallium nitride crystal containing a circle having a grain size of at least ⁇ 1 mm was obtained.
  • the irregular shape is due to the fact that the crystal was cracked at the time of cooling after growth, and that etching was also performed from the side surface (surface perpendicular to the Ga surface) of the crystal. Further, the black groove is a trace of the crack enlarged by etching.
  • the light blue (gray for monochrome display in FIG. 4) portion is a portion with few dislocations or no dislocations where pits were not vacant even after etching.
  • etch pit density was calculated with an enlarged field of view of 100 ⁇ m square. The observed enlarged field image is shown in FIG.
  • the EPD was evaluated as follows. The differential interference image observation described above was performed, and pits (etch pits) due to dislocations were visually determined. Specifically, the EPD was calculated for each area by dividing into (1) an area where there were many etch pits, (2) an area where there were few etch pits, and (3) an area where bunching was seen. Bunching refers to a phenomenon in which a step density fluctuates due to a difference in the atomic step growth rate of each crystal surface, resulting in a macroscopically observable step.
  • the EPD was obtained by calculating the number of etch pits in each area of 100 ⁇ m square.
  • the etch pit is formed as a hexagonal pyramid pit because the center of the dislocation is etched deeper.
  • Etch pits exist with a size of several ⁇ m to several tens of ⁇ m, but this is considered to be due to the difference in size depending on the type of dislocation (from the largest to the screw dislocation, mixed dislocation, and edge dislocation). ).
  • the EPD of each area is a value obtained by dividing the total number of various etch pits by the area.
  • the EPD was set to ⁇ 10 1 / cm 2 for areas where no etch pits were confirmed, such as areas with few etch pits in Example 1. Moreover, in Example 1, the area where the bunching of said (3) was seen was not confirmed.
  • FIG. 6 in the appearance photograph of FIG. 4, an area having ⁇ 1 mm and few etch pits (an area where the EPD order is 10 4 / cm 2 or less) is indicated by a circle.
  • the gallium nitride crystal plate obtained in Example 1 is a size that encloses a circle having a grain size of ⁇ 1 mm, and the order of EPD in the circle is 10 4 / cm 2 or less.
  • the grain size is a size including a circle of ⁇ 1 mm, and the grain size tends to increase as x increases.
  • the grain size was 0.2 to 0. 0 as shown in the fluorescence microscope image of FIG. It was large enough to contain a 3mm circle.
  • the emission of impurity bands due to grain boundaries was large and the grain size was small.
  • the present invention can be used for semiconductor devices such as blue LEDs, white LEDs, and blue-violet semiconductor lasers in addition to high-frequency devices represented by power amplifiers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

A seed crystal substrate is prepared by forming a gallium nitride thin film on a surface of a sapphire substrate, and is placed inside a growing container (12). In addition, metallic gallium and metallic sodium are weighed out such that their molar ratio is 25‑32:68‑75 and are placed inside the growing container (12). The growing container (12) is placed inside a reaction container (20), an inlet pipe (22) is connected to the reaction container (20), and the reaction container (20) is filled with nitrogen gas from a nitrogen gas tank (42) via a pressure regulator (40). Then the system is regulated until a specific nitrogen gas pressure is achieved inside the reaction container (20), and target temperatures are set such that the temperature of a lower heater (46) is higher than that of an upper heater (44), and a gallium nitride crystal is grown. As a result, a flow in the molten mixture inside the growing container (12) is created in the direction along the surface of the seed crystal substrate due to thermal convection.

Description

3B族窒化物結晶の製法Method for producing group 3B nitride crystals
 本発明は、窒化ガリウムなどの3B族窒化物結晶の製法に関する。 The present invention relates to a method for producing a group 3B nitride crystal such as gallium nitride.
 近年、窒化ガリウムなどの3B族窒化物を用いて青色LEDや白色LED、青紫色半導体レーザなどの半導体デバイスを作製し、その半導体デバイスを各種電子機器へ応用することが活発に研究されている。従来の窒化ガリウム系半導体デバイスは、主に気相法により作製されている。具体的には、サファイア基板やシリコンカーバイド基板の上に窒化ガリウムの薄膜を有機金属気相成長法(MOVPE)などによりヘテロエピタキシャル成長させて作製される。この場合、基板と窒化ガリウムの薄膜との熱膨張係数や格子定数が大きく異なるため、高密度の転位(結晶における格子欠陥の一種)が窒化ガリウムに生じる。このため、気相法では、転位密度の低い高品質な窒化ガリウムを得ることが難しかった。一方、気相法のほかに、液相法も開発されている。フラックス法は、液相法の一つであり、窒化ガリウムの場合、フラックスとして金属ナトリウムを用いることで窒化ガリウムの結晶成長に必要な温度を800℃程度、圧力を数MPa~数100MPaに緩和することができる。具体的には、金属ナトリウムと金属ガリウムとの混合融液中に窒素ガスが溶解し、窒化ガリウムが過飽和状態になって結晶として成長する。こうした液相法では、気相法に比べて転位が発生しにくいため、転位密度の低い高品質な窒化ガリウムを得ることができる。 In recent years, it has been actively researched to produce semiconductor devices such as blue LEDs, white LEDs, blue-violet semiconductor lasers using 3B group nitrides such as gallium nitride and to apply the semiconductor devices to various electronic devices. Conventional gallium nitride-based semiconductor devices are mainly manufactured by a vapor phase method. Specifically, a gallium nitride thin film is heteroepitaxially grown on a sapphire substrate or silicon carbide substrate by metal organic vapor phase epitaxy (MOVPE) or the like. In this case, since the thermal expansion coefficient and the lattice constant of the substrate and the gallium nitride thin film are greatly different, high-density dislocations (a kind of lattice defects in the crystal) are generated in the gallium nitride. For this reason, it has been difficult to obtain high-quality gallium nitride having a low dislocation density by the vapor phase method. On the other hand, in addition to the gas phase method, a liquid phase method has also been developed. The flux method is one of the liquid phase methods. In the case of gallium nitride, the temperature required for crystal growth of gallium nitride is reduced to about 800 ° C. and the pressure is reduced to several MPa to several hundred MPa by using metallic sodium as the flux. be able to. Specifically, nitrogen gas is dissolved in a mixed melt of metallic sodium and metallic gallium, and gallium nitride becomes supersaturated and grows as crystals. In such a liquid phase method, dislocations are less likely to occur than in a gas phase method, so that high-quality gallium nitride having a low dislocation density can be obtained.
 こうしたフラックス法に関する研究開発も盛んに行われている。例えば、特許文献1には、結晶成長速度や半導体結晶の結晶性・均一性を向上させることを目的とする3B族窒化物結晶の製法が開示されている。具体的には、金属ナトリウムと金属ガリウムとの混合融液中に種結晶基板を斜めに立てかけるか真っ直ぐに立てて配置し、窒化ガリウムを種結晶基板上に結晶成長させる方法が開示されている。この方法によれば、混合融液は熱対流により結晶成長面に沿って流れるため、結晶成長面の各部に混合融液が十分かつ均一に供給される。 Research and development related to the flux method is also actively conducted. For example, Patent Document 1 discloses a method for producing a group 3B nitride crystal for the purpose of improving the crystal growth rate and the crystallinity / uniformity of a semiconductor crystal. Specifically, a method of crystal growth of gallium nitride on a seed crystal substrate by disposing a seed crystal substrate diagonally or straightly in a mixed melt of metal sodium and metal gallium is disclosed. According to this method, since the mixed melt flows along the crystal growth surface by thermal convection, the mixed melt is sufficiently and uniformly supplied to each part of the crystal growth surface.
特開2008-290929(例えば段落0009)JP 2008-290929 (for example, paragraph 0009)
 しかしながら、特許文献1の製法によれば、グレインサイズ(粒界によって囲まれた面積)の大きな窒化ガリウム結晶が得られるものの、転位密度の低いエリア、例えばエッチピット密度(Etch pit density,EPD)のオーダーが104/cm2以下のエリアが存在しないことがあった。転位密度が高い窒化ガリウム結晶は、例えば高電圧が印加される電力制御デバイスに利用する場合、厚さ方向に貫通する孔が存在していることが多く、その孔を介してリーク電流が流れるおそれがあるため高電圧を印加できないという問題があった。一方、転位密度が低い窒化ガリウム結晶が存在したとしても、グレインサイズが小さければ粒界を介してリーク電流が流れるおそれがあるため、やはり高電圧を印加できないという問題があった。 However, according to the manufacturing method of Patent Document 1, although a gallium nitride crystal having a large grain size (area surrounded by grain boundaries) can be obtained, an area having a low dislocation density, such as an etch pit density (EPD), is obtained. An area with an order of 10 4 / cm 2 or less may not exist. When a gallium nitride crystal having a high dislocation density is used, for example, in a power control device to which a high voltage is applied, there are many holes penetrating in the thickness direction, and leakage current may flow through the holes. Therefore, there is a problem that a high voltage cannot be applied. On the other hand, even if a gallium nitride crystal having a low dislocation density is present, there is a possibility that a leakage current may flow through the grain boundary if the grain size is small, so that a high voltage cannot be applied.
 本発明は、グレインサイズが大きく且つ転位密度の小さい3B族窒化物結晶を提供することを主目的とする。 The main object of the present invention is to provide a group 3B nitride crystal having a large grain size and a low dislocation density.
 本発明者らは、育成容器内の混合融液の流れの方向と混合融液中の金属ガリウムの濃度とがグレインサイズや転位密度に影響を与えることを見いだし、本発明を完成するに至った。 The present inventors have found that the flow direction of the mixed melt in the growth vessel and the concentration of metal gallium in the mixed melt affect the grain size and the dislocation density, and have completed the present invention. .
 すなわち、本発明の3B族窒化物結晶の製法は、育成容器内にて3B族金属の濃度が22~32mol%の混合融液に種結晶基板を浸漬し、該種結晶基板の表面に沿った方向の流れを混合融液に発生させながら前記育成容器に窒素ガスを供給することにより種結晶基板上に3B族窒化物を結晶化させるものである。 That is, in the method for producing a Group 3B nitride crystal of the present invention, a seed crystal substrate is immersed in a mixed melt having a concentration of Group 3B metal of 22 to 32 mol% in a growth vessel, and the surface of the seed crystal substrate is aligned. The group 3B nitride is crystallized on the seed crystal substrate by supplying nitrogen gas to the growth vessel while generating a flow in the direction of the mixed melt.
 本発明の3B族窒化物結晶の製法によれば、3B族窒化物の結晶を成長させる際に、種結晶基板の表面に沿った方向の流れを混合融液に発生させながら育成容器に窒素ガスを供給するため、グレインサイズが大きくなりやすい。具体的には、3B族窒化物結晶のグレインサイズをφ1mmの円を内包する大きさにすることができる。その理由は明らかではないが、一般に結晶は種結晶基板の表面の法線方向に沿って成長しやすいため、混合融液が静止していれば、種結晶基板の表面の複数箇所で結晶化が進み、最終的には多数の結晶同士の境界が粒界になり、グレインサイズが大きくならないと考えられる。これに対して、混合融液が種結晶基板の表面に沿った方向に流れていれば、その表面の法線方向に沿った成長が抑制されると共にその表面と平行方向の成長が促進されるため、結晶が大きくなりやすく、グレインサイズが大きくなったと考えられる。 According to the method for producing a group 3B nitride crystal of the present invention, when growing a group 3B nitride crystal, a nitrogen gas is supplied to the growth vessel while generating a flow in a direction along the surface of the seed crystal substrate in the mixed melt. Grain size tends to increase. Specifically, the grain size of the group 3B nitride crystal can be set to include a circle of φ1 mm. The reason for this is not clear, but crystals generally grow easily along the normal direction of the surface of the seed crystal substrate, so if the mixed melt is stationary, crystallization occurs at multiple locations on the surface of the seed crystal substrate. It is considered that the boundaries between many crystals eventually become grain boundaries and the grain size does not increase. On the other hand, if the mixed melt flows in a direction along the surface of the seed crystal substrate, growth along the normal direction of the surface is suppressed and growth in a direction parallel to the surface is promoted. Therefore, it is considered that the crystal tends to be large and the grain size is large.
 また、このような流れが発生している混合融液を用いると、通常は転位密度が高くなりがちだが、その混合融液中の3B族金属の濃度を22~32mol%に設定することにより、転位密度を低く抑えることができる。具体的には、上述したφ1mmの円内のエッチピット密度(EPD)のオーダーを104/cm2以下に抑えることができる。その理由は明らかではないが、後述する実施例によれば、3B族金属の濃度が22mol%を下回ったり32mol%を上回ったりすると転位密度が高くなるが、22~32mol%の範囲では転位密度を低く抑えることができる。また、こうした転位密度を低く抑える効果を考慮すれば、25~30mol%が好ましく、25~28mol%がより好ましい。 Further, when a mixed melt in which such a flow is generated is used, the dislocation density usually tends to be high, but by setting the concentration of the group 3B metal in the mixed melt to 22 to 32 mol%, The dislocation density can be kept low. Specifically, the order of the etch pit density (EPD) in the circle of φ1 mm described above can be suppressed to 10 4 / cm 2 or less. The reason for this is not clear, but according to the examples described later, the dislocation density increases when the concentration of the group 3B metal is lower than 22 mol% or higher than 32 mol%. It can be kept low. In consideration of such an effect of suppressing the dislocation density, 25 to 30 mol% is preferable, and 25 to 28 mol% is more preferable.
 本発明の3B族窒化物結晶の製法において、転位密度が減少すると共にグレインサイズも大きくなったメカニズムを、図15及び図16を参照しながら以下に説明する。なお、以下のメカニズムは後述する実施例及び比較例の結果に基づく推論である。また、混合融液は、ナトリウムフラックス中に3B族金属であるGaを溶融させたものを用いた場合を例に挙げて説明する。 In the method for producing a group 3B nitride crystal of the present invention, a mechanism in which the dislocation density decreases and the grain size increases will be described below with reference to FIGS. The following mechanism is inference based on the results of Examples and Comparative Examples described later. The mixed melt will be described by taking as an example a case where a sodium flux obtained by melting Ga which is a group 3B metal is used.
 第1に、Ga濃度が22mol%未満の場合とGa濃度が22~32mol%の場合とを比較すると、前者では、フラックス中のGaが少ない分、N2が溶けやすいため、飽和時のGaN濃度が高くなり(図15(a)参照)、その結果、種結晶基板上における結晶成長の起点となる核の発生量が多くなる(図15(b)参照)のに対して、後者では、フラックス中のGaが多い分、N2が溶けにくいため、飽和時のGaN濃度が低くなり(図16(a)参照)、その結果、核の発生量が少なくなる(図16(b)参照)と考えられる。ここで、種結晶基板に存在する転位は核を上下方向に貫通すると考えられることから、核の発生量が多いと転位量が多くなり、核の発生量が少ないと転位量が少なくなる。こうしたことから、Ga濃度が22mol%未満の場合には転位密度が高く、22~32mol%の場合には転位密度が低くなったと考えられる。 First, comparing the case where the Ga concentration is less than 22 mol% and the case where the Ga concentration is 22 to 32 mol%, since the former is less soluble in N 2 due to less Ga in the flux, the GaN concentration at saturation (See FIG. 15 (a)), and as a result, the generation amount of nuclei as a starting point of crystal growth on the seed crystal substrate increases (see FIG. 15 (b)), whereas in the latter, the flux Since N 2 is difficult to dissolve due to the large amount of Ga in the interior, the GaN concentration at the time of saturation is low (see FIG. 16A), and as a result, the generation amount of nuclei is reduced (see FIG. 16B). Conceivable. Here, since the dislocations existing in the seed crystal substrate are considered to penetrate the nucleus in the vertical direction, the amount of dislocation increases when the amount of nucleus generation is large, and the amount of dislocation decreases when the amount of nucleus generation is small. For these reasons, it is considered that the dislocation density is high when the Ga concentration is less than 22 mol%, and the dislocation density is low when the Ga concentration is 22 to 32 mol%.
 第2に、Ga濃度が22mol%未満の場合と、Ga濃度が22~32mol%の場合とを比較すると、前者では、核の発生量が多いため隣り合う核同士の間隔が狭い(図15(b)参照)のに対して、後者では、その間隔が広い(図16(b)参照)と考えられる。核は角錐台と考えられるため、結晶成長にはC面に垂直な方向への成長(C軸成長)と側面に垂直な方向への成長(横方向成長)とが存在することになるが、前者では横方向に成長する幅が狭いため横方向成長に比べてC軸方向成長が優先し、後者では横方向に成長する幅が広いため横方向成長が促進される。横方向成長が促進されると、隣り合う核から発生した転位同士がぶつかり、そこがグレインサイズの端(つまり粒界)になると共にそこに転位の多くが集まって収束する。こうしたことから、Ga濃度が22mol%未満の場合には転位密度が高くなると共にグレインサイズが小さくなり(図15(c)参照)、22~32mol%の場合には転位密度が低くなると共にグレインサイズが大きくなった(図16(c)参照)と考えられる。 Second, comparing the case where the Ga concentration is less than 22 mol% and the case where the Ga concentration is 22 to 32 mol%, in the former, the amount of nuclei generated is large, so the interval between adjacent nuclei is narrow (FIG. 15 ( b)), the latter is considered to have a wide interval (see FIG. 16B). Since the nucleus is considered to be a truncated pyramid, crystal growth includes growth in a direction perpendicular to the C plane (C axis growth) and growth in a direction perpendicular to the side surface (lateral growth). In the former, the lateral growth width is narrow, so the C-axis direction growth has priority over the lateral growth, and in the latter, the lateral growth is wide, so the lateral growth is promoted. When the lateral growth is promoted, dislocations generated from adjacent nuclei collide with each other and become a grain-sized end (that is, a grain boundary), and many of the dislocations gather and converge there. Therefore, when the Ga concentration is less than 22 mol%, the dislocation density increases and the grain size decreases (see FIG. 15C), and when 22 to 32 mol%, the dislocation density decreases and the grain size decreases. (See FIG. 16C).
 なお、Ga濃度が32mol%を超えると、転位密度が高くなるが、そのメカニズムは次のようなものと考えられる。すなわち、Ga濃度が32mol%を超えると、核の発生量が少なすぎて横方向成長が支配的となり、C軸方向の成長がほとんどなくなって剣山型の結晶が成長すると考えられる。このとき、飽和時のGaN濃度が低すぎるため、グレインとグレインとの間が離れすぎて隣り合う核から発生した転位同士が会合しづらくなる。その結果、粒界の幅が広がってしまい、本来粒界で収束するはずの転位が収束せずにそのまま残り、転位密度が高くなったと考えられる。 Note that when the Ga concentration exceeds 32 mol%, the dislocation density increases, but the mechanism is considered as follows. That is, when the Ga concentration exceeds 32 mol%, it is considered that the amount of nuclei generated is too small and lateral growth becomes dominant, and there is almost no growth in the C-axis direction, and a sword mountain type crystal grows. At this time, since the GaN concentration at the time of saturation is too low, the grains are separated too much from each other, so that dislocations generated from adjacent nuclei are difficult to associate with each other. As a result, the width of the grain boundary is widened, and dislocations that should have converged at the grain boundary remain without being converged, and the dislocation density is increased.
 ここで、3B族窒化物としては、窒化ホウ素(BN)、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化タリウム(TlN)などが挙げられるが、このうち窒化ガリウムが好ましい。種結晶基板としては、例えば、サファイア基板やシリコンカーバイド基板、シリコン基板などの表面に3B族窒化物と同じ種類の薄膜が形成されたものを用いてもよいし、3B族窒化物と同じ種類の基板を用いてもよい。フラックスとしては、各種金属の中から3B族金属の種類に応じて適宜選択すればよく、例えば3B族金属がガリウムの場合にはアルカリ金属が好ましく、金属ナトリウムや金属カリウムがより好ましく、金属ナトリウムが更に好ましい。 Here, examples of the group 3B nitride include boron nitride (BN), aluminum nitride (AlN), gallium nitride (GaN), indium nitride (InN), and thallium nitride (TlN). preferable. As the seed crystal substrate, for example, a sapphire substrate, a silicon carbide substrate, a silicon substrate or the like on which a thin film of the same type as the Group 3B nitride is formed may be used, or the same type as the Group 3B nitride may be used. A substrate may be used. The flux may be appropriately selected from various metals according to the type of the group 3B metal. For example, when the group 3B metal is gallium, an alkali metal is preferable, metal sodium or metal potassium is more preferable, and metal sodium is preferable. Further preferred.
 本発明の3B族窒化物結晶の製法において、前記種結晶基板の表面に沿った方向の流れを混合融液に発生させるにあたり、前記育成容器内で前記種結晶基板を水平方向に対して角度を持つように支持し、前記育成容器の混合融液の温度につき、上部に比べて下部の方が高くなるようにすることが好ましい。こうすれば、熱対流により混合融液が種結晶基板の表面に沿って流れるため、モーターなどの外部動力源を用いる必要がない。したがって、製造装置の構成が簡素化される。また、種結晶基板を水平に置いた場合でも混合融液は熱対流により種結晶基板の表面に沿って横方向に流れることがあるが、種結晶基板を水平方向に対して角度を持つように支持した場合には、混合融液は熱対流により種結晶基板の表面に沿って流れやすくなるため適度な流速を確保しやすい。このとき、種結晶基板を好ましくは10~90°、より好ましくは45~90°で支持してもよい。こうすれば、混合融液の流速を大きくすることができる。 In the method for producing a group 3B nitride crystal of the present invention, when generating a flow in a direction along the surface of the seed crystal substrate in the mixed melt, the seed crystal substrate is inclined with respect to the horizontal direction in the growth vessel. Preferably, the lower part is higher than the upper part with respect to the temperature of the mixed melt in the growth container. By doing so, the mixed melt flows along the surface of the seed crystal substrate by thermal convection, so there is no need to use an external power source such as a motor. Therefore, the configuration of the manufacturing apparatus is simplified. Also, even when the seed crystal substrate is placed horizontally, the mixed melt may flow laterally along the surface of the seed crystal substrate due to thermal convection, but the seed crystal substrate should have an angle with respect to the horizontal direction. When supported, the mixed melt easily flows along the surface of the seed crystal substrate by thermal convection, so that it is easy to ensure an appropriate flow rate. At this time, the seed crystal substrate may be supported at preferably 10 to 90 °, more preferably 45 to 90 °. In this way, the flow rate of the mixed melt can be increased.
 このように混合溶液の熱対流を利用する場合には、混合融液の温度につき、上部に比べて下部の方が1~8℃高くなるように設定するのが好ましい。1℃を下回ると熱対流があまり生じず、グレインサイズを大きくする効果が得にくくなるため好ましくない。8℃を上回ると温度の低い育成容器の上部にフラックスが内壁を伝って輸送されてしまい、育成に必要な十分量のフラックスを確保しにくくなるため好ましくない。また、気液界面の過飽和度が、種結晶基板が配置されている領域よりも高くなりすぎるために、気液界面で雑晶が発生しやすくなり、種結晶基板上への窒化ガリウムの析出が阻害されてしまうため好ましくない。さらに、気液界面が育成領域よりも低温となるために、窒素の溶解速度が遅くなり、育成速度が遅くなるために好ましくない。また、育成容器の周囲に、該育成容器の上部と下部との気体の流通を妨げる仕切り板と、育成容器の上部を加熱する上ヒーターと、育成容器の下部を加熱する下ヒーターとを設けられ、上ヒーターに比べて下ヒーターの設定温度を高温にしてもよい。こうすれば、仕切り板のない場合に比べて、混合融液の上部と下部とで温度差がつきやすく、ヒーターの温度差によって熱対流の発生度合いを制御しやすい。 Thus, when using the thermal convection of the mixed solution, it is preferable to set the temperature of the mixed melt so that the lower portion is 1 to 8 ° C. higher than the upper portion. If the temperature is lower than 1 ° C., thermal convection does not occur so much and it is difficult to obtain the effect of increasing the grain size. If it exceeds 8 ° C., the flux is transported along the inner wall to the upper part of the growth container having a low temperature, and it becomes difficult to secure a sufficient amount of flux necessary for the growth. In addition, since the supersaturation degree at the gas-liquid interface is too higher than the region where the seed crystal substrate is disposed, miscellaneous crystals are likely to be generated at the gas-liquid interface, and gallium nitride is deposited on the seed crystal substrate. Since it will be inhibited, it is not preferable. Furthermore, since the gas-liquid interface is lower in temperature than the growth region, the dissolution rate of nitrogen is slow, and the growth rate is slow. In addition, a partition plate that prevents gas flow between the upper and lower portions of the growth vessel, an upper heater that heats the upper portion of the growth vessel, and a lower heater that heats the lower portion of the growth vessel is provided around the growth vessel. The set temperature of the lower heater may be higher than that of the upper heater. In this way, compared to the case without a partition plate, a temperature difference is likely to occur between the upper part and the lower part of the mixed melt, and the degree of thermal convection can be easily controlled by the temperature difference of the heater.
結晶板製造装置10の全体の構成を示す説明図である。1 is an explanatory diagram showing an overall configuration of a crystal plate manufacturing apparatus 10. FIG. 育成容器12の説明図(断面図)である。It is explanatory drawing (sectional drawing) of the growth container 12. FIG. 実施例1の窒化ガリウム結晶の蛍光顕微鏡像の写真である。2 is a photograph of a fluorescence microscope image of the gallium nitride crystal of Example 1. FIG. 実施例1でエッチングした窒化ガリウム結晶の外観写真である。2 is an appearance photograph of a gallium nitride crystal etched in Example 1. FIG. エッチピットが多いエリアと少ないエリアの拡大視野像を示す写真である。It is a photograph which shows the expansion visual field image of an area with many etch pits and an area with few. 実施例1でエッチングした窒化ガリウム結晶の外観写真であって、φ1mmでエッチピットが少ないエリアを円で示したものである。It is an external appearance photograph of the gallium nitride crystal etched in Example 1, Comprising: The area with few etch pits is shown by a circle with φ1 mm. 実施例2のエッチピットの多いエリア、少ないエリア及びバンチングの見られるエリアの拡大視野像の写真である。It is a photograph of the enlarged visual field image of an area with many etch pits of Example 2, a small area, and an area where bunching is seen. 実施例3のエッチピットの多いエリア、少ないエリア及びバンチングの見られるエリアの拡大視野像の写真である。It is a photograph of the enlarged visual field image of an area with many etch pits of Example 3, a small area, and an area where bunching is seen. 実施例4のエッチピットの多いエリア、少ないエリア及びバンチングの見られるエリアの拡大視野像の写真である。It is a photograph of the enlarged visual field image of an area with many etch pits of Example 4, an area with few, and a bunching. 比較例1のバンチングが見られるエリア及びエッチピットの多いエリアの拡大視野像の写真である。It is a photograph of the enlarged visual field image of the area where a bunching of comparative example 1 is seen, and an area with many etch pits. 比較例2のバンチングが見られるエリア及びエッチピットの多いエリアの拡大視野像の写真である。It is a photograph of the enlarged visual field image of the area where a bunching of comparative example 2 is seen, and an area with many etch pits. 実施例1~4及び比較例1,2の各エリアのEPDを縦軸に、xの値を横軸にプロットしたグラフである。5 is a graph in which EPD of each area of Examples 1 to 4 and Comparative Examples 1 and 2 is plotted on the vertical axis and the value of x is plotted on the horizontal axis. 実施例1で温度勾配を設けず均熱条件で育成した場合の窒化ガリウム結晶の蛍光顕微鏡像の写真である。It is a photograph of the fluorescence microscope image of the gallium nitride crystal at the time of growing on soaking conditions without providing a temperature gradient in Example 1. 結晶板製造装置110の全体の構成を示す説明図である。It is explanatory drawing which shows the whole structure of the crystal plate manufacturing apparatus. Ga濃度が22mol%未満の場合の結晶成長メカニズムの説明図である。It is explanatory drawing of the crystal growth mechanism in case Ga concentration is less than 22 mol%. Ga濃度が22~32mol%の場合の結晶成長メカニズムの説明図である。FIG. 6 is an explanatory diagram of a crystal growth mechanism when a Ga concentration is 22 to 32 mol%.
 本発明の3B族窒化物結晶の製法を実施するための好適な装置について、図1及び図2を用いて以下に説明する。図1は結晶板製造装置10の全体構成を示す説明図、図2は育成容器12の説明図(断面図)である。 A suitable apparatus for carrying out the method for producing a group 3B nitride crystal of the present invention will be described below with reference to FIGS. FIG. 1 is an explanatory view showing the overall configuration of the crystal plate manufacturing apparatus 10, and FIG. 2 is an explanatory view (cross-sectional view) of the growth vessel 12.
 結晶板製造装置10は、図1に示すように、育成容器12と、この育成容器12を収納する反応容器20と、この反応容器20が配置される電気炉24と、窒素ボンベ42とステンレス製の反応容器20とを接続する配管の途中に設けられた圧力制御器40とを備えている。 As shown in FIG. 1, the crystal plate manufacturing apparatus 10 includes a growth vessel 12, a reaction vessel 20 that houses the growth vessel 12, an electric furnace 24 in which the reaction vessel 20 is arranged, a nitrogen cylinder 42, and stainless steel. And a pressure controller 40 provided in the middle of the pipe connecting the reaction vessel 20.
 育成容器12は、有底筒状でアルミナ製の坩堝である。この育成容器12には、図2に示すように、サファイア基板14の表面に3B族窒化物と同じ種類の薄膜16が形成された種結晶基板18が配置される。種結晶基板18は、表面が水平方向に対して角度を持つように(つまり斜めに)配置される。また、育成容器12には、3B族金属やフラックスが収容される。フラックスとしては、各種金属の中から3B族金属の種類に応じて適宜選択すればよく、例えば3B族金属がガリウムの場合には、フラックスとしてはアルカリ金属が好ましく、金属ナトリウムや金属カリウムがより好ましく、金属ナトリウムが更に好ましい。3B族金属やフラックスは加熱することにより混合融液となる。 The growth container 12 is a bottomed cylindrical alumina crucible. As shown in FIG. 2, a seed crystal substrate 18 in which a thin film 16 of the same type as the group 3B nitride is formed on the surface of the sapphire substrate 14 is disposed in the growth container 12. The seed crystal substrate 18 is arranged so that the surface has an angle with respect to the horizontal direction (that is, obliquely). Further, the growth container 12 accommodates a group 3B metal and flux. What is necessary is just to select suitably according to the kind of 3B group metal from various metals, for example, when a 3B group metal is a gallium, as a flux, an alkali metal is preferable as a flux, and metal sodium and metal potassium are more preferable. More preferably, sodium metal is used. The group 3B metal or flux becomes a mixed melt by heating.
 反応容器20は、ステンレス製であり、上部に窒素ガスを導入可能なインレットパイプ22が挿入されている。このインレットパイプ22の下端は、反応容器20内であって育成容器12の上方空間に位置している。また、インレットパイプ22の上端は、圧力制御器40に接続されている。 The reaction vessel 20 is made of stainless steel and has an inlet pipe 22 into which nitrogen gas can be introduced. The lower end of the inlet pipe 22 is located in the reaction vessel 20 and in the upper space of the growth vessel 12. The upper end of the inlet pipe 22 is connected to the pressure controller 40.
 電気炉24は、内部に反応容器20が配置される中空の円筒体26と、この円筒体26の上部開口及び下部開口をそれぞれ塞ぐ上蓋28及び下蓋30とを備えている。この電気炉24は、3ゾーンヒーター式であり、円筒体26の内壁に設けられたリング状の2つの仕切り板32,33により、上ゾーン34、中ゾーン35、下ゾーン36の3つに分けられている。また、上ゾーン34を取り囲む内壁には上ヒーター44が埋設され、中ゾーン35を取り囲む内壁には中ヒーター45が埋設され、下ゾーン36を取り囲む内壁には下ヒーター46が埋設されている。各ヒーター44,45,46は、図示しないヒーター制御装置により予め個別に設定された目標温度となるように制御される。なお、反応容器20は、上端が上ゾーン34、下端が下ゾーン36に位置するように収容される。 The electric furnace 24 includes a hollow cylindrical body 26 in which the reaction vessel 20 is disposed, and an upper lid 28 and a lower lid 30 that block the upper opening and the lower opening of the cylindrical body 26, respectively. The electric furnace 24 is a three-zone heater type, and is divided into three zones, an upper zone 34, an intermediate zone 35, and a lower zone 36, by two ring-shaped partition plates 32 and 33 provided on the inner wall of the cylindrical body 26. It has been. An upper heater 44 is embedded in an inner wall surrounding the upper zone 34, an intermediate heater 45 is embedded in an inner wall surrounding the middle zone 35, and a lower heater 46 is embedded in an inner wall surrounding the lower zone 36. Each heater 44, 45, 46 is controlled so as to have a target temperature set individually in advance by a heater control device (not shown). The reaction vessel 20 is accommodated so that the upper end is located in the upper zone 34 and the lower end is located in the lower zone 36.
 圧力制御器40は、反応容器20へ供給する窒素ガスの圧力が予め設定された目標圧力になるように制御する。 The pressure controller 40 performs control so that the pressure of the nitrogen gas supplied to the reaction vessel 20 becomes a preset target pressure.
 このようにして構成された本実施形態の結晶板製造装置10の使用例について説明する。この結晶板製造装置10は、フラックス法により3B族窒化物を製造するのに用いられる。以下には、窒化ガリウム結晶板を製造する場合を例に挙げて説明する。 A usage example of the crystal plate manufacturing apparatus 10 of the present embodiment configured as described above will be described. This crystal plate manufacturing apparatus 10 is used for manufacturing a group 3B nitride by a flux method. Hereinafter, a case where a gallium nitride crystal plate is manufactured will be described as an example.
 まず、種結晶基板18として、サファイア基板14の表面に窒化ガリウムの薄膜16が形成されたものを用意し、育成容器12に入れる。このとき、種結晶基板18を水平方向に対して角度を持つように支持する。また、3B族金属としては金属ガリウム、フラックスとしては金属ナトリウムを用意し、それらを所望のモル比となるように秤量し育成容器12に収容する。この育成容器12を反応容器20に入れ、インレットパイプ22を反応容器20に接続し、窒素ボンベ42から圧力制御器40を介して窒素ガスを反応容器20に充填する。この反応容器20を電気炉24の円筒体26内の上ゾーン34から中ゾーン35を経て下ゾーン36に至るように収容し、下蓋30及び上蓋28を閉じる。そして、圧力制御器40により反応容器20内が所定の窒素ガス圧となるように制御し、図示しないヒーター制御装置により上ヒーター44,中ヒーター45,下ヒーター46をそれぞれ所定の目標温度となるように制御し、窒化ガリウムの結晶を成長させる。窒素ガス圧は、1~7MPaに設定するのが好ましく、2~6MPaに設定するのがより好ましい。また、3つのヒーターの平均温度は700~1000℃に設定するのが好ましく、800~900℃に設定するのがより好ましい。窒化ガリウム結晶の成長時間は、加熱温度や加圧窒素ガスの圧力に応じて適宜設定すればよく、例えば数時間~数100時間の範囲で設定すればよい。 First, as the seed crystal substrate 18, a sapphire substrate 14 having a gallium nitride thin film 16 formed on the surface thereof is prepared and placed in the growth vessel 12. At this time, the seed crystal substrate 18 is supported at an angle with respect to the horizontal direction. Further, metallic gallium is prepared as the group 3B metal and metallic sodium is prepared as the flux, and these are weighed to a desired molar ratio and accommodated in the growth vessel 12. The growth vessel 12 is placed in the reaction vessel 20, the inlet pipe 22 is connected to the reaction vessel 20, and nitrogen gas is charged into the reaction vessel 20 from the nitrogen cylinder 42 via the pressure controller 40. The reaction vessel 20 is accommodated from the upper zone 34 in the cylindrical body 26 of the electric furnace 24 through the middle zone 35 to the lower zone 36, and the lower lid 30 and the upper lid 28 are closed. The pressure controller 40 controls the inside of the reaction vessel 20 to have a predetermined nitrogen gas pressure, and a heater control device (not shown) causes the upper heater 44, the middle heater 45, and the lower heater 46 to have predetermined target temperatures, respectively. To grow a gallium nitride crystal. The nitrogen gas pressure is preferably set to 1 to 7 MPa, more preferably 2 to 6 MPa. The average temperature of the three heaters is preferably set to 700 to 1000 ° C, more preferably set to 800 to 900 ° C. The growth time of the gallium nitride crystal may be appropriately set according to the heating temperature and the pressure of the pressurized nitrogen gas, and may be set in the range of several hours to several hundred hours, for example.
 本実施形態では、育成容器12内の混合融液に熱対流を発生させるため、上ヒーター44及び中ヒーター45に比べて下ヒーター46の温度が高くなるように各目標温度を設定する。このようにして発生した熱対流により、図2の一点鎖線の矢印で示すように、混合融液は種結晶基板18の薄膜16の表面に沿って流れる。具体的には、混合融液の温度につき、上部に比べて下部の方が1~8℃高くなるように、上、中、下ヒーター44~46の温度を設定するのが好ましい。 In this embodiment, in order to generate heat convection in the mixed melt in the growth vessel 12, each target temperature is set so that the temperature of the lower heater 46 is higher than that of the upper heater 44 and the middle heater 45. Due to the heat convection generated in this way, the mixed melt flows along the surface of the thin film 16 of the seed crystal substrate 18 as shown by the one-dot chain line arrow in FIG. Specifically, it is preferable to set the temperatures of the upper, middle and lower heaters 44 to 46 so that the temperature of the mixed melt is 1 to 8 ° C. higher in the lower part than in the upper part.
 以上詳述した本実施形態によれば、3B族窒化物の結晶を成長させる際に、種結晶基板18の表面に沿った方向の流れを混合融液に発生させながら育成容器12に窒素ガスを供給するため、グレインサイズが大きくなりやすい。具体的には、3B族窒化物結晶のグレインサイズをφ1mmの円を内包する大きさにすることができる。また、このような流れが発生している混合融液を用いると、通常は転位密度が高くなりがちだが、その混合融液中の3B族金属の濃度を22~32mol%(好ましくは25~30mol%、より好ましくは25~28mol%)に設定することにより、転位密度を低く抑えることができる。具体的には、上述したφ1mmの円内のエッチピット密度(EPD)のオーダーを104/cm2以下に抑えることができる。 According to this embodiment described in detail above, when growing a group 3B nitride crystal, nitrogen gas is supplied to the growth vessel 12 while generating a flow in the direction along the surface of the seed crystal substrate 18 in the mixed melt. The grain size tends to increase because of the supply. Specifically, the grain size of the group 3B nitride crystal can be set to include a circle of φ1 mm. Further, when a mixed melt in which such a flow is generated is used, the dislocation density tends to be high, but the concentration of the group 3B metal in the mixed melt is preferably 22 to 32 mol% (preferably 25 to 30 mol). %, More preferably 25 to 28 mol%), the dislocation density can be kept low. Specifically, the order of the etch pit density (EPD) in the circle of φ1 mm described above can be suppressed to 10 4 / cm 2 or less.
 また、熱対流により混合融液が種結晶基板18の表面に沿って流れるため、モーターなどの外部動力源を用いる必要がなく、製造装置の構成が簡素化される。 Further, since the mixed melt flows along the surface of the seed crystal substrate 18 by thermal convection, it is not necessary to use an external power source such as a motor, and the configuration of the manufacturing apparatus is simplified.
 更に、種結晶基板18を水平方向に対して角度を持つように支持したため、混合融液は熱対流により種結晶基板18の表面に沿って流れやすくなるため適度な流速を確保しやすい。このとき、種結晶基板18を好ましくは10~90°、より好ましくは45~90°で支持してもよい。こうすれば、混合融液の流速を大きくすることができる。 Furthermore, since the seed crystal substrate 18 is supported so as to have an angle with respect to the horizontal direction, the mixed melt easily flows along the surface of the seed crystal substrate 18 by thermal convection, so that it is easy to ensure an appropriate flow rate. At this time, the seed crystal substrate 18 may be supported at preferably 10 to 90 °, more preferably 45 to 90 °. In this way, the flow rate of the mixed melt can be increased.
 更にまた、電気炉24の内部には仕切り板32,33が設けられているため、これらの仕切り板のない場合に比べて、反応容器20に収納された育成容器12内の混合融液の上部と下部とで温度差がつきやすく、上、中、下ヒーター44~46の温度差によって熱対流の発生度合いを制御しやすい。 Furthermore, since the partition plates 32 and 33 are provided inside the electric furnace 24, the upper part of the mixed melt in the growth vessel 12 accommodated in the reaction vessel 20 is compared with the case where these partition plates are not provided. It is easy to control the temperature difference between the upper and lower heaters, and the degree of thermal convection can be easily controlled by the temperature difference between the upper, middle and lower heaters 44 to 46.
 なお、上述した実施形態では、種結晶基板18の表面に沿った方向の流れを混合融液に発生させるにあたり、熱対流を利用したが、外部モーターによって回転するシャフト付きの回転台を電気炉24内に設け、育成容器12を収納する反応容器20をこの回転台に載せて回転させることにより該育成容器12内の混合融液に種結晶基板18の表面に沿った方向の流れを発生させてもよい。その具体例を図14に示す。図14の結晶板製造装置110は、反応容器20が回転可能な点以外は結晶板製造装置10と同じであるため、以下には結晶板製造装置10と相違する点のみを説明する。反応容器20は、下面に回転シャフト52が取り付けられた円盤状の回転台50の上に載置されている。回転シャフト52は、内部磁石54を有しており、筒状ケーシング58の外側にリング状に配置された外部磁石56が図示しない外部モーターによって回転するのに伴って回転する。反応容器20に差し込まれたインレットパイプ22は、上ゾーン34内で切断されている。このため、回転シャフト52が回転すると、回転台50の上に載置された反応容器20も支障なく回転する。また、窒素ボンベ42から圧力制御器40を介して電気炉24内に充満された窒素ガスは、インレットパイプ22から反応容器22内に導入される。この結晶板製造装置110を使用することにより、育成容器12内の混合融液に種結晶基板18の表面に沿った方向の流れを発生させることができる。なお、混合融液に生じる渦状の流れが種結晶基板18の表面と平行になるように育成容器12内での種結晶基板の姿勢を決めるのが好ましい。 In the above-described embodiment, thermal convection is used to generate a flow in the direction along the surface of the seed crystal substrate 18 in the mixed melt. However, a rotary table with a shaft that is rotated by an external motor is used as the electric furnace 24. The reaction vessel 20 that is provided inside and accommodates the growth vessel 12 is placed on this turntable and rotated to cause the mixed melt in the growth vessel 12 to flow in the direction along the surface of the seed crystal substrate 18. Also good. A specific example is shown in FIG. Since the crystal plate manufacturing apparatus 110 of FIG. 14 is the same as the crystal plate manufacturing apparatus 10 except that the reaction vessel 20 is rotatable, only the differences from the crystal plate manufacturing apparatus 10 will be described below. The reaction vessel 20 is placed on a disc-shaped turntable 50 having a rotary shaft 52 attached to the lower surface. The rotating shaft 52 has an internal magnet 54 and rotates as the external magnet 56 arranged in a ring shape outside the cylindrical casing 58 is rotated by an external motor (not shown). The inlet pipe 22 inserted into the reaction vessel 20 is cut in the upper zone 34. For this reason, when the rotation shaft 52 rotates, the reaction vessel 20 placed on the turntable 50 also rotates without any trouble. Further, nitrogen gas filled in the electric furnace 24 from the nitrogen cylinder 42 via the pressure controller 40 is introduced into the reaction vessel 22 from the inlet pipe 22. By using this crystal plate manufacturing apparatus 110, a flow in the direction along the surface of the seed crystal substrate 18 can be generated in the mixed melt in the growth vessel 12. In addition, it is preferable to determine the posture of the seed crystal substrate in the growth vessel 12 so that the spiral flow generated in the mixed melt is parallel to the surface of the seed crystal substrate 18.
(実施例1)
 図1に示す結晶板製造装置10を用いて、窒化ガリウム結晶板を作製した。以下、その手順を詳説する。まず、アルゴン雰囲気のグローブボックス内で、10×15mmの種結晶基板18を育成容器12内で水平方向に対する角度が60°になるように側壁に立てかけると共に、金属ガリウムと金属ナトリウムとをモル比でGa:Na=x:(100-x),x=28となるように秤量し、育成容器12内に入れた。この育成容器12を反応容器20内に入れ、窒素パージを行いながら反応容器20を電気炉24の円筒体26に入れ、上蓋28と下蓋30を閉じて密閉した。その後、所定の育成条件で窒化ガリウム結晶を育成させた。本実施例では、育成条件は、窒素圧力4.5MPa、平均温度875℃にして、100時間育成を行った。また、上ヒーター44及び中ヒーター45の設定温度は865℃、下ヒーター46の設定温度は885℃にし、上ヒーター44の上端から下ヒーター46の下端までの温度勾配(ΔT)を20℃に設定した。このとき、育成容器12内の混合融液における気液界面と育成容器の底部分との間の温度差は、約5℃であった。このような温度勾配を設けることにより、育成容器12内の混合融液の熱対流を発生させた。これにより、図2の一点鎖線の矢印で示すように、混合融液は種結晶基板18の薄膜16の表面に沿って下から上へと対流することになる。反応終了後、室温まで自然冷却したのち、反応容器20を開けて中から育成容器12を取り出し、育成容器12にエタノールを投入し、金属ナトリウムをエタノールに溶かしたあと、育成した窒化ガリウム結晶板を回収した。
Example 1
A gallium nitride crystal plate was produced using the crystal plate manufacturing apparatus 10 shown in FIG. The procedure will be described in detail below. First, in a glove box in an argon atmosphere, a 10 × 15 mm seed crystal substrate 18 is stood against the side wall so that the angle with respect to the horizontal direction is 60 ° in the growth vessel 12, and metal gallium and metal sodium are mixed at a molar ratio. Weighed so that Ga: Na = x: (100−x), x = 28, and placed in the growth vessel 12. The growth vessel 12 was placed in the reaction vessel 20, and the reaction vessel 20 was placed in the cylindrical body 26 of the electric furnace 24 while performing a nitrogen purge, and the upper lid 28 and the lower lid 30 were closed and sealed. Thereafter, a gallium nitride crystal was grown under predetermined growth conditions. In this example, the growth conditions were a nitrogen pressure of 4.5 MPa and an average temperature of 875 ° C., and the growth was performed for 100 hours. The set temperature of the upper heater 44 and the middle heater 45 is 865 ° C., the set temperature of the lower heater 46 is 885 ° C., and the temperature gradient (ΔT) from the upper end of the upper heater 44 to the lower end of the lower heater 46 is set to 20 ° C. did. At this time, the temperature difference between the gas-liquid interface in the mixed melt in the growth vessel 12 and the bottom portion of the growth vessel was about 5 ° C. By providing such a temperature gradient, thermal convection of the mixed melt in the growth vessel 12 was generated. As a result, the mixed melt convects from the bottom to the top along the surface of the thin film 16 of the seed crystal substrate 18 as shown by the one-dot chain arrow in FIG. After the reaction is completed, the reaction vessel 20 is naturally cooled to room temperature, the reaction vessel 20 is opened, the growth vessel 12 is taken out, ethanol is introduced into the growth vessel 12, metal sodium is dissolved in ethanol, and then the grown gallium nitride crystal plate is removed. It was collected.
 実施例1の窒化ガリウム結晶の蛍光顕微鏡像の写真を図3に示す。蛍光顕微鏡像の写真は、波長330~385nmの紫外線を照射したときに発する蛍光を写したものである。図3は、便宜上、グレースケールで表示したが、実際には青白く光る不純物帯発光から粒界が確認でき、おおよそのグレインサイズを見積もることができる。この図3より、グレインサイズが少なくともφ1mmの円を内包する大きな窒化ガリウム結晶が得られたことが確認された。 A photograph of a fluorescence microscope image of the gallium nitride crystal of Example 1 is shown in FIG. The photograph of the fluorescence microscope image shows the fluorescence emitted when irradiated with ultraviolet rays having a wavelength of 330 to 385 nm. Although FIG. 3 is displayed in gray scale for the sake of convenience, the grain boundaries can be confirmed from the impurity band emission that actually shines pale, and the approximate grain size can be estimated. From FIG. 3, it was confirmed that a large gallium nitride crystal containing a circle having a grain size of at least φ1 mm was obtained.
 また、実施例1の窒化ガリウム結晶の表面(Ga面)をダイヤラップして、250℃の酸性液(硫酸:リン酸=1:3(体積比)の混合溶液)に約2時間浸してエッチング処理を行った。エッチング後、光学顕微鏡を用いて微分干渉像観察を行い、転位に起因するエッチピットを観察した。エッチングした窒化ガリウム結晶の外観写真を図4に示す。この外観写真は、エッチング後の窒化ガリウム結晶の微分干渉像を光学顕微鏡を用いて観察し、数十枚の画像を結合して作成した。異形であるのは、育成後の冷却時に結晶がクラックのところで割れたことや結晶の側面(Ga面に対して垂直な面)からもエッチングを受けたことなどによる。また、黒色の溝はクラックがエッチングにより拡大した跡である。薄い水色(図4ではモノクロ表示のためグレー)の箇所は、エッチングしてもピットが空かなかった転位の少ない部分又は転位の存在しない部分である。 Further, the surface (Ga surface) of the gallium nitride crystal of Example 1 is dialed and etched by immersion in an acidic solution (mixed solution of sulfuric acid: phosphoric acid = 1: 3 (volume ratio)) at 250 ° C. for about 2 hours. Processed. After etching, differential interference images were observed using an optical microscope, and etch pits due to dislocations were observed. An appearance photograph of the etched gallium nitride crystal is shown in FIG. The appearance photograph was created by observing a differential interference image of the etched gallium nitride crystal using an optical microscope and combining several tens of images. The irregular shape is due to the fact that the crystal was cracked at the time of cooling after growth, and that etching was also performed from the side surface (surface perpendicular to the Ga surface) of the crystal. Further, the black groove is a trace of the crack enlarged by etching. The light blue (gray for monochrome display in FIG. 4) portion is a portion with few dislocations or no dislocations where pits were not vacant even after etching.
 更に、100μm四方の拡大視野で、エッチピット密度(Etch pit density,EPD)を計算した。観察した拡大視野像を図5に示す。EPDの評価は以下のようにして行った。上述した微分干渉像観察を行い、転位に起因するピット(エッチピット)を目視で判断した。具体的には、(1)エッチピットが多いと見られるエリア、(2)エッチピットが少ないと見られるエリア、(3)バンチングが見られるエリアに分別して、それぞれのエリアにおいてEPDを計算した。バンチングとは、結晶表面の各々の原子ステップ成長速度に違いが生じることにより、ステップ密度にゆらぎが生じ、巨視的に観察可能な段差ができる現象をいう。EPDは、100μm四方の各エリアにおいて、エッチピットの数を計算して求めた。エッチピットは、転位の中心がより深くエッチングされるために、六角錐のピットとして形成される。また、エッチピットは、数μm~数10μmのサイズで存在しているが、これは転位の種類によってサイズが異なるためと考えられる(大きいものから螺旋転位、混合転位、刃状転位の順になると考えられる)。これらのことから、各エリアのEPDは、様々なエッチピットの数の合計を面積で除した値とした。なお、実施例1のエッチピットが少ないエリアのように、エッチピットが確認されなかったエリアについては、便宜上、EPDを<101/cm2とした。また、実施例1では、上記(3)のバンチングが見られるエリアは確認されなかった。 Further, etch pit density (EPD) was calculated with an enlarged field of view of 100 μm square. The observed enlarged field image is shown in FIG. The EPD was evaluated as follows. The differential interference image observation described above was performed, and pits (etch pits) due to dislocations were visually determined. Specifically, the EPD was calculated for each area by dividing into (1) an area where there were many etch pits, (2) an area where there were few etch pits, and (3) an area where bunching was seen. Bunching refers to a phenomenon in which a step density fluctuates due to a difference in the atomic step growth rate of each crystal surface, resulting in a macroscopically observable step. The EPD was obtained by calculating the number of etch pits in each area of 100 μm square. The etch pit is formed as a hexagonal pyramid pit because the center of the dislocation is etched deeper. Etch pits exist with a size of several μm to several tens of μm, but this is considered to be due to the difference in size depending on the type of dislocation (from the largest to the screw dislocation, mixed dislocation, and edge dislocation). ). For these reasons, the EPD of each area is a value obtained by dividing the total number of various etch pits by the area. For the sake of convenience, the EPD was set to <10 1 / cm 2 for areas where no etch pits were confirmed, such as areas with few etch pits in Example 1. Moreover, in Example 1, the area where the bunching of said (3) was seen was not confirmed.
 EPDの結果を踏まえて、φ1mmでエッチピットが少ないエリアを図6に示す。図6では、図4の外観写真において、φ1mmでエッチピットが少ないエリア(EPDのオーダーが104/cm2以下のエリア)を円で示した。このように、実施例1で得られた窒化ガリウム結晶板は、グレインサイズがφ1mmの円を内包する大きさであり且つその円内のEPDのオーダーが104/cm2以下であることがわかる。 Based on the EPD results, an area with less φ1mm and less etch pits is shown in FIG. In FIG. 6, in the appearance photograph of FIG. 4, an area having φ1 mm and few etch pits (an area where the EPD order is 10 4 / cm 2 or less) is indicated by a circle. Thus, it can be seen that the gallium nitride crystal plate obtained in Example 1 is a size that encloses a circle having a grain size of φ1 mm, and the order of EPD in the circle is 10 4 / cm 2 or less. .
(実施例2~4)
 実施例2~4では、実施例1のxの値がそれぞれx=22,25,32となるように金属ガリウムと金属ナトリウムとを秤量した以外は、実施例1と同様にして窒化ガリウム結晶板を製造した。これらについても、実施例1と同様にして微分干渉像観察を行い、エッチピットを目視で判断し、上記(1)~(3)の各エリアのEPDを求めた。実施例2~4の結果をそれぞれ図7~図9に示す。
(Examples 2 to 4)
In Examples 2 to 4, a gallium nitride crystal plate was obtained in the same manner as in Example 1 except that metal gallium and metal sodium were weighed so that the values of x in Example 1 were x = 22, 25, and 32, respectively. Manufactured. Also for these, differential interference image observation was performed in the same manner as in Example 1, the etch pits were visually determined, and the EPD of each of the above areas (1) to (3) was obtained. The results of Examples 2 to 4 are shown in FIGS. 7 to 9, respectively.
(比較例1,2)
 比較例1,2では、実施例1のxの値がそれぞれx=18,36となるように金属ガリウムと金属ナトリウムとを秤量した以外は、実施例1と同様にして窒化ガリウム結晶板を製造した。これらについても、実施例1と同様にして微分干渉像観察を行い、エッチピットを目視で判断し、上記(1)~(3)の各エリアのEPDを求めた。比較例1,2の結果をそれぞれ図10,11に示す。
(Comparative Examples 1 and 2)
In Comparative Examples 1 and 2, a gallium nitride crystal plate was manufactured in the same manner as in Example 1 except that metal gallium and metal sodium were weighed so that the value of x in Example 1 was x = 18 and 36, respectively. did. Also for these, differential interference image observation was performed in the same manner as in Example 1, the etch pits were visually determined, and the EPD of each of the above areas (1) to (3) was obtained. The results of Comparative Examples 1 and 2 are shown in FIGS.
(評価)
 実施例1~4及び比較例1,2の各エリアのEPDを縦軸に、xの値を横軸にプロットしたグラフを図12に示す。図12より、実施例1~4(つまりx=22~32)の場合にはφ1mmの円内のEPDのオーダーが104/cm2以下のエリアが存在したのに対して、比較例1,2(つまりx=18,36)の場合にはこうしたエリアが存在しなかった。また、実施例1~4及び比較例1,2(つまりx=18~36)の場合には、グレインサイズがφ1mmの円を内包する大きさであり且つxが大きいほどグレインサイズが大きくなる傾向が見られたのに対して、実施例1で温度勾配(ΔT)を設けず均熱条件で育成した場合には、図13の蛍光顕微鏡像に示すようにグレインサイズがφ0.2~0.3mmの円を内包する程度の大きさだった。図13から明らかなように、均熱条件で育成した場合には、粒界に起因する不純物帯発光が多くグレインサイズが小さかった。
(Evaluation)
FIG. 12 is a graph in which the EPD of each area of Examples 1 to 4 and Comparative Examples 1 and 2 is plotted on the vertical axis and the value of x is plotted on the horizontal axis. From FIG. 12, in the case of Examples 1 to 4 (that is, x = 22 to 32), there was an area where the order of EPD in a circle of φ1 mm was 10 4 / cm 2 or less, whereas Comparative Example 1, In the case of 2 (that is, x = 18, 36), such an area did not exist. Further, in Examples 1 to 4 and Comparative Examples 1 and 2 (that is, x = 18 to 36), the grain size is a size including a circle of φ1 mm, and the grain size tends to increase as x increases. On the other hand, when the growth was carried out under a soaking condition without providing a temperature gradient (ΔT) in Example 1, the grain size was 0.2 to 0. 0 as shown in the fluorescence microscope image of FIG. It was large enough to contain a 3mm circle. As is apparent from FIG. 13, when grown under soaking conditions, the emission of impurity bands due to grain boundaries was large and the grain size was small.
 本出願は、2009年1月23日に出願された日本国特許出願第2009-012962号を優先権主張の基礎としており、その内容の全てが引用により本明細書に含まれる。 This application is based on Japanese Patent Application No. 2009-012962 filed on January 23, 2009, and the contents of which are incorporated herein by reference in their entirety.
 本発明は、パワーアンプに代表される高周波デバイスのほか、青色LEDや白色LED、青紫色半導体レーザなどの半導体デバイスに利用可能である。 The present invention can be used for semiconductor devices such as blue LEDs, white LEDs, and blue-violet semiconductor lasers in addition to high-frequency devices represented by power amplifiers.

Claims (6)

  1.  育成容器内にて3B族金属の濃度が22~32mol%の混合融液に種結晶基板を浸漬し、該種結晶基板の表面に沿った方向の流れを混合融液に発生させながら前記育成容器に窒素ガスを供給することにより種結晶基板上に3B族窒化物を結晶化させる、
     3B族窒化物結晶の製法。
    In the growth container, the seed crystal substrate is immersed in a mixed melt having a concentration of the group 3B metal of 22 to 32 mol%, and a flow in the direction along the surface of the seed crystal substrate is generated in the mixed melt. 3B nitride is crystallized on the seed crystal substrate by supplying nitrogen gas to
    A method for producing a group 3B nitride crystal.
  2.  前記3B金属の濃度が25~30mol%である、
     請求項1に記載の3B族窒化物結晶の製法。
    The concentration of the 3B metal is 25-30 mol%;
    The method for producing a group 3B nitride crystal according to claim 1.
  3.  前記種結晶基板の表面に沿った方向の流れを混合融液に発生させるにあたり、前記育成容器内で前記種結晶基板を水平方向に対して角度を持つように支持し、前記育成容器の混合融液の温度につき、上部に比べて下部の方が高くなるようにする、
     請求項1又は2に記載の3B族窒化物結晶の製法。
    In generating a flow in the direction along the surface of the seed crystal substrate in the mixed melt, the seed crystal substrate is supported in the growth container at an angle with respect to the horizontal direction, and the growth melt is mixed. For the temperature of the liquid, make the lower part higher than the upper part.
    A process for producing a group 3B nitride crystal according to claim 1 or 2.
  4.  前記育成容器の混合融液の温度につき、上部に比べて下部の方が1~8℃高くなるように設定する、
     請求項3に記載の3B族窒化物結晶の製法。
    The temperature of the mixed melt in the growth vessel is set so that the lower part is 1-8 ° C. higher than the upper part.
    A process for producing a group 3B nitride crystal according to claim 3.
  5.  前記育成容器の周囲には、該育成容器の上部と下部との気体の流通を妨げる仕切り板と、前記育成容器の上部を加熱する上ヒーターと、前記育成容器の下部を加熱する下ヒーターとが設けられ、前記上ヒーターに比べて前記下ヒーターの設定温度を高温にする、
     請求項3又は4に記載の3B族窒化物結晶の製法。
    Around the growth vessel, there are a partition plate that prevents gas flow between the upper and lower portions of the growth vessel, an upper heater that heats the upper portion of the growth vessel, and a lower heater that heats the lower portion of the growth vessel Provided, the set temperature of the lower heater is made higher than the upper heater,
    A process for producing a group 3B nitride crystal according to claim 3 or 4.
  6.  前記3B族金属は、金属ガリウムであり、前記3B族窒化物は、窒化ガリウムである、
     請求項1~5のいずれか1項に記載の3B族窒化物結晶の製法。
    The group 3B metal is metal gallium, and the group 3B nitride is gallium nitride.
    The method for producing a group 3B nitride crystal according to any one of claims 1 to 5.
PCT/JP2009/071232 2009-01-23 2009-12-21 Group iiib nitride crystal manufacturing method WO2010084681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010547413A JP5651480B2 (en) 2009-01-23 2009-12-21 Method for producing group 3B nitride crystals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-012962 2009-01-23
JP2009012962 2009-01-23

Publications (1)

Publication Number Publication Date
WO2010084681A1 true WO2010084681A1 (en) 2010-07-29

Family

ID=42355746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/071232 WO2010084681A1 (en) 2009-01-23 2009-12-21 Group iiib nitride crystal manufacturing method

Country Status (2)

Country Link
JP (1) JP5651480B2 (en)
WO (1) WO2010084681A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178213A (en) * 2022-07-11 2022-10-14 西安国康瑞金制药有限公司 Preparation system and preparation process of dexamethasone sodium phosphate

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123153A1 (en) * 2016-12-27 2018-07-05 日本碍子株式会社 Method for producing group 13 element nitride

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208375A (en) * 1996-02-08 1997-08-12 Kobe Steel Ltd Apparatus for heat treatment
JP2005187317A (en) * 2003-12-03 2005-07-14 Ngk Insulators Ltd Method of manufacturing single crystal, single crystal, and its composite
WO2007122865A1 (en) * 2006-03-24 2007-11-01 Ngk Insulators, Ltd. Method for manufacturing single crystal of nitride
JP2008094704A (en) * 2006-09-13 2008-04-24 Ngk Insulators Ltd Growing method of nitride single crystal, nitride single crystal and nitride single crystal substrate
JP2010052967A (en) * 2008-08-27 2010-03-11 Panasonic Corp Method for production of group iii element nitride crystal, group iii element nitride crystal, substrate for fabricating semiconductor device, and semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09208375A (en) * 1996-02-08 1997-08-12 Kobe Steel Ltd Apparatus for heat treatment
JP2005187317A (en) * 2003-12-03 2005-07-14 Ngk Insulators Ltd Method of manufacturing single crystal, single crystal, and its composite
WO2007122865A1 (en) * 2006-03-24 2007-11-01 Ngk Insulators, Ltd. Method for manufacturing single crystal of nitride
JP2008094704A (en) * 2006-09-13 2008-04-24 Ngk Insulators Ltd Growing method of nitride single crystal, nitride single crystal and nitride single crystal substrate
JP2010052967A (en) * 2008-08-27 2010-03-11 Panasonic Corp Method for production of group iii element nitride crystal, group iii element nitride crystal, substrate for fabricating semiconductor device, and semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115178213A (en) * 2022-07-11 2022-10-14 西安国康瑞金制药有限公司 Preparation system and preparation process of dexamethasone sodium phosphate

Also Published As

Publication number Publication date
JP5651480B2 (en) 2015-01-14
JPWO2010084681A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
US7524376B2 (en) Method and apparatus for aluminum nitride monocrystal boule growth
JP4603498B2 (en) Group III nitride crystal manufacturing method and manufacturing apparatus
JP5897790B2 (en) Group 3B nitride single crystal and process for producing the same
US9290861B2 (en) Group 13 nitride crystal with stepped surface
JP5651481B2 (en) Group 3B nitride crystal
US20120304916A1 (en) Method of producing silicon carbide single crystal
US10947638B2 (en) Underlying substrate including a seed crystal layer of a group 13 nitride having stripe-shaped projections and recesses and an off-angle in a direction of an a-axis
JP2014196242A (en) AlxGa1-xN crystal substrate
JP5953683B2 (en) Group 13 nitride crystal and group 13 nitride crystal substrate
JP2008247706A (en) Method for growing corundum single crystal, corundum single crystal and corundum single crystal wafer
JP2006347865A (en) Container for growing compound semiconductor single crystal, compound semiconductor single crystal and manufacturing method of compound semiconductor single crystal
JP5651480B2 (en) Method for producing group 3B nitride crystals
US11441237B2 (en) RAMO4 substrate and method of manufacture thereof, and group III nitride semiconductor
US10538858B2 (en) Method for manufacturing group 13 nitride crystal and group 13 nitride crystal
JP2002068896A (en) Method and device for producing nitride single crystal
JP2018517657A (en) Method of growing group III nitride crystals in high pressure reactor and supercritical ammonia
JP5842490B2 (en) Group 13 nitride crystal and group 13 nitride crystal substrate
JP5428706B2 (en) Method for producing SiC single crystal
KR100892329B1 (en) Method and apparatus for producing group ? nitride crystal
JP4426251B2 (en) Group III nitride crystal manufacturing method
JP2013049608A (en) Large-diameter sapphire single crystal substrate
JP2020132449A (en) ScAlMgO4 SINGLE CRYSTAL SUBSTRATE AND MANUFACTURING METHOD OF THE SAME
JP2008273804A (en) SEMI-INSULATING GaAs WAFER AND METHOD FOR PRODUCING THE SAME
JP2018127385A (en) Method of producing group iii nitride semiconductor
JP2015027921A (en) Sapphire single crystal core

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838871

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2010547413

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838871

Country of ref document: EP

Kind code of ref document: A1