JPH09208375A - Apparatus for heat treatment - Google Patents
Apparatus for heat treatmentInfo
- Publication number
- JPH09208375A JPH09208375A JP8022765A JP2276596A JPH09208375A JP H09208375 A JPH09208375 A JP H09208375A JP 8022765 A JP8022765 A JP 8022765A JP 2276596 A JP2276596 A JP 2276596A JP H09208375 A JPH09208375 A JP H09208375A
- Authority
- JP
- Japan
- Prior art keywords
- heaters
- temperature
- heat insulating
- heat treatment
- single crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Furnace Details (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】この発明は、例えば単結晶を
成長させるための単結晶成長装置や、セラミックスの焼
結炉などの加熱処理装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a single crystal growth apparatus for growing a single crystal and a heat treatment apparatus such as a ceramics sintering furnace.
【0002】[0002]
【従来の技術】GaAs、InP等のIII-V族化合物半導体や
CdTe、ZnSe等のII−VI族化合物半導体の製造法として
は、水平ブリッジマン法(HB法)、垂直ブリッジマン法
(VB法)、水平温度勾配付固化法(HGF法)、垂直温度勾
配付固化法(VGF法)、引き上げ法(チョクラルスキー
法)などが利用されている。2. Description of the Related Art III-V group compound semiconductors such as GaAs and InP,
As a method for producing II-VI group compound semiconductors such as CdTe and ZnSe, horizontal Bridgman method (HB method), vertical Bridgman method (VB method), solidification method with horizontal temperature gradient (HGF method), with vertical temperature gradient The solidification method (VGF method) and the pulling method (Czochralski method) are used.
【0003】特開昭63−174293号公報に、チョコラルス
キー法による単結晶引上げ装置の一例が開示され、その
装置では、図3に示すように、炉体51の中心を上下に貫
通する炉心管52の周囲に、6個のヒータ53…を並設して
成る加熱装置54が設けられている。各ヒータ53は発熱部
が円筒状に形成された黒鉛製の抵抗加熱体から成り、各
一端側に、一対のリード電極55が各々接続される鍔部53
aがそれぞれ設けられている。Japanese Unexamined Patent Publication (Kokai) No. 63-174293 discloses an example of a single crystal pulling apparatus using the Czochralski method. In the apparatus, as shown in FIG. 3, a core tube that vertically penetrates the center of a furnace body 51. A heating device 54 formed by arranging six heaters 53 in parallel is provided around 52. Each heater 53 is composed of a resistance heating element made of graphite in which a heating portion is formed in a cylindrical shape, and a flange portion 53 to which a pair of lead electrodes 55 are respectively connected at one end side.
a is provided.
【0004】これら各ヒータ53に通電し、炉心管52内に
配置されているるつぼ56内の原料を加熱溶融させて原料
融液57を形成し、この原料融液57に上方から種結晶を接
触させた後にこの種結晶を引上げることによって、原料
融液57から単結晶58を成長させる操作が行われる。この
ような結晶成長操作時には、図中二点鎖線で示す温度分
布D、すなわち、原料融液57の液面よりわずかに上方位
置を融点温度域m.p.とし、それよりも下方の温度を高
く、上方の温度を低くした温度分布が形成されるよう
に、各ヒータ53への供給電力が個別に制御される。The heater 53 is energized to heat and melt the raw material in the crucible 56 arranged in the furnace core tube 52 to form a raw material melt 57, and a seed crystal is brought into contact with the raw material melt 57 from above. After this, the operation of growing the single crystal 58 from the raw material melt 57 is performed by pulling up this seed crystal. During such a crystal growth operation, a temperature distribution D shown by a chain double-dashed line in the figure, that is, a position slightly above the liquid surface of the raw material melt 57 is set as a melting point temperature range mp, and a temperature below the melting point temperature range mp The electric power supplied to each heater 53 is individually controlled so that a temperature distribution in which the temperature is lowered is formed.
【0005】一方、例えば垂直ブリッジマン法(VB法)
の装置では、上記とは逆に、上方が温度の高い温度分布
が炉内に形成される。このような装置の一例について、
本発明の説明図である図1を参照して説明すると、この
装置では、同図(a) に示すように、炉体としての圧力容
器1の下蓋1cを気密に貫通する昇降軸5上に、下端部に
種結晶15が挿入されたるつぼ6が支持されている。そし
て、同図(b) に示すように、種結晶15の上端部近傍の高
さ位置を融点温度域m.p.とし、それよりも上方の温度を
高く、下方の温度を低くした温度分布を形成して昇降軸
5を下降させる。これによって、るつぼ6内の原料融液
16が種結晶15に接する下部側から順次固化し、単結晶と
して成長する。On the other hand, for example, the vertical Bridgman method (VB method)
Contrary to the above, in the apparatus of No. 1, a temperature distribution in which the temperature is higher in the upper part is formed in the furnace. For an example of such a device,
This will be described with reference to FIG. 1, which is an explanatory view of the present invention. In this apparatus, as shown in FIG. 1 (a), on a lifting shaft 5 that hermetically penetrates a lower lid 1c of a pressure vessel 1 as a furnace body. The crucible 6 having the seed crystal 15 inserted at the lower end is supported by the. Then, as shown in FIG. 3B, a temperature position near the upper end of the seed crystal 15 is set as a melting point temperature range mp, and a temperature distribution is formed in which the temperature above the melting point is higher and the temperature below is lower. To lower the elevating shaft 5. As a result, the raw material melt in the crucible 6
16 sequentially solidifies from the lower side in contact with the seed crystal 15 and grows as a single crystal.
【0006】なお、例えばGaAs等のように高温下で解離
し易い化合物半導体の単結晶成長を行う場合、解離を抑
制するために高圧の不活性ガスが圧力容器1内に充填さ
れる。さらに、高解離圧成分、例えばGaAsの場合にはAs
を収容したリザーバ7を設け、これを加熱して発生させ
たAs蒸気によりるつぼ6周囲のAs蒸気圧を制御しなが
ら、上述の単結晶成長操作が行われる。この蒸気圧制御
雰囲気を形成するために、るつぼ6とリザーバ7とを囲
う内部チャンバ3が圧力容器1内に設けられている。When a single crystal of a compound semiconductor, such as GaAs, which is easily dissociated at high temperature, is grown, a high-pressure inert gas is filled in the pressure vessel 1 to suppress the dissociation. Furthermore, a high dissociation pressure component, such as As in the case of GaAs,
The single crystal growth operation described above is performed while providing a reservoir 7 in which is stored and controlling the As vapor pressure around the crucible 6 by the As vapor generated by heating the reservoir. In order to form this vapor pressure controlled atmosphere, an internal chamber 3 that surrounds the crucible 6 and the reservoir 7 is provided in the pressure vessel 1.
【0007】そして従来は、上記のような内部チャンバ
の外面に沿って、前記公報記載のような筒状のヒータを
多段に並設して成る加熱装置を設け、るつぼおよびリザ
ーバを加熱するための所定の温度分布が内部チャンバ内
に形成されるように、各ヒータへの供給電力が個別に制
御されている。[0007] Conventionally, a heating device constituted by arranging the cylindrical heaters as described above in multiple stages along the outer surface of the internal chamber as described above is provided to heat the crucible and the reservoir. The electric power supplied to each heater is individually controlled so that a predetermined temperature distribution is formed in the internal chamber.
【0008】[0008]
【発明が解決しようとする課題】しかしながら、上記の
ように多段に設けたヒータへの通電を個別に制御するだ
けでは、所定の温度分布を安定して保持することができ
ず、このため、良質の単結晶を得難いという問題を生じ
ている。つまり、各ヒータは熱輻射や熱対流によって相
互に影響し合い、このため、個々のヒータ毎の制御の独
立性が得られない。例えば、設定温度からのずれに応じ
た通電電力の変化が一つのヒータで生じ、このヒータで
の発熱量が変わると、これが隣接ヒータに影響し、この
隣接ヒータの通電電力も変化する。このような相互干渉
によって制御の安定性が得られず、温度のふらつきが生
じ易い。However, the predetermined temperature distribution cannot be stably maintained only by individually controlling the energization of the heaters provided in multiple stages as described above, and therefore the high quality is achieved. However, it is difficult to obtain a single crystal of. That is, the respective heaters influence each other by heat radiation and heat convection, and therefore the independence of control for each individual heater cannot be obtained. For example, when a change in the energization power according to a deviation from the set temperature occurs in one heater and the amount of heat generated by this heater changes, this affects the adjacent heater, and the energization power of this adjacent heater also changes. Due to such mutual interference, control stability cannot be obtained, and temperature fluctuation is likely to occur.
【0009】特に、単結晶成長時に融点温度域の近傍で
温度のゆらぎがあると、結晶成長界面が変動して再溶融
や再固化が繰返され、これによって結晶欠陥の発生数が
多くなってしまう。なお、このような観点では、温度の
ゆらぎが生じても結晶成長界面の変動幅が極力小さくな
るように、融点温度域近傍の温度勾配ができるだけ急峻
であることが望ましい。しかしながら、従来の加熱装置
の構成では、隣接するヒータ間の相互干渉が大きいため
に、急峻な温度勾配を形成してこれを安定に保持しよう
とすることはさらに困難で、このために、結晶欠陥密度
が充分に低減された良質の単結晶を得難いものとなって
いる。In particular, if there is temperature fluctuation in the vicinity of the melting point temperature range during the growth of a single crystal, the interface of crystal growth fluctuates and remelting and resolidification are repeated, thereby increasing the number of crystal defects. . From this point of view, it is desirable that the temperature gradient in the vicinity of the melting point temperature range be as steep as possible so that the fluctuation range of the crystal growth interface becomes as small as possible even if temperature fluctuations occur. However, in the configuration of the conventional heating device, it is more difficult to form a steep temperature gradient and hold it stably because the mutual interference between the adjacent heaters is large, and for this reason, crystal defects are caused. It is difficult to obtain a good quality single crystal with a sufficiently reduced density.
【0010】本発明は、上記した従来の問題点に鑑みな
されたもので、その目的は、特に急峻な温度勾配を安定
して形成することが可能であり、これによって、例えば
単結晶製造装置に適用した場合に良質の単結晶を製造し
得る加熱処理装置を提供することにある。The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to be able to stably form a particularly steep temperature gradient. An object of the present invention is to provide a heat treatment apparatus capable of producing a high quality single crystal when applied.
【0011】[0011]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明の請求項1記載の加熱処理装置は、炉体内
に設けられた内部チャンバの外面に沿って複数のヒータ
が並設され、これらヒータへの通電により内部チャンバ
内に所定の温度分布を形成する加熱処理装置であって、
各ヒータ間に、隣接ヒータ間を通して内部チャンバの外
面に近接する位置まで延びる断熱材がそれぞれ介装さ
れ、各隣接ヒータ間の間隙をほぼ埋める厚さの上記断熱
材のうちの特定の断熱材が、その厚さを他の断熱材より
も厚さを厚くして、上記温度分布における局部的に温度
勾配が大きな急峻温度勾配領域に対応する位置に設けら
れていることを特徴としている。In order to achieve the above object, in the heat treatment apparatus according to claim 1 of the present invention, a plurality of heaters are arranged in parallel along the outer surface of the internal chamber provided in the furnace body. A heat treatment apparatus for forming a predetermined temperature distribution in the internal chamber by energizing these heaters,
Insulating materials that extend between adjacent heaters to positions close to the outer surface of the internal chamber are respectively interposed between the heaters, and a specific insulating material of the above-described insulating materials having a thickness that substantially fills the gap between the adjacent heaters is provided. The heat insulating material is thicker than the other heat insulating materials, and is provided at a position corresponding to a steep temperature gradient region having a locally large temperature gradient in the temperature distribution.
【0012】このような構成によれば、各ヒータは、内
部チャンバの外面に近接する位置まで延びる断熱材で互
いに区画されているので、熱輻射や熱対流による相互干
渉が低減され、各ヒータ毎の制御の独立性が向上する。
また、各断熱材は隣接ヒータ間の間隙をほぼ埋める厚さ
で形成されていることにより、個々のヒータ周囲の空間
も極力小さなものとなり、これによって、各区画領域内
での自然対流による温度変動も小さくなり、温度制御性
が向上する。According to this structure, since the heaters are partitioned from each other by the heat insulating material extending to the position close to the outer surface of the inner chamber, mutual interference due to heat radiation and heat convection is reduced, and each heater is separated. Control independence is improved.
In addition, since each heat insulating material is formed with a thickness that almost fills the gap between adjacent heaters, the space around each heater is also made as small as possible, which causes temperature fluctuations due to natural convection in each partitioned area. Becomes smaller and the temperature controllability is improved.
【0013】さらに上記では、局部的に温度勾配が大き
な急峻温度勾配領域に対応する位置に厚さの厚い断熱材
が設けられている。つまり、温度勾配の小さな領域、例
えばほぼ同一温度で保持しようとする領域で断熱材の厚
さが厚いと、この断熱材を挟むヒータ間の間隔が大きく
なる結果、これらヒータ間で温度の落ち込みが生じ、所
定の温度分布が得られなくなる。このため、温度勾配の
小さな領域ではヒータ間の間隔を適度に狭くし、これら
の間隔に応じて断熱材の厚さが設定される。Further, in the above, the thick heat insulating material is provided at the position corresponding to the steep temperature gradient region where the temperature gradient is locally large. That is, when the thickness of the heat insulating material is large in a region having a small temperature gradient, for example, in a region where the temperature is to be maintained at substantially the same temperature, the distance between the heaters sandwiching the heat insulating material becomes large, and as a result, a temperature drop occurs between these heaters. As a result, a predetermined temperature distribution cannot be obtained. Therefore, in the region where the temperature gradient is small, the interval between the heaters is appropriately narrowed, and the thickness of the heat insulating material is set according to these intervals.
【0014】一方、急峻温度勾配領域に対応する位置に
も上記のように間隔を狭くしたヒータを設け、各ヒータ
での制御温度に大きな差を付けて制御しようとする場合
は、各ヒータ間に設けられる断熱材が薄いためにヒータ
間の相互干渉が充分には低減されず、このため、急峻温
度勾配領域を安定して形成することが困難となる。そこ
で上記では、この領域の断熱材の厚さを厚くし、この断
熱材を挟むヒータ間での温度の落ち込みを利用して、所
定の急峻温度勾配領域を形成する。この場合、この厚さ
の厚い断熱材を挟む両側のヒータは、相互干渉が充分に
抑制される。したがって、一方のヒータを急峻温度勾配
領域の高温側設定温度で制御し、そして、断熱材で生じ
る温度低下が所定の急峻温度勾配に対応する勾配となる
ように、他方のヒータの低温側制御温度を定めて制御す
ることにより、互いに精度良く独立に制御し得るこれら
ヒータ間に、急峻な温度勾配領域を安定して形成するこ
とが可能となる。On the other hand, when the heaters having the narrow intervals as described above are provided also at the positions corresponding to the steep temperature gradient regions and the control temperatures of the respective heaters are controlled to have a large difference, the heaters are controlled between the heaters. Since the provided heat insulating material is thin, mutual interference between the heaters is not sufficiently reduced, which makes it difficult to stably form the steep temperature gradient region. Therefore, in the above description, the thickness of the heat insulating material in this region is increased, and a predetermined steep temperature gradient region is formed by utilizing the temperature drop between the heaters sandwiching this heat insulating material. In this case, mutual interference is sufficiently suppressed between the heaters on both sides sandwiching the thick heat insulating material. Therefore, one heater is controlled at the set temperature on the high temperature side in the steep temperature gradient region, and the low temperature side control temperature of the other heater is controlled so that the temperature drop caused by the heat insulating material becomes a gradient corresponding to the predetermined steep temperature gradient. By determining and controlling the temperature difference, it becomes possible to stably form a steep temperature gradient region between these heaters that can be controlled independently of each other with high accuracy.
【0015】なお、上記のような断熱材は、請求項2記
載のように、BN,SiC,Si3N4,AlN,Al2O3,SiO2,ZrO2等のセ
ラミックス材料、あるいはカーボン材料を用いて作製す
ることができる。また、上記の加熱処理装置において、
請求項3記載のように、内部チャンバ内で被加熱物を移
動させる移動手段をさらに備えていることによって、被
加熱物の例えば相変化や材質的な変化が生じる特定温度
近傍を上記の急峻温度勾配領域とし、この領域を通して
被加熱物を移動させることで、上記の変化を被加熱物に
おける一端側から他端側へと安定して生じさせることが
できる。The heat insulating material may be a ceramic material such as BN, SiC, Si 3 N 4 , AlN, Al 2 O 3 , SiO 2 , ZrO 2 or a carbon material. It can be produced by using. Further, in the above heat treatment device,
As described in claim 3, by further comprising a moving means for moving the object to be heated in the internal chamber, the steep temperature is set near the specific temperature at which, for example, a phase change or a material change of the object to be heated occurs. By making the gradient region and moving the object to be heated through this region, the above-mentioned change can be stably generated from one end side to the other end side of the object to be heated.
【0016】このため、例えば請求項4記載の装置、す
なわち、原料融液を種結晶に接する側から固化させるこ
とにより単結晶として成長する原料を被加熱物として収
容する原料収納容器を設け、急峻温度勾配領域を、上記
単結晶の融点を含む温度領域に設定した装置構成として
結晶成長を行う場合、成長界面のゆらぎが極力小さくな
り、これによって成長結晶の再溶融、再固化などが抑え
られる。この結果、転位、双晶などの結晶欠陥の低減さ
れた良質の単結晶を得ることができる。Therefore, for example, the apparatus according to claim 4, that is, the raw material storage container for storing the raw material that grows as a single crystal by solidifying the raw material melt from the side in contact with the seed crystal as a heated object, When crystal growth is performed with a device configuration in which the temperature gradient region is set to a temperature region that includes the melting point of the single crystal, fluctuations at the growth interface are minimized, thereby suppressing remelting and resolidification of the grown crystal. As a result, a good quality single crystal with reduced crystal defects such as dislocations and twins can be obtained.
【0017】また、請求項5記載のように、上記原料と
してIII-V族化合物半導体またはII−VI族化合物半導体
の結晶成長用原料が用いられるときに、その構成元素中
の高解離圧元素の蒸気を結晶成長時に発生させて内部チ
ャンバ内を所定の蒸気圧に維持するためのリザーバが内
部チャンバ内にさらに設けられていれば、さらに組成の
ずれに伴う結晶欠陥の発生も抑制され、これによって、
さらに品質の優れた化合物半導体の単結晶を製造するこ
とができる。When a raw material for crystal growth of a III-V group compound semiconductor or a II-VI group compound semiconductor is used as the raw material as described in claim 5, a high dissociation pressure element among the constituent elements is used. If a reservoir for generating vapor during crystal growth to maintain the predetermined vapor pressure in the internal chamber is further provided in the internal chamber, the occurrence of crystal defects due to compositional deviation can be further suppressed, and thereby ,
Further, it is possible to manufacture a single crystal of a compound semiconductor having excellent quality.
【0018】[0018]
〔実施形態1〕次に、本発明の一実施形態について図1
を参照して説明する。同図(a) は、垂直ブリッジマン法
(VB法)による単結晶製造装置として構成された加熱処
理装置を示すもので、この装置は、耐圧構造を有する炉
体としての圧力容器1を備え、この圧力容器1は、円筒
状の容器本体1aと、その上部開口を塞ぐ上蓋1bと、下部
開口に着脱自在に、かつ、気密に装着された下蓋1cとか
ら構成されている。[Embodiment 1] Next, an embodiment of the present invention will be described with reference to FIG.
This will be described with reference to FIG. FIG. 1 (a) shows a heat treatment apparatus configured as a single crystal manufacturing apparatus by the vertical Bridgman method (VB method), which is equipped with a pressure vessel 1 as a furnace body having a pressure resistant structure, This pressure vessel 1 is composed of a cylindrical vessel body 1a, an upper lid 1b that closes the upper opening thereof, and a lower lid 1c that is detachably and airtightly attached to the lower opening.
【0019】圧力容器1の内部には、上蓋1bの下面およ
び容器本体1aの内面に沿う上部閉塞状の筒体から成る断
熱筒2が配設されている。この断熱筒2内に、上下複数
段(図の場合には4段)の円筒状のヒータ11a〜11dを
備える後述する加熱装置10が設けられ、さらに、ヒータ
11a〜11dの内側空間を囲うように、逆コップ形状の内
部チャンバ3が下蓋1c上への載置状態で配設されてい
る。この内部チャンバ3は、耐熱性とガス不浸透性とを
有する材料、例えばモリブデン等の高融点金属やセラミ
ックス、或いは、パイロリティックグラファイトをコー
ティングしたカーボンやグラッシーカーボンなどの特殊
カーボン材料で作製される。Inside the pressure vessel 1, there is disposed a heat insulating tube 2 formed of an upper closed tubular body along the lower surface of the upper lid 1b and the inner surface of the vessel body 1a. In this heat insulating cylinder 2, there is provided a heating device 10 to be described later including a plurality of upper and lower stages (four stages in the figure) of cylindrical heaters 11a to 11d.
An inner chamber 3 having a reverse cup shape is arranged so as to surround the inner spaces 11a to 11d in a state of being placed on the lower lid 1c. The internal chamber 3 is made of a material having heat resistance and gas impermeability, for example, a refractory metal such as molybdenum or ceramics, or a special carbon material such as carbon coated with pyrolytic graphite or glassy carbon.
【0020】前記下蓋1cには、その中心をシールリング
4によって気密に貫通する昇降軸(移動手段)5が設け
られている。この昇降軸5は、外部の駆動機構(図示せ
ず)により上下動可能に構成され、この昇降軸5上に、
原料収納容器としてのるつぼ6が支持されている。この
ルツボ6は例えばp-BNから成り、その下端側に、後述す
る棒状の種結晶15が挿入される細管部6aが設けられると
共に、その上方に、径大なシリンダ部6bがテーパ部6cを
介して連設されている。なお、シリンダ部6bも、その上
端部の内径が例えば約80mm、下端部の内径が約75mmのテ
ーパ状に形成されている。上記のテーパ部6cの下部側と
細管部6aとを、昇降軸5の上面から下方に凹入する支持
穴に嵌挿させて、このるつぼ6は、内部チャンバ3内の
上部側中央でほぼ直立に支持されている。The lower lid 1c is provided with an elevating shaft (moving means) 5 which penetrates the center of the lower lid 1c by a seal ring 4 in an airtight manner. The lifting shaft 5 is configured to be vertically movable by an external drive mechanism (not shown).
A crucible 6 as a raw material storage container is supported. The crucible 6 is made of, for example, p-BN, and a thin tube portion 6a into which a rod-shaped seed crystal 15 to be described later is inserted is provided on the lower end side, and a large diameter cylinder portion 6b has a tapered portion 6c above the thin tube portion 6a. Are serialized through. The cylinder portion 6b is also formed in a tapered shape having an inner diameter of about 80 mm at the upper end and an inner diameter of about 75 mm at the lower end. The lower side of the taper portion 6c and the thin tube portion 6a are fitted into a support hole which is recessed downward from the upper surface of the elevating shaft 5, so that the crucible 6 is substantially upright at the center of the upper side in the inner chamber 3. Supported by.
【0021】一方、内部チャンバ3内における下部側
に、昇降軸5が貫通する中心穴を備えた厚肉管形状のリ
ザーバ7が設けられている。このリザーバ7には、その
上面から下方に凹入する環状溝7aが形成され、この環状
溝7a内に、高解離圧元素8を収容し得るようになってい
る。なお、前記上蓋1bには、図示してはいないが、圧力
容器1内にアルゴンガス等の不活性ガスを加圧注入し、
また、排出するためのガス供給排出路が設けられ、ま
た、内部チャンバ3には、下蓋1c近傍の下端側に、この
内部チャンバ3の内外を相互に連通する連通路が形成さ
れている。On the other hand, a thick-walled tube-shaped reservoir 7 having a central hole through which the elevating shaft 5 penetrates is provided on the lower side in the internal chamber 3. The reservoir 7 is formed with an annular groove 7a recessed downward from the upper surface thereof, and the high dissociation pressure element 8 can be accommodated in the annular groove 7a. Although not shown, the upper lid 1b is filled with an inert gas such as argon gas under pressure into the pressure vessel 1,
Further, a gas supply / exhaust passage for discharging gas is provided, and a communication passage that connects the inside and the outside of the internal chamber 3 is formed in the inner chamber 3 at the lower end side near the lower lid 1c.
【0022】次に、内部チャンバ3の外側に配置されて
いる前記加熱装置10の構成について説明する。この加熱
装置10は、前述したように、上下に例えば4段の円筒状
ヒータ11a〜11dを備えており、これら各ヒータ(以
下、上段側から第1ヒータ11a、第2ヒータ11b、第3
ヒータ11c、第4ヒータ11dという)の間に、それぞれ
リング状のヒータ間断熱材12a〜12cが配設され、ま
た、第4ヒータ11dと下蓋1cとの間に、リング状の下部
断熱材13が配設されている。さらに、各ヒータ11a〜11
dの外側を囲うように、それぞれ筒状の外側断熱材14a
〜14dが配設されている。Next, the structure of the heating device 10 arranged outside the inner chamber 3 will be described. As described above, the heating device 10 is provided with, for example, four stages of cylindrical heaters 11a to 11d at the top and bottom, and these heaters (hereinafter, the first heater 11a, the second heater 11b, the third heater 11b from the top stage side).
Between the heater 11c and the fourth heater 11d) ring-shaped inter-heater heat insulating materials 12a to 12c are respectively arranged, and between the fourth heater 11d and the lower lid 1c, a ring-shaped lower heat insulating material. 13 are provided. Furthermore, each heater 11a-11
Each of the cylindrical outer heat insulating materials 14a surrounds the outer side of d.
~ 14d are provided.
【0023】各ヒータ11a〜11dを上下に互いに区画す
る各ヒータ間断熱材12a〜12cは、各ヒータ11a〜11d
よりも径方向内方に突出するように、内周面を内部チャ
ンバ3の外面に極力近接させた形状で形成されている。
また、上下方向の厚さ寸法は、各上下面が各ヒータ11a
〜11dの上下端面に極力近接するように、各ヒータ11a
〜11d間の各間隙に合わせて形成されている。The inter-heater heat insulating materials 12a to 12c for partitioning the heaters 11a to 11d into upper and lower parts are the heaters 11a to 11d.
The inner peripheral surface is formed to be as close as possible to the outer surface of the inner chamber 3 so as to project inward in the radial direction.
Also, regarding the thickness in the vertical direction, the upper and lower surfaces are each heater 11a.
Each heater 11a should be placed as close as possible to the upper and lower ends of 11d.
It is formed according to each gap between 11d.
【0024】そして、これら三個のヒータ間断熱材12a
〜12cのうち、中央のヒータ間断熱材(以下、特定ヒー
タ間断熱材ともいう)12bは、高圧容器1内における略
中央の高さ位置に位置するように構成され、また、この
断熱材12bは、その上下のヒータ間断熱材12a・12cよ
りも厚さを厚くして形成されている。つまり、後述する
単結晶成長操作は、同図(b) に示すように、高さ方向の
略中央に急峻な温度勾配領域AG を有する温度分布を形
成して行われる。この急峻温度勾配領域AG よりも上方
は、成長結晶の融点よりも高い略一定温度領域A1が、ま
た下方は、リザーバ7の加熱のために設定される略一定
温度領域A2がそれぞれ形成される。これら領域A1・A2に
各々対応する位置の最上段のヒータ間断熱材12aおよび
上から三段目のヒータ間断熱材12cは、その厚さを厚く
すると、ヒータ間での温度の落ち込みが生じて上記した
略一定の温度領域A1・A2を確保できなくなる。このた
め、第1・第2ヒータ11a・11b、および第3・第4ヒ
ータ11c・11dの間隔を適度に狭くし、これらの間隔に
応じて厚さが設定されている。The heat insulating material 12a between these three heaters
Among these, the heat insulating material between heaters (hereinafter also referred to as the heat insulating material between specific heaters) 12b at the center is configured to be located at a substantially central height position in the high-pressure vessel 1, and this heat insulating material 12b is also included. Is formed thicker than the heat insulating materials 12a and 12c between the heaters above and below it. That is, the single crystal growth operation described later is performed by forming a temperature distribution having a steep temperature gradient region A G in the approximate center in the height direction, as shown in FIG. Above the steep temperature gradient region A G, a substantially constant temperature region A 1 higher than the melting point of the grown crystal is formed, and below the steep temperature gradient region A G, a substantially constant temperature region A 2 set for heating the reservoir 7 is formed. To be done. If the thickness of the uppermost heat insulating material 12a between the heaters and the third heat insulating material 12c between the heaters at the positions corresponding to the areas A 1 and A 2 respectively is increased, the temperature drop between the heaters is reduced. As a result, it becomes impossible to secure the above-mentioned approximately constant temperature regions A 1 and A 2 . Therefore, the interval between the first and second heaters 11a and 11b and the third and fourth heaters 11c and 11d is appropriately narrowed, and the thickness is set according to these intervals.
【0025】一方、急峻温度勾配領域AG に対応する高
さ位置の前記特定ヒータ間断熱材12bの厚さは、この領
域AG の上下方向幅寸法に略合わせて設定され、したが
って、この断熱材12bは、上記した他のヒータ間断熱材
12a・12cよりも厚さを厚くして形成されている。前記
下部断熱材13も、内周面を内部チャンバ3の外面に極力
近接させた形状で形成され、また、上面が第4ヒータ11
dの下端面に極力近接するように、この第4ヒータ11d
と下蓋1cとの間の空間に合わせて形成されている。一
方、前記各外側断熱材14a〜14dは、内周面が各ヒータ
11a〜11dの外周面に極力近接する形状で形成されてい
る。On the other hand, the thickness of the heat insulating material 12b between the specific heaters at the height position corresponding to the steep temperature gradient region A G is set substantially in accordance with the vertical width dimension of this region A G , and therefore, this heat insulation is performed. The material 12b is the heat insulating material between the other heaters described above.
It is formed thicker than 12a and 12c. The lower heat insulating material 13 is also formed such that the inner peripheral surface thereof is as close as possible to the outer surface of the inner chamber 3, and the upper surface thereof is the fourth heater 11.
This fourth heater 11d should be located as close as possible to the lower end surface of d.
It is formed to match the space between the lower lid 1c and the lower lid 1c. On the other hand, each of the outer heat insulating materials 14a to 14d has an inner peripheral surface of each heater.
It is formed in a shape as close as possible to the outer peripheral surfaces of 11a to 11d.
【0026】このように、本実施形態での加熱装置10で
は、各ヒータ11a〜11dがヒータ間断熱材12a〜12cに
より上下に区画されると共に、これらヒータ11a〜11d
にヒータ間断熱材12a〜12c・下部断熱材13・外側断熱
材14a〜14dがそれぞれ近接する形状で設けられている
ことによって、個々に区画された領域内での各ヒータ11
a〜11d周囲の空間も極力小さくなるように構成されて
いる。As described above, in the heating device 10 according to the present embodiment, the heaters 11a to 11d are vertically divided by the inter-heater heat insulating materials 12a to 12c, and the heaters 11a to 11d are also divided.
Since the inter-heater heat insulating materials 12a to 12c, the lower heat insulating material 13, and the outer heat insulating materials 14a to 14d are provided in a shape close to each other, the heaters 11 in the individually divided areas are provided.
The space around a to 11d is configured to be as small as possible.
【0027】また、上記各断熱材12a〜12c・13・14a
〜14dは、外周面がそれぞれ前記断熱筒2の内面にも近
接する形状で形成されており、これによって、断熱筒2
との間の空間も極力小さくなるように構成されている。
なお、上記の各断熱材12a〜12c・13・14a〜14dは、
例えば、BN,SiC,Si3N4,AlN,Al2O3,SiO2,ZrO2等のセラミ
ックス材料あるいはカーボン材料など、炉の雰囲気ガ
ス、使用温度などに応じて適宜最適な材料を選ぶことが
可能である。例えば、後述するように、アルゴンガスな
どの不活性ガス(アルゴンガスなど)中、1200℃程度の
温度領域での使用を前提にすると、Al2O3 (アルミナ)
材料が適している。Further, each of the above heat insulating materials 12a to 12c, 13 and 14a
The outer peripheral surfaces of the heat insulating tubes 2 to 14d are also formed so as to be close to the inner surface of the heat insulating tube 2, respectively.
The space between and is designed to be as small as possible.
The heat insulating materials 12a to 12c, 13 and 14a to 14d are
For example, select an appropriate material according to the furnace atmosphere gas, operating temperature, etc., such as BN, SiC, Si 3 N 4 , AlN, Al 2 O 3 , SiO 2 , ZrO 2 ceramic materials or carbon materials. Is possible. For example, as will be described later, assuming use in an inert gas such as argon gas (such as argon gas) in a temperature range of about 1200 ° C, Al 2 O 3 (alumina)
The material is suitable.
【0028】次に、上記装置を使用してGaAs単結晶の成
長を行ったときの操作手順について説明する。まず、る
つぼ6の細管部6aに棒状のGaAs単結晶から成る種結晶15
を装着し、その上にGaAs多結晶を単結晶成長用の原料と
して約6kg充填した。一方、リザーバ7内には高解離圧
元素8としてAsを適当量充填した。そして、これらるつ
ぼ6およびリザーバ7、また、モリブデン製の内部チャ
ンバ3を図示のように圧力容器1内に設置して圧力容器
1を密閉し、次いで、前記のガス供給排出路を通して、
圧力容器1内の真空引き・アルゴンガスによるガス置換
を2回行った後、アルゴンガスを容器1内が約2kgf/cm
2 の加圧状態となるまで充填した。Next, the operation procedure when growing a GaAs single crystal using the above apparatus will be described. First, a seed crystal 15 made of a rod-shaped GaAs single crystal is attached to the thin tube portion 6a of the crucible 6.
Was mounted, and about 6 kg of GaAs polycrystal as a raw material for growing a single crystal was filled on it. On the other hand, the reservoir 7 was filled with an appropriate amount of As as the high dissociation pressure element 8. Then, the crucible 6 and the reservoir 7, and the internal chamber 3 made of molybdenum are installed in the pressure vessel 1 as shown in the figure to seal the pressure vessel 1, and then, through the gas supply / discharge path,
After evacuating the pressure vessel 1 and performing gas replacement with argon gas twice, the argon gas in the vessel 1 is about 2 kgf / cm 2.
It was filled until the pressure of 2 was reached.
【0029】このとき、昇降軸5はその上下動範囲にお
ける上限位置で保持しており、これによって、図1に示
すように、るつぼ6は、細管部6aにおける上部側が特定
ヒータ間断熱材12bのほぼ中央の高さ位置に位置して保
持されている。その後、各ヒータ11a〜11dへの通電を
開始し、内部チャンバ3内が上方ほど温度の高い温度分
布状態を維持して昇温し、最終的に図1(b) に示す温度
分布が内部チャンバ3内に形成され保持されるように、
各ヒータ11a〜11dへの供給電力を制御した。上記の温
度分布は、特定ヒータ間断熱材12bにおけるほぼ中央の
高さ位置がGaAsの融点m.p.(=1238℃)の温度で、この融
点温度域m.p.をほぼ中央にして、温度勾配がほぼ20℃/
cmの急峻温度勾配領域AG が設けられている。At this time, the elevating shaft 5 is held at the upper limit position in its vertical movement range, and as a result, as shown in FIG. 1, in the crucible 6, the upper part of the thin tube portion 6a is provided with the specific heater insulation material 12b. It is held at a height position approximately at the center. After that, energization to each of the heaters 11a to 11d is started, and the inside of the internal chamber 3 is heated while maintaining a temperature distribution state in which the temperature is higher toward the top, and finally the temperature distribution shown in FIG. 3 to be formed and retained in
The power supply to each heater 11a-11d was controlled. In the above temperature distribution, the height of the center of the heat insulating material 12b between the specific heaters is the temperature of the melting point mp (= 1238 ° C.) of GaAs, and the temperature gradient is about 20 ° C. with the melting point temperature range mp being the center. /
A steep temperature gradient region A G of cm is provided.
【0030】このような温度分布を形成して加熱するこ
とにより、るつぼ6内は、種結晶15の下部側を残して原
料が融解し、種結晶15上に原料融液16が形成される。な
お、急峻温度勾配領域AG よりも下方には約 618℃の温
度領域A2を形成し、この温度にてリザーバ7内の高解離
圧元素12を加熱する。これにより、GaAsの融点温度にお
けるAsの平衡蒸気圧約1気圧に相当するAs蒸気がリザー
バ7から発生し、このAs蒸気で内部チャンバ3内が満た
される。By forming and heating such a temperature distribution, the raw material melts inside the crucible 6 except for the lower side of the seed crystal 15, and the raw material melt 16 is formed on the seed crystal 15. A temperature region A 2 of about 618 ° C. is formed below the steep temperature gradient region A G , and the high dissociation pressure element 12 in the reservoir 7 is heated at this temperature. As a result, As vapor corresponding to the equilibrium vapor pressure of As of about 1 atm at the melting point temperature of GaAs is generated from the reservoir 7, and the interior chamber 3 is filled with this As vapor.
【0031】この状態で、昇降軸8を約1mm/hの速度で
徐々に下降させた。これにより、るつぼ6内の原料融液
16は、その下部側から順次融点温度域m.p.を通過して低
温側へと移動し、これに伴って、種結晶15に接する下部
側から固化して単結晶が成長する。この単結晶成長操作
時における融点近傍の温度分布に、従来に比べて顕著な
改善が認められた。特に成長界面での温度勾配の制御
は、従来、±1〜2℃のふらつきがあったが、本装置で
は±0.1℃以内と良好であった。また、各ヒータ11a〜
11dの出力も安定しており、従来のようなふらつきはみ
られなかった。In this state, the lifting shaft 8 was gradually lowered at a speed of about 1 mm / h. Thereby, the raw material melt in the crucible 6
16 gradually passes through the melting point temperature range mp from its lower side to move to the low temperature side, and accordingly, solidifies from the lower side in contact with the seed crystal 15 to grow a single crystal. A remarkable improvement was observed in the temperature distribution near the melting point during the single crystal growth operation as compared with the conventional one. In particular, the control of the temperature gradient at the growth interface has conventionally been fluctuated by ± 1 to 2 ° C, but in the present apparatus, it was good at within ± 0.1 ° C. Also, each heater 11a-
The output of 11d was also stable, and there was no wobble like in the past.
【0032】るつぼ6内の原料融液16を全て固化させて
単結晶成長を終了した後、各ヒータ11a〜11dへの通電
を停止し、その後、炉内温度が 300℃程度になった時点
で圧力容器1内のアルゴンガスを炉外に放出する操作を
行い、そして、ほぼ室温に下がったときに下蓋1cを下降
させて圧力容器1を開け、るつぼ6を回収して成長結晶
の取り出しを行った。After all the raw material melt 16 in the crucible 6 is solidified and the single crystal growth is completed, the energization of the heaters 11a to 11d is stopped, and thereafter, when the furnace temperature reaches about 300 ° C. The operation of releasing the argon gas in the pressure vessel 1 to the outside of the furnace is performed, and when the temperature has dropped to about room temperature, the lower lid 1c is lowered to open the pressure vessel 1, and the crucible 6 is recovered to take out the grown crystal. went.
【0033】上述の操作により、長さ約 250mmのGaAs単
結晶が得られ、これは、前述のように単結晶成長時の温
度分布を安定して制御できた結果、結晶欠陥の少ない良
質な単結晶であった。以上の説明のように、本実施形態
では、各ヒータ11a〜11dの周囲にヒータ間断熱材12a
〜12c・下部断熱材13・外側断熱材14a〜14dが設けら
れていることによって、単結晶成長時の温度分布が安定
し、これによって、品質に優れた単結晶を得ることが可
能となっている。By the above operation, a GaAs single crystal having a length of about 250 mm was obtained. As a result of the stable control of the temperature distribution during the growth of the single crystal as described above, a high quality single crystal with few crystal defects was obtained. It was a crystal. As described above, in the present embodiment, the inter-heater heat insulating material 12a is provided around each of the heaters 11a to 11d.
˜12c, the lower heat insulating material 13, and the outer heat insulating materials 14a to 14d provide stable temperature distribution during single crystal growth, which makes it possible to obtain a high quality single crystal. There is.
【0034】すなわち、各ヒータ間断熱材12a〜12cに
よって、各ヒータ11a〜11dが互いに区画され、これに
より、ヒータ間での熱輻射やガス対流による相互干渉が
抑制され、さらに各ヒータ11a〜11d毎の区画領域内で
の空間や、断熱筒2との間の空間が極力小さくなるよう
に構成されているので、各ヒータ11a〜11d毎の区画領
域内および炉内全体のガス対流の影響も抑制される。こ
の結果、各ヒータ11a〜11毎の制御の独立性が向上し、
温度のふらつきが大きく抑制される。That is, the inter-heater heat insulating materials 12a to 12c partition the heaters 11a to 11d from each other, thereby suppressing mutual interference due to heat radiation and gas convection between the heaters, and further, the heaters 11a to 11d. Since the space in each partitioned area and the space between the heat insulating cylinder 2 and each of the heaters 11a to 11d are configured to be as small as possible, the effect of gas convection in each partitioned area and the entire furnace is also exerted. Suppressed. As a result, the independence of control for each heater 11a-11 is improved,
Fluctuations in temperature are greatly suppressed.
【0035】特に上記では、融点温度近傍に従来よりも
急峻な温度勾配領域AG を形成して単結晶を成長させて
いる。つまり、この融点温度域近傍での温度勾配が急峻
である方が、温度のゆらぎ(ふらつき)に対しての成長
界面のゆらぎは小さくなる。例えば、0.5℃の温度のふ
らつきが生じた場合、温度勾配が20℃/cmのときには成
長界面のゆらぎは0.025cm にすぎず、これに対し、温度
勾配が1℃/cmでは成長界面が0.5cmもゆらいでしま
う。In particular, in the above, a single crystal is grown by forming a temperature gradient region A G which is steeper than the conventional temperature near the melting point temperature. In other words, the steeper the temperature gradient near the melting point temperature range, the smaller the fluctuation of the growth interface with respect to the fluctuation of the temperature (fluctuation). For example, when the temperature fluctuates at 0.5 ° C, the fluctuation of the growth interface is only 0.025 cm when the temperature gradient is 20 ° C / cm, while the fluctuation of the growth interface is 1 ° C / cm when the temperature gradient is 1 ° C / cm. It also fluctuates by 0.5 cm.
【0036】したがって、融点温度近傍に急峻な温度勾
配が形成されていることにより、成長結晶の再溶融、再
固化などが抑えられ、この結果、転位、双晶などの結晶
欠陥の低減された良質の単結晶を得ることができる。そ
して、本実施形態では、上記のような急峻温度勾配領域
AG を形成するために、この領域AG に対応する位置
に、厚さの厚い特定ヒータ間断熱材12bを配置してお
り、この断熱材12bを上下に挟む第2・第3ヒータ11b
・11cは相互干渉が充分に抑制される。したがって、第
2ヒータ11bを急峻温度勾配領域AG の高温側設定温度
で制御し、そして、断熱材12bで生じる温度低下が急峻
温度勾配領域AG の温度勾配に対応するように、第3ヒ
ータ11cの低温側制御温度を定めて制御することによ
り、互いに独立に精度良く制御し得るこれらヒータ11b
・11c間に、安定した急峻温度勾配領域AG を形成する
ことができる。Therefore, since the steep temperature gradient is formed in the vicinity of the melting point temperature, re-melting and re-solidifying of the grown crystal is suppressed, and as a result, crystal defects such as dislocations and twins are reduced and the quality is high. Can be obtained as a single crystal. In the present embodiment, in order to form the steep temperature gradient region A G as described above, a thick inter-heater insulating material 12b having a large thickness is arranged at a position corresponding to the region A G. Second and third heaters 11b sandwiching the heat insulating material 12b vertically
・ For 11c, mutual interference is sufficiently suppressed. Therefore, the second heater 11b is controlled at the set temperature on the high temperature side of the steep temperature gradient region A G , and the third heater 11b is adjusted so that the temperature drop occurring in the heat insulating material 12b corresponds to the temperature gradient of the steep temperature gradient region A G. These heaters 11b that can be accurately controlled independently of each other by deciding and controlling the low temperature side control temperature of 11c
A stable steep temperature gradient region A G can be formed between 11c.
【0037】このように、上記の加熱装置10では、各ヒ
ータ毎の制御の独立性が向上し、温度のふらつきが抑制
されると共に、安定した急峻温度勾配領域AG を形成し
た状態で単結晶成長を行うことによって、成長界面のゆ
らぎが極力小さく抑えられ、これにより、転位密度、双
晶などの結晶欠陥の少ない良質な単結晶を得ることがで
きる。また、シーディングを確実に行うことができるの
で、品質に優れた単結晶を再現性良く製造することがで
きる。As described above, in the above heating device 10, the control independence of each heater is improved, the fluctuation of the temperature is suppressed, and the single crystal is formed in the state where the stable steep temperature gradient region A G is formed. By performing the growth, the fluctuation of the growth interface can be suppressed as small as possible, whereby a high-quality single crystal with few crystal defects such as dislocation density and twins can be obtained. In addition, since seeding can be reliably performed, a single crystal with excellent quality can be manufactured with good reproducibility.
【0038】さらに上記では、リザーバ7内でAs蒸気を
発生させて内部チャンバ3内の蒸気圧を制御しながら単
結晶の成長を行うことにより、るつぼ6内のGaAs原料の
解離が抑制され、原料融液16から全体にわたって意図し
た組成の化合物半導体の単結晶を成長させることができ
る。 〔実施形態2〕次に、本発明の他の実施形態について図
2を参照して説明する。なお、前記の実施形態1で示し
た部材と同一の機能を有する部材には、同一の符号を付
記して説明を省略する。Further, in the above, by generating As vapor in the reservoir 7 and growing a single crystal while controlling the vapor pressure in the internal chamber 3, dissociation of the GaAs raw material in the crucible 6 is suppressed, and the raw material is suppressed. A single crystal of a compound semiconductor having an intended composition can be grown entirely from the melt 16. [Second Embodiment] Next, another embodiment of the present invention will be described with reference to FIG. Note that members having the same functions as the members described in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted.
【0039】同図(a) には、セラミックスの焼結炉とし
て構成した加熱処理装置を示している。この装置では、
内部チャンバ3の周囲に、前記と同様に4段のヒータ11
a〜11dを備える加熱装置10が設けられている。この加
熱装置10により、同図(b) に示すような山形の温度分
布、すなわち、高圧容器1内における高さ方向略中央位
置に焼結温度s.p.を超える焼結温度領域BS が狭い範囲
で形成され、そして、この焼結温度領域BS の上下両側
にそれぞれ急峻な温度勾配領域BG ・BG を有する温度
分布が形成される。FIG. 1A shows a heat treatment apparatus configured as a ceramics sintering furnace. In this device,
Around the inner chamber 3, there are four heaters 11 as described above.
A heating device 10 comprising a to 11d is provided. With this heating device 10, a mountain-shaped temperature distribution as shown in FIG. 1B, that is, a sintering temperature region B S exceeding the sintering temperature sp at a substantially central position in the high-pressure container 1 in the height direction is set within a narrow range. Then, a temperature distribution having steep temperature gradient regions B G and B G is formed on both upper and lower sides of the sintering temperature region B S.
【0040】このために、焼結温度領域BS に対応する
高さ位置に配置されている第2ヒータ11bは、同図(a)
に示すように、軸方向の長さを短くして形成され、そし
て、この第2ヒータ11bを上下に挟む各ヒータ間断熱材
12a・12bが、上記各急峻温度勾配領域BG ・BG に各
々対応する高さ位置に設定されると共に、これら断熱材
12a・12bは、下方のヒータ間断熱材12cよりも厚さを
厚くして形成されている。一方、下蓋1cを貫通する昇降
軸5の上面に、被加熱物としての処理材、例えばSi3N4
などのセラミックスの予備焼結体が保持されるようにな
っている。For this reason, the second heater 11b arranged at the height position corresponding to the sintering temperature region B S is shown in FIG.
As shown in FIG. 5, the heat insulating material between the heaters is formed by shortening the length in the axial direction, and sandwiches the second heater 11b vertically.
12a and 12b are set at height positions corresponding to the steep temperature gradient regions B G and B G , respectively, and these heat insulating materials are also provided.
12a and 12b are formed thicker than the heat insulating material 12c between the heaters below. On the other hand, the upper surface of the elevating shaft 5 passing through the lower lid 1c, process material as an object to be heated, for example, Si 3 N 4
The pre-sintered body of ceramics such as is held.
【0041】上記装置でSi3N4 の焼結を行う場合、この
被処理物21を昇降軸5上に保持させて高圧容器1を密閉
し、内部チャンバ3内に同図(b) の温度分布が形成され
るように各ヒータ11a〜11dへの供給電力を制御する。
この間、被処理物21は、その下端部が前記焼結温度領域
BS よりも上方に位置するように、昇降軸5を上限位置
に位置させて保持される。なお、このSi3N4 の焼結で
は、内部チャンバ3内にN2ガスが、また、内部チャンバ
3の外側には例えばアルゴンガスが所定の高圧圧力で充
填される。これにより、Si3N4 の分解を抑えると共に、
ヒータ等の劣化を抑制し得る雰囲気状態が高圧容器1内
に形成される。When performing sintering of Si 3 N 4 with the above apparatus, the object 21 to be processed is held on the elevating shaft 5 to seal the high-pressure container 1, and the internal chamber 3 is heated to the temperature shown in FIG. The electric power supplied to each of the heaters 11a to 11d is controlled so that the distribution is formed.
During this time, the object to be treated 21 is held with the elevating shaft 5 positioned at the upper limit position so that the lower end portion thereof is positioned above the sintering temperature region B S. In the sintering of Si 3 N 4 , the inside chamber 3 is filled with N 2 gas, and the outside of the inside chamber 3 is filled with, for example, argon gas at a predetermined high pressure. This suppresses the decomposition of Si 3 N 4 , and
An atmosphere state in which deterioration of the heater and the like can be suppressed is formed in the high-pressure container 1.
【0042】上記の温度分布に達すると、昇降軸5を所
定の速度で下降する。これにより、被処理物21は、焼結
温度領域BS を下端側から順次通過し、この温度領域B
S を通過することにより、未焼結部21aが下端側から順
次焼結される。このような操作で焼結箇所を精密に制御
するためには、焼結温度領域BS を狭くし、かつ、その
両側の温度勾配をできるだけ急峻にすることが望まし
く、このような温度勾配を、上記した加熱装置10により
安定して得ることができるようになっている。When the above temperature distribution is reached, the lifting shaft 5 is lowered at a predetermined speed. As a result, the workpiece 21 sequentially passes through the sintering temperature range B S from the lower end side, and the temperature range B S
By passing through S , the unsintered portion 21a is sequentially sintered from the lower end side. In order to precisely control the sintering location by such an operation, it is desirable to narrow the sintering temperature region B S and make the temperature gradients on both sides thereof as steep as possible. The heating device 10 described above can be stably provided.
【0043】なお、上記の各実施形態は本発明を限定す
るものではなく、本発明の範囲内で種々の変更が可能で
ある。例えば実施形態1では、垂直ブリッジマン法(VB
法)の単結晶成長装置に本発明を適用した例を挙げた
が、例えば水平ブリッジマン法(HB法)などのその他の
方式の装置も本発明を適用して構成することが可能であ
る。The above embodiments are not intended to limit the present invention, and various modifications can be made within the scope of the present invention. For example, in the first embodiment, the vertical Bridgman method (VB
Although the present invention is applied to a single crystal growth apparatus according to the present invention), other types of apparatus such as the horizontal Bridgman method (HB method) can also be configured by applying the present invention.
【0044】また、実施形態2では、被処理物21を下降
させて下端側から順次焼結する例を挙げたが、逆に被処
理物21を上昇させて、上端側から焼結させるようにする
ことも可能である。さらに、本発明は、このような焼結
の他、被処理物をその一端側から他端側へと熱処理する
熱処理装置として構成することも可能である。また、急
峻な温度勾配を設けて高温側の加熱領域と低温側の加熱
領域とを一つの装置内で互いに近接させて安定して形成
することができるので、被処理物を高温部から低温部へ
と短時間で移動させ、これによって、被処理物に急冷効
果をも付与するような熱処理装置として構成することも
可能である。Further, in the second embodiment, the example in which the object to be treated 21 is lowered and sequentially sintered from the lower end side is described, but conversely, the object to be treated 21 is raised and sintered from the upper end side. It is also possible to do so. Further, the present invention can be configured as a heat treatment apparatus for heat treating the object to be processed from one end side to the other end side in addition to such sintering. Further, a steep temperature gradient is provided so that the high-temperature side heating region and the low-temperature side heating region can be stably formed close to each other in one apparatus, so that the workpiece can be moved from the high-temperature portion to the low-temperature portion. The heat treatment apparatus can be configured to be moved in a short time to thereby impart a quenching effect to the object to be processed.
【0045】[0045]
【発明の効果】以上のように、本発明の加熱処理装置に
おいては、内部チャンバの外面に沿って並設されたヒー
タ間に、これらヒータ間を互いに区画する断熱材が設け
られ、そして、内部チャンバ内に形成する温度分布の急
峻温度勾配領域に対応する位置に、厚さの厚い断熱材が
設けられている。これにより、各ヒータ間の熱輻射や熱
対流による相互干渉が低減されて制御の独立性が向上す
ると共に、急峻温度勾配を精度良く安定して形成するこ
とができる。これにより、例えば単結晶製造装置におい
ては、成長界面でのゆらぎが少ない状態で単結晶成長を
行わせることができ、この結果、結晶欠陥密度の低減さ
れた良質の単結晶を得ることができる。As described above, in the heat treatment apparatus of the present invention, between the heaters arranged in parallel along the outer surface of the internal chamber, the heat insulating material for partitioning the heaters from each other is provided, and A thick heat insulating material is provided at a position corresponding to a steep temperature gradient region of the temperature distribution formed in the chamber. As a result, mutual interference due to heat radiation and heat convection between the heaters is reduced, control independence is improved, and a steep temperature gradient can be formed accurately and stably. As a result, for example, in a single crystal manufacturing apparatus, single crystal growth can be performed in a state where there is little fluctuation at the growth interface, and as a result, a good quality single crystal with reduced crystal defect density can be obtained.
【図1】本発明の一実施形態を示すものであって、同図
(a) は化合物半導体単結晶の製造装置として構成された
加熱処理装置を示す縦断面模式図、同図(b) は単結晶成
長操作時における装置内温度分布を示すグラフである。FIG. 1 shows an embodiment of the present invention, and FIG.
(a) is a schematic vertical cross-sectional view showing a heat treatment apparatus configured as an apparatus for producing a compound semiconductor single crystal, and (b) is a graph showing an in-apparatus temperature distribution during a single crystal growth operation.
【図2】本発明の他の実施形態を示すものであって、同
図(a) はセラミックスの焼結炉として構成された加熱処
理装置を示す縦断面模式図、同図(b) は焼結時の装置内
温度分布を示すグラフである。2A and 2B show another embodiment of the present invention, wherein FIG. 2A is a schematic vertical sectional view showing a heat treatment apparatus configured as a ceramics sintering furnace, and FIG. It is a graph which shows the temperature distribution in an apparatus at the time of connection.
【図3】従来の単結晶製造装置の一例を示す縦断面模式
図である。FIG. 3 is a schematic vertical sectional view showing an example of a conventional single crystal manufacturing apparatus.
1 高圧容器(炉体) 3 内部チャンバ 5 昇降軸(移動手段) 6 るつぼ(原料収納容器) 7 リザーバ 11a〜11d ヒータ 12a〜12c ヒータ間断熱材 DESCRIPTION OF SYMBOLS 1 High-pressure container (furnace body) 3 Internal chamber 5 Elevating shaft (moving means) 6 Crucible (raw material storage container) 7 Reservoirs 11a to 11d Heaters 12a to 12c Heater insulating material between heaters
───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 広 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 川中 岳穂 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hiroshi Okada 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Prefecture Kobe Steel Co., Ltd. Kobe Research Institute (72) Inventor Takeho Kawanaka Takatsuka, Nishi-ku, Kobe-shi, Hyogo Prefecture 1-5-5 stand, Kobe Steel, Ltd. Kobe Research Institute
Claims (5)
に沿って複数のヒータが並設され、これらヒータへの通
電により内部チャンバ内に所定の温度分布を形成する加
熱処理装置であって、 各ヒータ間に、隣接ヒータ間を通して内部チャンバの外
面に近接する位置まで延びる断熱材がそれぞれ介装さ
れ、 各隣接ヒータ間の間隙をほぼ埋める厚さの上記断熱材の
うちの特定の断熱材が、その厚さを他の断熱材よりも厚
さを厚くして、上記温度分布における局部的に温度勾配
が大きな急峻温度勾配領域に対応する位置に設けられて
いることを特徴とする加熱処理装置。1. A heat treatment apparatus in which a plurality of heaters are arranged in parallel along an outer surface of an internal chamber provided in a furnace body, and a predetermined temperature distribution is formed in the internal chamber by energizing these heaters. A heat insulating material extending between adjacent heaters to a position close to the outer surface of the internal chamber is interposed between the respective heaters, and a specific heat insulating material having a thickness that substantially fills the gap between the adjacent heaters is provided. A heat treatment device characterized in that its thickness is made thicker than that of the other heat insulating material and is provided at a position corresponding to a steep temperature gradient region where a temperature gradient is locally large in the temperature distribution. .
2,ZrO2等のセラミックス材料あるいはカーボン材料から
成ることを特徴とする請求項1記載の加熱処理装置。2. The heat insulating material is BN, SiC, Si 3 N 4 , AlN, Al 2 O 3 , SiO
2. The heat treatment apparatus according to claim 1, which is made of a ceramic material such as 2 , ZrO 2 or a carbon material.
移動手段をさらに備えていることを特徴とする請求項1
又は2記載の加熱処理装置。3. A moving means for moving an object to be heated within the internal chamber is further provided.
Or the heat treatment apparatus according to 2.
せることにより単結晶として成長する原料を被加熱物と
して収容する原料収納容器が設けられ、急峻温度勾配領
域が、上記単結晶の融点を含む温度領域に設定されてい
ることを特徴とする請求項3記載の加熱処理装置。4. A raw material storage container for storing as a material to be heated a raw material that grows as a single crystal by solidifying the raw material melt from the side in contact with the seed crystal, wherein the steep temperature gradient region is the melting point of the single crystal. The heat treatment apparatus according to claim 3, wherein the heat treatment apparatus is set in a temperature region including.
たはII−VI族化合物半導体の結晶成長用原料が用いられ
るときに、その構成元素中の高解離圧元素の蒸気を結晶
成長時に発生させて内部チャンバ内を所定の蒸気圧に維
持するためのリザーバが内部チャンバ内にさらに設けら
れていることを特徴とする請求項4記載の加熱処理装
置。5. When a raw material for crystal growth of a III-V group compound semiconductor or a II-VI group compound semiconductor is used as the raw material, vapor of a high dissociation pressure element in the constituent elements is generated during crystal growth. The heat treatment apparatus according to claim 4, wherein a reservoir for maintaining a predetermined vapor pressure in the inner chamber is further provided in the inner chamber.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02276596A JP3881052B2 (en) | 1996-02-08 | 1996-02-08 | Single crystal manufacturing equipment |
US08/659,013 US5698029A (en) | 1995-06-06 | 1996-06-04 | Vertical furnace for the growth of single crystals |
DE19622659A DE19622659C2 (en) | 1995-06-06 | 1996-06-05 | Vertical furnace for growing single crystals |
KR1019960020251A KR0165750B1 (en) | 1995-06-06 | 1996-06-07 | Vertical furnace for the growth of single crystals |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP02276596A JP3881052B2 (en) | 1996-02-08 | 1996-02-08 | Single crystal manufacturing equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH09208375A true JPH09208375A (en) | 1997-08-12 |
JP3881052B2 JP3881052B2 (en) | 2007-02-14 |
Family
ID=12091779
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP02276596A Expired - Fee Related JP3881052B2 (en) | 1995-06-06 | 1996-02-08 | Single crystal manufacturing equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3881052B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084681A1 (en) * | 2009-01-23 | 2010-07-29 | 日本碍子株式会社 | Group iiib nitride crystal manufacturing method |
JP2011026161A (en) * | 2009-07-23 | 2011-02-10 | Fujikura Ltd | Nitride single crystal and apparatus for producing the same |
US20150023866A1 (en) * | 2013-07-22 | 2015-01-22 | Rubicon Technology, Inc. | Method and system of producing large oxide crystals from a melt |
KR20170120501A (en) * | 2016-04-21 | 2017-10-31 | 신슈 다이가쿠 | Production apparatus for gallium oxide crystal and process for producing gallium oxide crystal |
JP2018048043A (en) * | 2016-09-21 | 2018-03-29 | 国立大学法人信州大学 | Manufacturing apparatus for lithium tantalate crystal, and manufacturing method for lithium tantalate crystal |
-
1996
- 1996-02-08 JP JP02276596A patent/JP3881052B2/en not_active Expired - Fee Related
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084681A1 (en) * | 2009-01-23 | 2010-07-29 | 日本碍子株式会社 | Group iiib nitride crystal manufacturing method |
JP5651480B2 (en) * | 2009-01-23 | 2015-01-14 | 日本碍子株式会社 | Method for producing group 3B nitride crystals |
JP2011026161A (en) * | 2009-07-23 | 2011-02-10 | Fujikura Ltd | Nitride single crystal and apparatus for producing the same |
US20150023866A1 (en) * | 2013-07-22 | 2015-01-22 | Rubicon Technology, Inc. | Method and system of producing large oxide crystals from a melt |
KR20170120501A (en) * | 2016-04-21 | 2017-10-31 | 신슈 다이가쿠 | Production apparatus for gallium oxide crystal and process for producing gallium oxide crystal |
KR20220005606A (en) * | 2016-04-21 | 2022-01-13 | 신슈 다이가쿠 | Production apparatus for gallium oxide crystal and process for producing gallium oxide crystal |
JP2018048043A (en) * | 2016-09-21 | 2018-03-29 | 国立大学法人信州大学 | Manufacturing apparatus for lithium tantalate crystal, and manufacturing method for lithium tantalate crystal |
Also Published As
Publication number | Publication date |
---|---|
JP3881052B2 (en) | 2007-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR0165750B1 (en) | Vertical furnace for the growth of single crystals | |
JP5526666B2 (en) | Sapphire single crystal manufacturing equipment | |
JP5413354B2 (en) | Silicon single crystal pulling apparatus and silicon single crystal manufacturing method | |
US5685907A (en) | Apparatus for preparing compound single crystals | |
JP6302192B2 (en) | Single crystal growth apparatus and method | |
US11661671B2 (en) | Technique for controlling temperature uniformity in crystal growth apparatus | |
EP3760765B1 (en) | System for horizontal growth of high-quality semiconductor single crystals, and method of manufacturing same | |
KR20180016480A (en) | Method for manufacturing silicon single crystal | |
JPH09208375A (en) | Apparatus for heat treatment | |
KR101842487B1 (en) | Glowing equipment and methods for lithium tantalate single crystal by crucible structure | |
JP3254329B2 (en) | Method and apparatus for producing compound single crystal | |
JP2000203981A (en) | Multiple single crystal producing device | |
JP3492820B2 (en) | Compound semiconductor single crystal manufacturing equipment | |
JPH10185455A (en) | Heat treating apparatus | |
JP3725700B2 (en) | Compound single crystal growth apparatus and method | |
JPH0710682A (en) | Drawing of single crystal and production machine therefor | |
JPH092890A (en) | Single crystal growth of compound semiconductor and apparatus therefor | |
JP2818552B2 (en) | Vertical single crystal manufacturing equipment | |
JPH08119784A (en) | Production of compound single crystal and production device therefor | |
JP3445046B2 (en) | Method and apparatus for producing compound crystal | |
US20120055396A1 (en) | Intermediate materials and methods for high-temperature applications | |
JPH0959090A (en) | Production of chemical single crystal and apparatus therefor | |
KR20220110088A (en) | Production apparatus for gallium oxide crystal and process for producing gallium oxide crystal | |
JP3697341B2 (en) | Compound single crystal production equipment and / or heat treatment equipment | |
JP2019189505A (en) | Method for manufacturing single crystal body |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050711 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060307 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060420 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060704 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060720 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061107 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061109 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20091117 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101117 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20111117 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20121117 Year of fee payment: 6 |
|
LAPS | Cancellation because of no payment of annual fees |