JPH092890A - Single crystal growth of compound semiconductor and apparatus therefor - Google Patents

Single crystal growth of compound semiconductor and apparatus therefor

Info

Publication number
JPH092890A
JPH092890A JP15041895A JP15041895A JPH092890A JP H092890 A JPH092890 A JP H092890A JP 15041895 A JP15041895 A JP 15041895A JP 15041895 A JP15041895 A JP 15041895A JP H092890 A JPH092890 A JP H092890A
Authority
JP
Japan
Prior art keywords
raw material
single crystal
crucible
container
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15041895A
Other languages
Japanese (ja)
Inventor
Takao Fujikawa
隆男 藤川
Kazuhiro Uehara
一浩 上原
Yoshihiko Sakashita
由彦 坂下
Hiroshi Okada
広 岡田
Takeo Kawanaka
岳穂 川中
Seiichiro Omoto
誠一郎 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP15041895A priority Critical patent/JPH092890A/en
Publication of JPH092890A publication Critical patent/JPH092890A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE: To grow a single crystal having stable composition and excellent quality of a readily dissociating and evapotranspiring compound semiconductor by forming a heating region having a temperature at one end side higher than another end side in a furnace and growing a single crystal from a raw material melt in a specific state by a simpler construction. CONSTITUTION: A heating region having upper temperature higher than lower part is provided in a furnace body 1, and on the other hand, a first crucible 10 receiving a raw material for single crystal growth and a second crucible 11 receiving a raw material containing about the same composition as the raw material for single crystal growth are received in a sealing vessel 12 so that the second crucible 11 is placed on the upper part of the first crucible 10. A single crystal is grown from the raw material melt in the first crucible 10 by raising and lowering a temperature of the sealed vessel 12 in the heating region. The raw material in the second raw material-receiving vessel preferentially proceeds the dissociation according to the temperature rising and a gas of a high dissociation pressure component generates in the sealed vessel by the single crystal growing method of the compound semiconductor. By the gas, the dissociation in the first raw material receiving vessel is suppressed, and therefore, any of the components is suppressed as well as possible in the first raw material receiving vessel and a single crystal of excellent quality having an intended composition is grown.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばZnSeやCdTeなど
のII−VI族、InP,GaP などのIII-V族、或いはこれらの
三元系化合物など、結晶成長を行う際の高温下で成分元
素の一部が解離して蒸散し易い化合物半導体の単結晶製
造方法及びその製造装置に関するものである。
BACKGROUND OF THE INVENTION The present invention is applied to a II-VI group such as ZnSe or CdTe, a III-V group such as InP or GaP, or a ternary compound thereof under high temperature during crystal growth. The present invention relates to a method for producing a single crystal of a compound semiconductor in which a part of constituent elements are dissociated and easily evaporated, and an apparatus for producing the same.

【0002】[0002]

【従来の技術】従来、特定の成分が解離蒸散しやすい化
合物半導体の単結晶の製造に、液体封止チョコラルスキ
ー法(LEC法)、水平ブリッジマン法(HB法)、垂直ブリ
ッジマン法(VB法)、縦形温度勾配凝固法(VGF法)など
が用いられている。これらの中で、VB法,VGF法は、比較
的大形で転位の少ない良質の単結晶を製造できることか
ら、工業的な手法として大きな期待が寄せられている。
2. Description of the Related Art Conventionally, liquid-encapsulated Czochralski method (LEC method), horizontal Bridgman method (HB method), and vertical Bridgman method (VB) have been used to manufacture single crystals of compound semiconductors in which specific components are easily dissociated and evaporated. Method), vertical temperature gradient solidification method (VGF method), etc. are used. Among them, the VB method and the VGF method are highly expected as industrial methods because they can produce high-quality single crystals that are relatively large and have few dislocations.

【0003】ところで、化合物半導体の原料を加熱溶融
し単結晶として成長させる際に、特定の成分が解離して
蒸散すると、できあがった単結晶の組成がずれて所期の
単結晶が得られなくなる。そこで、例えば特開昭64-374
88号公報には、縦型ブリッジマン法により単結晶を成長
させる際に、図4に示すように、石英から成る反応管41
を上下方向中間部分がくびれた形状で作製し、上方の成
長室41a内に原料42を収容する原料収納容器43を配置す
る一方、下方の空間に蒸気圧制御用原料44を収容して単
結晶の成長を行う方法が開示されている。
By the way, when a raw material of a compound semiconductor is heated and melted to grow as a single crystal, if a specific component dissociates and evaporates, the composition of the completed single crystal is deviated and the desired single crystal cannot be obtained. Therefore, for example, Japanese Patent Laid-Open No. 64-374
No. 88 discloses a reaction tube 41 made of quartz, as shown in FIG. 4, when growing a single crystal by the vertical Bridgman method.
And a raw material storage container 43 for storing the raw material 42 in the upper growth chamber 41a, and a raw material 44 for vapor pressure control in the lower space. There is disclosed a method of growing the.

【0004】その方法で例えばCdZnTeの単結晶を成長さ
せる場合、CdとZnが蒸気圧制御用原料44として収容され
る。そして、CdZnTeの結晶成長用原料42を収容した原料
収納容器43を成長室41a内に装入した後、反応管41が密
閉状とされる。その後、上部ヒータ45により原料収納容
器43内の原料42を加熱溶融した後、1140℃から1050℃ま
で徐冷して単結晶を成長させる操作が行われる。
When, for example, a CdZnTe single crystal is grown by this method, Cd and Zn are contained as the vapor pressure control raw material 44. Then, after the raw material storage container 43 containing the CdZnTe crystal growth raw material 42 is charged into the growth chamber 41a, the reaction tube 41 is sealed. Then, the raw material 42 in the raw material container 43 is heated and melted by the upper heater 45, and then gradually cooled from 1140 ° C. to 1050 ° C. to grow a single crystal.

【0005】この間、蒸気圧制御用原料44は下部ヒータ
46により 820℃の温度に保持される。これによって、溶
融した蒸気圧制御用原料44からその加熱温度に応じた蒸
気圧のCdおよびZn蒸気が発生し、この蒸気で成長室41a
内の雰囲気も制御される。この結果、原料収納容器43内
の解離が抑えられ、融液組成の変化が抑制された状態で
単結晶が成長する。
During this time, the vapor pressure control raw material 44 is the lower heater.
The temperature of 820 ° C is maintained by 46. As a result, Cd and Zn vapors having a vapor pressure according to the heating temperature are generated from the molten vapor pressure control raw material 44, and the growth chamber 41a is generated by this vapor.
The atmosphere inside is also controlled. As a result, dissociation in the raw material container 43 is suppressed, and the single crystal grows in a state in which the change in melt composition is suppressed.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、上記し
た公報記載の方法においては、下方に設けた蒸気圧制御
用原料44に対する下部ヒータ46による加熱を、上部ヒー
タ45による原料42の加熱とは独立に、精密に制御し得る
ように構成することが必要である。これは、反応管41の
下端部に設けた熱電対での測温信号に基づいて行うよう
になっているが、測温精度の管理等といった煩雑な管理
作業が必要になる。
However, in the method described in the above publication, the heating of the vapor pressure control raw material 44 provided below by the lower heater 46 is performed independently of the heating of the raw material 42 by the upper heater 45. It is necessary to configure so that it can be precisely controlled. This is performed based on the temperature measurement signal from the thermocouple provided at the lower end of the reaction tube 41, but complicated management work such as management of temperature measurement accuracy is required.

【0007】また、上記公報記載の構成では、例えばZn
Seのように融点が1520℃と高く、かつ、融解時のZnの解
離圧が2kgf/cm2 となるような化合物半導体では、この
解離圧に基づく内外圧力差による力が密閉状の反応管41
に作用する。したがって、高温で高強度を有する材料で
反応管41を作製することが必要となり、その材料の選択
範囲が大きく制約されるために、上記の方法は適用が困
難なものとなる。
In the structure described in the above publication, for example, Zn
In a compound semiconductor such as Se which has a high melting point of 1520 ° C and a dissociation pressure of Zn at the time of melting of 2 kgf / cm 2 , the force due to the internal / external pressure difference based on this dissociation pressure causes the sealed reaction tube 41.
Act on. Therefore, it is necessary to manufacture the reaction tube 41 with a material having high strength at high temperature, and the selection range of the material is greatly restricted, so that the above method is difficult to apply.

【0008】本発明は、上記した従来の問題点に鑑みな
されたものであって、その目的は、解離蒸散し易い化合
物半導体について、より簡単な構成で組成が安定した良
質の単結晶を成長させ得る化合物半導体の単結晶成長方
法を提供することにあり、さらに、解離圧が高い化合物
半導体についても、より効率的に製造し得る単結晶製造
装置を提供することにある。
The present invention has been made in view of the above-mentioned conventional problems, and an object thereof is to grow a high-quality single crystal having a stable composition with a simpler structure for a compound semiconductor which is easily dissociated and evaporated. It is to provide a method for growing a single crystal of a compound semiconductor to be obtained, and further to provide an apparatus for producing a single crystal that can more efficiently produce a compound semiconductor having a high dissociation pressure.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の化合物半導体の単結晶成長方法は、炉体
内に一端側よりも他端側の温度を高くした加熱領域を形
成する一方、単結晶成長用の原料を収容した第1原料収
納容器と、上記単結晶成長用の原料とほぼ同一組成の原
料を収容した第2原料収納容器とを、第1原料収納容器
における上記他端側に第2原料収納容器を位置させて両
容器を囲う気密性容器内に収納し、この気密性容器を上
記加熱領域で昇降温することにより、第1原料収納容器
内の原料の融液から単結晶を成長させることを特徴とし
ている。
In order to achieve the above object, in the method for growing a single crystal of a compound semiconductor of the present invention, a heating region in which the temperature of the other end side is higher than that of the one end side is formed in the furnace body. On the other hand, the first raw material storage container containing the raw material for single crystal growth and the second raw material storage container containing the raw material having substantially the same composition as the raw material for single crystal growth are The second raw material storage container is located on the end side and stored in an airtight container surrounding both containers, and the temperature of the airtight container is raised and lowered in the heating region to melt the raw material in the first raw material storage container. It is characterized by growing a single crystal from.

【0010】なお、上記の第1原料収納容器における一
端側に種結晶を配置し、この種結晶に接する側の融液か
ら単結晶を成長させることが望ましい。一方、本発明の
化合物半導体の単結晶製造装置は、外部に接続されるガ
ス供給排出路を有する密閉状の炉体と、炉体内に一端側
よりも他端側の温度を高くした加熱領域を形成すべく炉
体内に設けられた加熱手段と、単結晶成長用の原料を収
容する第1原料収納容器と、上記単結晶成長用の原料と
ほぼ同一組成の原料を収容する第2原料収納容器と、第
1原料収納容器における上記他端側に第2原料収納容器
を位置させて両容器を収納し加熱領域に配置される気密
性容器と、気密性容器を加熱手段よりも内側で囲う気密
性材料からなるチャンバーとを備え、上記気密性容器
に、この気密性容器の内外を連通する連通孔が設けられ
る一方、加熱手段よりも下方にチャンバー内外を相互に
連通する通気開口が設けられていることを特徴としてい
る。
It is desirable to dispose a seed crystal on one end side of the first raw material container and grow a single crystal from the melt on the side in contact with the seed crystal. On the other hand, the apparatus for producing a single crystal of a compound semiconductor of the present invention includes a closed furnace body having a gas supply / discharge passage connected to the outside, and a heating region in which the temperature of the other end side is higher than that of the one end side in the furnace body. A heating means provided in the furnace body for forming, a first raw material storage container for storing a raw material for single crystal growth, and a second raw material storage container for storing a raw material having substantially the same composition as the raw material for single crystal growth. An airtight container in which the second raw material storage container is located on the other end side of the first raw material storage container and both containers are stored in the heating area; and an airtight container surrounding the airtight container inside the heating means. A chamber made of a conductive material, the airtight container is provided with a communication hole for communicating the inside and the outside of the airtight container, and a ventilation opening is provided below the heating means for communicating the inside and outside of the chamber with each other. It is characterized by being.

【0011】[0011]

【作用】本発明の化合物半導体の単結晶成長方法での作
用について、例えば縦形温度勾配凝固法に基づく炉体構
成への適用例を挙げて説明する。この場合、炉体内に下
方(一端側)よりも上方(他端側)の温度を高くした加
熱領域が形成され、この加熱領域に、単結晶成長用の原
料を収容した第1原料収納容器が配置され、昇降温され
ることにより、この原料収納容器内の原料融液から単結
晶が成長する。
The operation of the compound semiconductor single crystal growth method of the present invention will be described with reference to an example of application to a furnace structure based on the vertical temperature gradient solidification method. In this case, a heating region in which the temperature is raised above (on the other end side) below (on the one end side) is formed in the furnace body, and in this heating region, the first raw material container for storing the raw material for single crystal growth is formed. The single crystal is grown from the raw material melt in the raw material storage container by being arranged and being heated and lowered.

【0012】このとき、第1原料収納容器の上方(他端
側)に位置する第2原料収納容器も、第1原料収納容器
と同時に加熱され、その加熱温度は、第1原料収納容器
よりも常に高い温度に維持される。これにより、昇温に
伴う解離は、第2原料収納容器内の原料が先に進行し、
高解離圧成分の蒸気が気密性容器内に発生する。この蒸
気により、第1原料収納容器内の解離が抑制され、この
結果、第1原料収納容器内では組成のずれが極力抑えら
れ、意図した組成の良質の単結晶が成長することにな
る。
At this time, the second raw material storage container located above the first raw material storage container (on the other end side) is also heated at the same time as the first raw material storage container, and its heating temperature is higher than that of the first raw material storage container. It is always maintained at a high temperature. As a result, the dissociation accompanying the temperature rise advances first in the raw material in the second raw material storage container,
High dissociation pressure component vapor is generated in the airtight container. The vapor suppresses dissociation in the first raw material storage container, and as a result, composition deviation is suppressed as much as possible in the first raw material storage container, and a high-quality single crystal having the intended composition grows.

【0013】しかも、上記では第2原料収納容器の加熱
温度を第1原料収納容器とは独立に制御する必要がない
ので、全体の構成が簡単になる。なお、第1原料収納容
器の一端側(下端側)に種結晶を配置して結晶成長を行
うことにより、全体が所定の方位の単結晶を確実に成長
させることができる。一方、本発明の化合物半導体の単
結晶製造装置は、第1・第2原料収納容器を収容する気
密性容器に内外の圧力差を生じさせない連通孔が設けら
れている。このため、加熱時の解離による蒸気圧が高い
場合でも、気密性容器に内外圧力差による力は作用しな
い。これにより、気密性容器としては耐熱性を備えてい
れば高強度である必要はないので、作製が容易となる。
また、材料の選定範囲が広がるので、成長結晶に対して
極力汚染しない材料の選定が可能となる。
Moreover, in the above, since it is not necessary to control the heating temperature of the second raw material storage container independently of the first raw material storage container, the overall structure is simplified. In addition, by disposing a seed crystal on one end side (lower end side) of the first raw material container to perform crystal growth, it is possible to surely grow a single crystal having a predetermined orientation as a whole. On the other hand, in the compound semiconductor single crystal production apparatus of the present invention, the airtight container for accommodating the first and second raw material accommodating containers is provided with the communication hole that does not cause a pressure difference between the inside and the outside. Therefore, even if the vapor pressure due to dissociation during heating is high, the force due to the difference between the internal pressure and the external pressure does not act on the airtight container. As a result, the airtight container does not need to have high strength as long as it has heat resistance, which facilitates the production.
Further, since the material selection range is expanded, it is possible to select a material that does not pollute the growing crystal as much as possible.

【0014】さらに、下方の通気開口で内外が連通する
チャンバーで気密性容器を囲うことにより、気密性容器
の連通孔を通して流出した蒸気は、チャンバー内で上方
から通気開口に向かって下降する。このとき、加熱手段
による加熱領域から下方に離れた通気開口を低温状態に
しておくことによって、蒸気をこの部位で析出させるよ
うにすることができる。この結果、チャンバーの外側の
加熱手段等に蒸気が触れることがないので、短絡事故等
の発生が防止される。
Further, by enclosing the airtight container in the chamber whose inside and outside communicate with each other at the lower ventilation opening, the vapor flowing out through the communication hole of the airtight container descends from the upper side toward the ventilation opening in the chamber. At this time, it is possible to cause the vapor to be deposited at this portion by keeping the ventilation opening, which is located below the heating region by the heating means, in a low temperature state. As a result, steam does not come into contact with the heating means or the like outside the chamber, so that a short-circuit accident or the like is prevented.

【0015】[0015]

【実施例】【Example】

〔実施例1〕次に、本発明の具体的な実施例について、
図1及び図2を参照して説明する。図1は、縦形温度勾
配凝固法(VGF法)による単結晶製造装置を示すもので、
この装置は、耐圧構造を有する炉体としての高圧容器1
と、高圧容器1内に配設された上部閉塞状の断熱構造体
2と、断熱構造体2の内部に配置された加熱ヒータ(加
熱手段)3と、加熱ヒータ3の内側に設けられたガス不
透過性の材料からなる逆コップ状のチャンバー4とを備
えている。
Embodiment 1 Next, a specific embodiment of the present invention will be described.
This will be described with reference to FIGS. FIG. 1 shows an apparatus for producing a single crystal by the vertical temperature gradient solidification method (VGF method).
This apparatus has a high-pressure vessel 1 as a furnace body having a pressure resistant structure.
An upper closed heat insulating structure 2 arranged in the high-pressure container 1, a heater (heating means) 3 arranged inside the heat insulating structure 2, and a gas provided inside the heater 3. And an inverted cup-shaped chamber 4 made of an impermeable material.

【0016】高圧容器1は、上面が閉塞した円筒状の高
圧容器本体5と、その下部開口に着脱自在に、かつ、気
密に装着された下蓋6とから構成されている。高圧容器
本体5の上壁面には、アルゴンガス等の不活性ガスを高
圧容器1内に加圧注入し、また、排出するためのガス供
給排出路7が設けられている。加熱ヒータ3は、円筒状
の複数のヒータエレメント8…が上下方向に複数段(図
の場合には4段)並設されたもので、各ヒータエレメン
ト8…は、各段部に設けられた温度検出器(図示せず)
での検出温度が各々の設定温度に維持されるように供給
電力が制御される。この供給電力の制御により、チャン
バー4内に、上方ほどより高温となる所定の温度勾配を
有する加熱領域が形成され、この温度勾配を設けたまま
昇降温することにより、後述する単結晶の成長が行われ
る。
The high-pressure container 1 is composed of a cylindrical high-pressure container main body 5 having an upper surface closed, and a lower lid 6 which is detachably and airtightly attached to a lower opening thereof. A gas supply / discharge passage 7 is provided on the upper wall surface of the high-pressure container main body 5 for injecting an inert gas such as argon gas into the high-pressure container 1 under pressure and discharging the same. The heater 3 is formed by arranging a plurality of cylindrical heater elements 8 ... In parallel in the vertical direction in a plurality of stages (4 stages in the figure), and each heater element 8 is provided in each stage portion. Temperature detector (not shown)
The supplied power is controlled so that the detected temperature at 1 is maintained at each set temperature. By controlling the supplied power, a heating region having a predetermined temperature gradient in which the temperature becomes higher in the upper part is formed in the chamber 4, and by raising and lowering the temperature while the temperature gradient is provided, the growth of a single crystal described later is performed. Done.

【0017】下蓋6上には、前記チャンバー4の内側に
位置する支持台9が載置されている。そして、この支持
台9上に、後述するように、単結晶成長用原料を収納し
た第1るつぼ(第1原料収納容器)10と、上記と同じ原
料を収納した第2るつぼ(第2原料収納容器)11とを収
納した気密性容器12が載置され、この気密性容器12の全
体が前記の加熱ヒータ3によって加熱されるようになっ
ている。なお、チャンバー4の下端縁と下蓋6との間に
隙間形状の通気開口13が形成され、この通気開口13を通
して、チャンバー4の内部と外部とが相互に連通するよ
うに構成されている。
On the lower lid 6, a support base 9 located inside the chamber 4 is placed. Then, as will be described later, a first crucible (first raw material storage container) 10 storing a single crystal growth raw material and a second crucible (second raw material storage) storing the same raw material as described above are mounted on the support base 9. An airtight container 12 containing a container 11 is placed, and the entire airtight container 12 is heated by the heater 3. A ventilation opening 13 having a gap shape is formed between the lower edge of the chamber 4 and the lower lid 6, and the inside and outside of the chamber 4 are configured to communicate with each other through the ventilation opening 13.

【0018】第1るつぼ10は例えばp-BNから成り、内径
約15mmで、図2に示すように、下端部に種結晶14を挿入
するための細管部10a が設けられている。この第1るつ
ぼ10を収容する気密性容器12は、モリブデン等の高融点
金属やグラッシーカーボンなどの耐熱性および気密性を
有する材料から成り、上端が開口した略円筒状の本体15
を備えている。この本体15は、第1るつぼ10の外径より
もやや大きな径を有し、その下端側の閉塞部分は、るつ
ぼ10における底部側のテーパ肩部10b から細管部10a に
沿う形状で形成されている。
The first crucible 10 is made of, for example, p-BN, has an inner diameter of about 15 mm, and is provided with a thin tube portion 10a for inserting the seed crystal 14 at the lower end portion as shown in FIG. The airtight container 12 for accommodating the first crucible 10 is made of a refractory metal such as molybdenum or a material having heat resistance and airtightness such as glassy carbon, and has a substantially cylindrical body 15 having an open upper end.
It has. The main body 15 has a diameter slightly larger than the outer diameter of the first crucible 10, and the closed portion on the lower end side thereof is formed in a shape extending from the tapered shoulder portion 10b on the bottom side of the crucible 10 to the narrow tube portion 10a. There is.

【0019】一方、本体15の上端開口部には、円筒状の
蓋体16が嵌挿されている。そして、本体15の上端側に外
嵌された締付けリング17と、この締付けリング17におけ
る上端側内周面の雌ねじ部に上方より螺着される押さえ
ねじ18とによって、本体15と蓋体16との各上端部周縁に
各々形成した鍔状部が、シールリング19を軸方向に挟着
して相互に固定されている。
On the other hand, a cylindrical lid body 16 is fitted into the upper end opening of the main body 15. Then, with the tightening ring 17 externally fitted to the upper end side of the main body 15, and the holding screw 18 screwed from above to the female screw portion of the upper end side inner peripheral surface of the tightening ring 17, the main body 15 and the lid body 16 are provided. The brim-shaped portions respectively formed on the peripheral edges of the respective upper end portions are fixed to each other by sandwiching the seal ring 19 in the axial direction.

【0020】蓋体16の中心には、上下に貫通する連通孔
(以下、キャピラリーという)21が形成されている。ま
た、押さえねじ18には、上記キャピラリー21と同軸上に
貫通穴22が形成されている。そして、上記蓋体16の下面
と第1るつぼ10の上縁との間に、前記第2るつぼ11が、
第1るつぼ10に上方から重ねて載置されている。この第
2るつぼ11も例えばp-BNから成り、第1るつぼ10とほぼ
同一の径を有する一方、その高さ寸法を小さくした小容
積のカップ形状で形成されている。なお、第1るつぼ10
の上縁には、第2るつぼ11が上方から密着状態で載置さ
れた場合でも、この第1るつぼ10の内外を相互に連通す
るための連通開口10c が切欠き形状で設けられている。
A communication hole (hereinafter referred to as a capillary) 21 is formed at the center of the lid body 16 and penetrates vertically. Further, the cap screw 18 has a through hole 22 formed coaxially with the capillary 21. The second crucible 11 is provided between the lower surface of the lid 16 and the upper edge of the first crucible 10.
It is placed on the first crucible 10 in a stacked manner from above. The second crucible 11 is also made of, for example, p-BN, has a diameter substantially the same as that of the first crucible 10, and is formed in a cup shape having a small height and a small volume. The first crucible 10
A communication opening 10c for communicating the inside and outside of the first crucible 10 with each other is provided in the upper edge of the first crucible 10 even when the second crucible 11 is placed in a close contact state from above.

【0021】次に、上記装置を用いてZnSe単結晶の製造
を行った場合の手順と、その結果の一例とを説明する。
まず、第1るつぼ10の細管部10a にロッド状のZnSe種結
晶14を挿入後、この第1るつぼ10にレイセオン社のCVD
法により製造された多結晶ZnSeの小塊約40gを充填し
た。また、第2るつぼ11に上記同様のZnSe約10gを入れ
て、これら両るつぼ10・11を図2に示すように気密性容
器12内に収納した。
Next, a procedure for producing a ZnSe single crystal using the above apparatus and an example of the result will be described.
First, a rod-shaped ZnSe seed crystal 14 is inserted into the thin tube portion 10a of the first crucible 10, and then the first crucible 10 is subjected to CVD by Raytheon Co.
About 40 g of polycrystalline ZnSe nodules produced by the method were filled. Further, about 10 g of ZnSe similar to the above was put in the second crucible 11, and these both crucibles 10 and 11 were housed in the airtight container 12 as shown in FIG.

【0022】次いで、高圧容器1の下蓋6を開けて支持
台9上に気密性容器12を載置した後、下蓋6を閉じて気
密性容器12を図1に示すように高圧容器1内にセットし
た。その後、ガス供給排出路7を通して高圧容器1内を
真空引きした後、5kgf/cm2のアルゴンガスを高圧容器1
内に供給して内部雰囲気の置換を行った。その後、5kgf
/cm2のアルゴンガスを注入し、次いで、加熱ヒータ3に
加熱電力を投入して加熱を開始した。昇温を続けて、気
密性容器12の上部側がZnSeの融点1520℃以上の1550℃
に、また、下部側は種結晶14が溶融せず残るように、15
15℃に加熱温度を調整し、第1・第2るつぼ10・11内の
ZnSe原料を全量溶融させた。このとき、高圧容器1内の
圧力は約10kgf/cm2 となった。
Next, after opening the lower lid 6 of the high-pressure container 1 and placing the airtight container 12 on the support 9, the lower lid 6 is closed to place the airtight container 12 in the high-pressure container 1 as shown in FIG. I set it inside. After that, the inside of the high-pressure vessel 1 was evacuated through the gas supply / discharge passage 7, and then 5 kgf / cm 2 of argon gas was supplied to the high-pressure vessel 1.
It was supplied inside to replace the internal atmosphere. Then 5kgf
Argon gas of / cm 2 was injected, and then heating power was applied to the heater 3 to start heating. Continuing to raise the temperature, the upper side of the airtight container 12 has a melting point of ZnSe of 1550 ° C, which is 1520 ° C or higher.
In addition, on the lower side, 15 so that the seed crystal 14 remains without melting.
Adjust the heating temperature to 15 ℃, and adjust the temperature in the first and second crucibles 10/11.
The entire ZnSe raw material was melted. At this time, the pressure in the high-pressure container 1 was about 10 kgf / cm 2 .

【0023】その後、上下方向中央の2つのヒータエレ
メント8・8への投入電力を調整して、融点に対応する
1520℃の温度領域がほぼ3mm/hで上方に移動するように
制御し、第1るつぼ10内で溶融したZnSe原料を、種結晶
14に接する底部側から上方に向かって結晶成長させた。
このように融点を超える温度まで加熱した後、降温させ
る結晶成長操作の過程では、原料の解離が昇温途中で徐
々に進行する。このとき、上記した構成では、上部に置
かれた第2るつぼ11が常に第1るつぼ10よりも高い温度
を維持して昇温されることになり、この結果、第2るつ
ぼ11に充填された原料が先に解離を始めて、気密性容器
12の内部の空間に高解離圧成分の蒸気を発生させる。こ
の蒸気により、第1るつぼ10内の原料あるいは融液の解
離(熱分解)が抑制される。したがって、第1るつぼ10
内では、全体にわたって意図した組成の結晶成長が行わ
れることになる。
Thereafter, the electric power supplied to the two heater elements 8 at the center in the vertical direction is adjusted to correspond to the melting point.
The ZnSe raw material melted in the first crucible 10 was controlled so that the temperature range of 1520 ° C. was moved upward at about 3 mm / h, and the seed crystal was used.
Crystals were grown upward from the bottom side in contact with 14.
In this way, in the course of the crystal growth operation in which the material is heated to a temperature above the melting point and then cooled, the dissociation of the raw materials gradually progresses during the temperature rise. At this time, in the above-mentioned configuration, the second crucible 11 placed on the upper side is always maintained at a temperature higher than that of the first crucible 10 and is heated, and as a result, the second crucible 11 is filled. The raw material begins to dissociate first, and the airtight container
The vapor of the high dissociation pressure component is generated in the space inside 12. The vapor suppresses dissociation (pyrolysis) of the raw material or melt in the first crucible 10. Therefore, the first crucible 10
Inside, the crystal growth of the intended composition will be performed throughout.

【0024】前記の結晶成長操作で第1るつぼ10内の融
液が全部固化したと判断された時点で、全体の温度を約
100℃/h の速度で降温し、さらに炉冷して温度が 150
℃以下になった時にアルゴンガスを放出して圧力を下げ
た。ほぼ室温になってから、高圧容器1を開けて気密性
容器12を取り出し、気密性容器12から両るつぼ10・11を
取り出した。
When it is determined that the melt in the first crucible 10 is completely solidified by the above crystal growth operation, the entire temperature is reduced to about
The temperature is lowered at a rate of 100 ° C / h, and the furnace is cooled to a temperature of 150
When the temperature became lower than 0 ° C, argon gas was released to lower the pressure. When the temperature reached almost room temperature, the high-pressure container 1 was opened, the airtight container 12 was taken out, and both crucibles 10 and 11 were taken out from the airtight container 12.

【0025】第1るつぼ10内のZnSe成長結晶は、一部に
双晶を含むものの、全体として一つの粒と考えられる黄
色透明な結晶であった。第1るつぼ10内の成長結晶の重
量は0.3%程度増加しており、雰囲気調整用の第2るつ
ぼ11内におけるZnSeの一部が蒸気となって、この第2る
つぼ11よりも下側に位置してより温度の低い第1るつぼ
10内に輸送されたものと思われる。
The ZnSe-grown crystal in the first crucible 10 was a yellow transparent crystal which was considered to be one grain as a whole, although it partially contained twin crystals. The weight of the grown crystal in the first crucible 10 is increased by about 0.3%, and a part of ZnSe in the second crucible 11 for adjusting the atmosphere becomes vapor, which is lower than the second crucible 11. 1st crucible located at the lower temperature
Probably transported within 10.

【0026】なお、第2るつぼ11内のZnSeの減量は、上
記の輸送分を除くと0.5%未満であり、この減量分はキ
ャピラリー21から気密性容器12外へ蒸散したものと考え
られるが、製造された単結晶の組成には影響を与えてい
ないことが確認された。このように、本実施例では、第
2るつぼ11内に成長結晶原料と同じ原料を収納して解離
成分の蒸気を発生させることで、第1るつぼ10内での解
離が抑制された結晶成長が行われる。この結果、成長結
晶の全体にわたって意図した組成の良質な単結晶を得る
ことができる。しかも、上記では、温度勾配を設けて昇
降温される加熱領域内に、第2るつぼ11を第1るつぼ10
より上方に配置するだけで、第2るつぼ11の加熱を第1
るつぼ10とは独立に制御する必要がないので、全体の構
成が簡単になる。
The amount of ZnSe in the second crucible 11 is less than 0.5% excluding the above-mentioned transport amount, and it is considered that this amount of loss is evaporated from the capillary 21 to the outside of the airtight container 12. However, it was confirmed that it did not affect the composition of the produced single crystal. As described above, in the present embodiment, the same raw material as the grown crystal raw material is stored in the second crucible 11 to generate the vapor of the dissociation component, so that the crystal growth in which the dissociation is suppressed in the first crucible 10 is performed. Done. As a result, a good-quality single crystal having the intended composition can be obtained over the entire grown crystal. Moreover, in the above description, the second crucible 11 and the first crucible 10 are provided in the heating region where a temperature gradient is provided to raise and lower the temperature.
The heating of the 2nd crucible 11 can
Since it does not need to be controlled independently of the crucible 10, the overall configuration is simple.

【0027】特に、第1るつぼ10と第2るつぼ11との温
度差が必要最小限となるように、両るつぼ10・11を隣接
させておけば、第1るつぼ10内の融液の解離防止に必要
な蒸気圧が、自発的に発生しているのと同じ状況にな
り、より組成が安定する。また、例えば二元素から構成
される化合物半導体が融液状態のときに、一方の成分の
みならず、他方の成分も蒸気となる場合(ZnSe他、多く
の場合がこれに相当する)、前記した従来例のように構
成元素の一部元素の蒸気圧の調整では、充分な解離の抑
制が行われ難いが、上記では成長結晶原料と同一の原料
を第2るつぼ11に充填しているので、より確実に解離を
抑えることができる。
In particular, if the two crucibles 10 and 11 are placed adjacent to each other so that the temperature difference between the first crucible 10 and the second crucible 11 becomes a necessary minimum, the melt in the first crucible 10 is prevented from dissociating. The vapor pressure required for the situation is the same as when it is spontaneously generated, and the composition becomes more stable. Further, for example, when a compound semiconductor composed of two elements is in a molten state, not only one component but also the other component becomes vapor (ZnSe, etc., often corresponds to this), as described above. By adjusting the vapor pressure of some of the constituent elements as in the conventional example, it is difficult to suppress sufficient dissociation, but in the above, since the same raw material as the growth crystal raw material is filled in the second crucible 11, The dissociation can be suppressed more reliably.

【0028】一方、上記実施例では、第1・第2るつぼ
10・11を収容する気密性容器12に内外の圧力差を生じさ
せないキャピラリー21が設けられている。このため、加
熱時の解離による蒸気圧が高い場合でも、気密性容器21
に内外圧力差による力は作用しない。これにより、気密
性容器21としては耐熱性を備えていれば高強度である必
要はないので、作製が容易となる。
On the other hand, in the above embodiment, the first and second crucibles are used.
An airtight container 12 accommodating 10 and 11 is provided with a capillary 21 that does not generate a pressure difference between the inside and the outside. Therefore, even if the vapor pressure due to dissociation during heating is high, the airtight container 21
The force due to the pressure difference between inside and outside does not act on. As a result, the airtight container 21 does not need to have high strength as long as it has heat resistance, so that the manufacturing becomes easy.

【0029】さらに、下方に通気開口13を設けたチャン
バー4が気密性容器12を囲うように設けられているの
で、上記のキャピラリー21を通して気密性容器12から流
出した蒸気は、チャンバー4内で上方から通気開口13に
向かって下降する。このとき、通気開口13は加熱ヒータ
3による加熱領域から下方に離れた部位に設けられてい
るので、この箇所を低温状態にしておくことによって、
蒸気をこの部位で析出させるようにすることができる。
この結果、チャンバー4の外側の加熱ヒータ3やこれへ
の電力供給部材等に蒸気が触れることがないので、短絡
事故等の発生が防止される。また、拡散した蒸気により
炉内全体が汚染されると、随時、炉内構造物を分解し清
浄化するなどの保守作業に多大な労力が必要となるが、
上記装置では、このような蒸気の炉内全体への拡散が抑
えられるため、保守作業が容易になり、これによって、
製造効率が向上する。
Further, since the chamber 4 having the ventilation opening 13 at the lower side is provided so as to surround the airtight container 12, the vapor flowing out of the airtight container 12 through the above-mentioned capillary 21 moves upward in the chamber 4. To the ventilation opening 13. At this time, since the ventilation opening 13 is provided at a portion distant downward from the heating region by the heater 3, by keeping this portion at a low temperature,
The vapor may be allowed to deposit at this site.
As a result, steam does not come into contact with the heater 3 on the outside of the chamber 4, the power supply member for the heater 3, and the like, so that occurrence of a short circuit accident or the like is prevented. Also, if the entire inside of the furnace is contaminated by the diffused steam, a great amount of labor is required for maintenance work such as disassembling and cleaning the internal structure of the furnace at any time.
In the above device, since the diffusion of such steam into the entire furnace is suppressed, maintenance work is facilitated, and by this,
Manufacturing efficiency is improved.

【0030】なお、上記のキャピラリー21が、第2るつ
ぼ11の上方に位置する蓋体16に設けられていることによ
り、発生した蒸気の一部がキャピラリー21から気密性容
器12の外部に蒸散しても、第1るつぼ10内における蒸気
成分の蒸気圧は大きな影響を受けることはない。また、
気密性容器12の蓋体16と本体15とを、機械加工性・耐熱
性に優れ、かつ、高温下でも接合しない黒鉛のような材
料を使用し、また、締付けリング17と押さえねじ18とか
ら成るねじ構造のクランプ機構を用いて蓋体16と本体15
とを締結することにより、気密性容器12内部のるつぼ10
・11等のハンドリングが極めて容易となり、気密性容器
12の繰返し使用が可能になる。
Since the above-mentioned capillary 21 is provided on the lid 16 located above the second crucible 11, a part of the generated vapor is evaporated from the capillary 21 to the outside of the airtight container 12. However, the vapor pressure of the vapor component in the first crucible 10 is not significantly affected. Also,
The lid 16 and the body 15 of the airtight container 12 are made of a material such as graphite that is excellent in machinability and heat resistance and does not bond even at high temperature, and from the tightening ring 17 and the cap screw 18. Lid body 16 and body 15 using a screw-type clamping mechanism consisting of
The crucible 10 inside the airtight container 12
・ Handling of 11 etc. is extremely easy and airtight container
12 times can be used repeatedly.

【0031】〔実施例2〕次に、本発明の他の実施例に
ついて図3を参照して説明する。なお、説明の便宜上、
前記の実施例1で示した部材と同一の機能を有する部材
には、同一の符号を付記して説明を省略する。図3に、
本実施例で用いた垂直ブリッジマン法による製造装置を
示す。この装置は、高圧容器本体5の下端開口が、リン
グ状下蓋6aと、このリング状下蓋6aの中央開口を塞ぐよ
うに下側から嵌着される内下蓋6bとの二部材によって覆
われている。一方、高圧容器本体5は上端開口状に形成
され、この開口を着脱自在に覆う上蓋5aに、ガス供給排
出路7が設けられている。
[Embodiment 2] Next, another embodiment of the present invention will be described with reference to FIG. For convenience of explanation,
Members having the same functions as the members shown in the first embodiment are denoted by the same reference numerals, and description thereof will be omitted. In FIG.
The manufacturing apparatus by the vertical Bridgman method used in this example is shown. In this device, the lower end opening of the high-pressure vessel main body 5 is covered by two members, a ring-shaped lower lid 6a and an inner lower lid 6b fitted from below so as to close the central opening of the ring-shaped lower lid 6a. It is being appreciated. On the other hand, the high-pressure vessel main body 5 is formed in an upper end opening shape, and a gas supply / discharge passage 7 is provided in an upper lid 5a that detachably covers the opening.

【0032】リング状下蓋6a上には、その内周縁に沿っ
て円筒状のチャンバ保持体31が立設されている。このチ
ャンバ保持体31の上端部で、前記断熱構造体2およびチ
ャンバー4が支持されている。なお、チャンバ保持体31
の下端部に、通気開口13が貫通穴形状で設けられ、この
通気開口13を通して、保持体31とその上に取付けられて
いるチャンバー4とで囲われる内部空間とその外側の空
間とが相互に連通した構成になっている。
On the ring-shaped lower lid 6a, a cylindrical chamber holder 31 is provided upright along the inner peripheral edge thereof. The heat insulating structure 2 and the chamber 4 are supported by the upper end of the chamber holder 31. The chamber holder 31
A ventilation opening 13 is provided in the lower end portion of the through hole in the shape of a through hole, and an internal space surrounded by the holding body 31 and the chamber 4 mounted thereon and a space outside thereof are mutually provided through the ventilation opening 13. It is configured to communicate.

【0033】内下蓋6bには、その中心を貫通して上下方
向に延びる昇降ロッド32が、内下蓋6bと気密に昇降自在
に設けられている。この昇降ロッド32の上端に支持台9
が取付けられ、この支持台9上に、前記実施例1と同様
の構成を有する気密性容器12が載置される。上記装置で
は、チャンバー4内が上方ほど高温の予め定められた温
度分布で保持されるように、ヒータエレメント8…への
供給電力が調整される。したがって、前記昇降ロッド32
を昇降させてチャンバー4内における気密性容器12の高
さ位置を変えることによって、気密性容器12の加熱温度
の制御が行われる。
An elevating rod 32 extending vertically through the center of the inner lower lid 6b is provided so as to be airtight with the inner lower lid 6b. A support base 9 is provided on the upper end of the lifting rod 32.
Is attached, and the airtight container 12 having the same configuration as that of the first embodiment is placed on the support 9. In the above apparatus, the electric power supplied to the heater elements 8 is adjusted so that the inside of the chamber 4 is maintained at a predetermined temperature distribution in which the temperature is higher toward the top. Therefore, the lifting rod 32
The heating temperature of the airtight container 12 is controlled by moving up and down to change the height position of the airtight container 12 in the chamber 4.

【0034】なお、上記ような装置構成においては、高
圧容器1内への気密性容器12の出し入れは、内下蓋6bの
みを下降させる操作で行うことができる。リング状下蓋
6a上のチャンバー保持体31およびその上のチャンバー4
や、これらの外側に配置されている加熱ヒータ3等は、
保守点検時以外の通常時は高圧容器1内に残したまま運
転される。
In the above apparatus configuration, the airtight container 12 can be taken in and out of the high-pressure container 1 by the operation of lowering only the inner lower lid 6b. Ring-shaped lower lid
Chamber holder 31 on 6a and chamber 4 on it
And the heaters 3 and the like arranged outside these,
During normal times other than maintenance and inspection, the high-pressure container 1 is operated while being left inside.

【0035】上記の製造装置を用いてZnSe単結晶の製造
を行ったときの具体的な操作手順とその結果の一例とに
ついて説明する。実施例1と同様の種結晶14とZnSe原料
を第1るつぼ10に、またZnSe原料を第2るつぼ11に入れ
て、これら両るつぼ10・11を気密性容器12内にセット
し、さらにこの気密性容器12を上記の垂直ブリッジマン
法による単結晶製造装置に、図3に示すようにセットし
た。
A specific operation procedure when producing a ZnSe single crystal using the above production apparatus and an example of the result will be described. The seed crystal 14 and the ZnSe raw material similar to those in Example 1 were placed in the first crucible 10 and the ZnSe raw material was placed in the second crucible 11, both crucibles 10 and 11 were set in the airtight container 12, and the airtightness was further improved. The sex container 12 was set in the single crystal manufacturing apparatus by the vertical Bridgman method as shown in FIG.

【0036】その後、真空引きとアルゴンガスとで炉内
雰囲気の置換操作を行った後、50kgf/cm2 のアルゴンガ
スを充填し、500 ℃/hの速度で種結晶14の部分が1510
℃、上部が1550℃となるようにして、原料を融解した。
このとき、圧力はほぼ100kgf/cm2となった。次いで、20
℃/cm の温度勾配下、降温速度3mm/hで気密性容器12全
体を引き下げた。気密性容器12の上部が1300℃となった
時点で炉冷し、気密性容器12の上部が300 ℃になった時
点でアルゴンガスを炉外に放出した。ほぼ室温に温度が
下がった時点で、炉を開放して気密性容器12を取り出し
た。
After that, the atmosphere in the furnace was replaced by vacuuming and argon gas, and then argon gas of 50 kgf / cm 2 was charged, and 1510 parts of the seed crystal 14 were filled at a rate of 500 ° C./h.
The raw material was melted at a temperature of 1550 ° C and an upper temperature of 1550 ° C.
At this time, the pressure was almost 100 kgf / cm 2 . Then 20
The airtight container 12 as a whole was pulled down at a temperature decreasing rate of 3 mm / h under a temperature gradient of ° C / cm 2. The furnace was cooled when the upper part of the airtight container 12 reached 1300 ° C., and argon gas was discharged to the outside of the furnace when the upper part of the airtight container 12 reached 300 ° C. When the temperature dropped to about room temperature, the furnace was opened and the airtight container 12 was taken out.

【0037】第1るつぼ10から取り出した成長結晶は透
明な黄色で、肉眼では殆ど双晶も観察されない美麗なも
のであった。組成を分析した結果、Zn:Se はほぼ1:1
であることが確認された。 〔比較例〕前記実施例1と同じ装置を用い、気密性容器
12内に第2るつぼ11を入れない他は、実施例1と同様の
手順と条件により、ZnSe単結晶の成長操作を行った。
The grown crystal taken out from the first crucible 10 was a transparent yellow color and was a beautiful one in which almost no twin crystal was observed with the naked eye. As a result of composition analysis, Zn: Se is almost 1: 1.
Was confirmed. [Comparative Example] The same apparatus as in Example 1 was used, and an airtight container was used.
A ZnSe single crystal growth operation was performed by the same procedure and conditions as in Example 1 except that the second crucible 11 was not placed in 12.

【0038】得られた成長結晶は、肉眼で観察すると黒
味を帯びており、約1%の重量減少が認められた。ま
た、双晶発生に起因する層状の模様が多く入っていた。
以上の説明のように、上記各実施例では、高解離圧の化
合物半導体単結晶の製造で意図した組成に調整するに際
し、高解離圧成分の蒸気圧制御用に該成分元素を独立に
加熱して蒸気を発生させる等の煩雑な手法を用いる必要
がない。例えば二成分系であれば、容易に1:1の組成
の化合物単結晶が製造可能となる。
The grown crystals thus obtained were blackish when observed with the naked eye, and a weight loss of about 1% was observed. In addition, there were many layered patterns due to twinning.
As described above, in each of the above examples, when adjusting the composition intended in the production of a compound semiconductor single crystal with a high dissociation pressure, the component elements are independently heated for controlling the vapor pressure of the high dissociation pressure component. There is no need to use a complicated method such as generating steam by using For example, with a two-component system, a compound single crystal having a composition of 1: 1 can be easily produced.

【0039】また、気密性材料からなる気密性容器12
に、その内外の圧力をキャピラリー21等の連通孔を設け
て内外圧力差による力が作用しないようになっているの
で、例えば100kgf/cm2以上の高圧の不活性ガス雰囲気で
の単結晶成長操作でもこれを容易に行うことが可能であ
り、単結晶成長操作を繰返して行う場合に組成の再現性
も良好であって、品質のばらつきが問題となる工業的な
単結晶の製造が非常に簡便化される。
An airtight container 12 made of an airtight material
In order to prevent the force due to the pressure difference between the inside and the outside from acting on the inside and outside pressures by providing a communication hole such as the capillary 21, single crystal growth operation in a high pressure inert gas atmosphere of 100 kgf / cm 2 or more, for example. However, it is possible to easily do this, and the reproducibility of the composition is good when the single crystal growth operation is repeated, and it is very easy to industrially produce a single crystal, which causes problems in quality variation. Be converted.

【0040】なお、本発明は上記実施例に限定されるも
のではなく、例えばZnSe以外のCdTeなどのII−VI族や、
InP,GaP などのIII-V族、或いはこれらの三元系化合物
など、結晶成長を行う際の高温下で成分元素の一部が解
離して蒸散し易い化合物半導体の単結晶製造方法及びそ
の製造装置に適用することが可能である。
The present invention is not limited to the above-mentioned embodiments. For example, II-VI group such as CdTe other than ZnSe,
Method for producing single crystal of compound semiconductor such as III-V group such as InP, GaP, etc., or ternary compounds thereof, in which a part of constituent elements are easily dissociated and dissipated at high temperature during crystal growth, and production thereof It can be applied to a device.

【0041】[0041]

【発明の効果】以上の説明のように、本発明の化合物半
導体の単結晶成長方法によれば、第1原料収納容器より
も高温側に位置する第2原料収納容器内での解離が先に
進行し、これによって第1原料収納容器内での解離が抑
えられるので、意図した組成の良質の単結晶を成長させ
ることができる。しかも、第2原料収納容器の加熱を第
1原料収納容器とは独立に制御する必要がないので、全
体の構成が簡単になる。
As described above, according to the method for growing a single crystal of a compound semiconductor of the present invention, dissociation occurs first in the second raw material storage container located on the higher temperature side than the first raw material storage container. Since this progresses and dissociation in the first raw material storage container is suppressed by this, a good quality single crystal having an intended composition can be grown. Moreover, since it is not necessary to control the heating of the second raw material storage container independently of the first raw material storage container, the overall configuration is simplified.

【0042】また、本発明の化合物半導体の単結晶製造
装置においては、第1・第2原料収納容器と共に高温ま
で加熱される気密性容器に内外差圧に伴う力は殆ど作用
しない。したがって、作製が容易であると共に、材料の
選定範囲が広がるので、成長結晶に対して極力汚染しな
い材料の選定が可能となり、これによっても、より良質
の単結晶を成長させることが可能になる。
In the compound semiconductor single crystal production apparatus of the present invention, the forces associated with the internal and external differential pressures hardly act on the airtight container heated to a high temperature together with the first and second raw material storage containers. Therefore, the production is easy, and the selection range of the material is widened, so that it is possible to select the material that does not contaminate the grown crystal as much as possible, which also makes it possible to grow a higher quality single crystal.

【0043】さらに、下方に通気開口を備えたチャンバ
ーで気密性容器を囲うことにより、気密性容器の連通孔
から流出する蒸気がチャンバー外に流れ出ることが防止
できる。この結果、例えば短絡事故等の発生を防止する
ための装置のメインテナンスが容易となるので、解離圧
の高い化合物半導体でも、その単結晶をより効率的に製
造することができる。
Further, by surrounding the airtight container with the chamber having the ventilation opening below, it is possible to prevent the vapor flowing out from the communication hole of the airtight container from flowing out of the chamber. As a result, for example, maintenance of a device for preventing occurrence of a short circuit accident or the like is facilitated, so that a single crystal of a compound semiconductor having a high dissociation pressure can be manufactured more efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例における単結晶製造装置の構
成を示す縦断面模式図である。
FIG. 1 is a schematic vertical sectional view showing a configuration of a single crystal manufacturing apparatus according to an embodiment of the present invention.

【図2】上記単結晶製造装置内にセットされる気密性容
器を示す縦断面図である。
FIG. 2 is a vertical cross-sectional view showing an airtight container set in the single crystal manufacturing apparatus.

【図3】本発明の他の実施例における単結晶製造装置の
構成を示す縦断面模式図である。
FIG. 3 is a schematic vertical sectional view showing a configuration of a single crystal manufacturing apparatus according to another embodiment of the present invention.

【図4】従来の単結晶製造装置の構成を示す縦断面模式
図である。
FIG. 4 is a schematic longitudinal sectional view showing the configuration of a conventional single crystal manufacturing apparatus.

【符号の説明】[Explanation of symbols]

1 高圧容器(炉体) 3 加熱ヒータ(加熱手段) 4 チャンバー 7 ガス供給排出路 10 第1るつぼ(第1原料収納容器) 11 第2るつぼ(第2原料収納容器) 12 気密性容器 13 通気開口 14 種結晶 21 キャピラリー(連通孔) DESCRIPTION OF SYMBOLS 1 High-pressure container (furnace body) 3 Heater (heating means) 4 Chamber 7 Gas supply / discharge passage 10 First crucible (first raw material storage container) 11 Second crucible (second raw material storage container) 12 Airtight container 13 Vent opening 14 seed crystals 21 capillaries (communication holes)

フロントページの続き (72)発明者 岡田 広 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 川中 岳穂 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内 (72)発明者 大元 誠一郎 兵庫県神戸市西区高塚台1丁目5番5号 株式会社神戸製鋼所神戸総合技術研究所内Front page continuation (72) Inventor Hiroshi Okada 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Inside Kobe Research Institute of Kobe Steel, Ltd. No. 5-5 Inside Kobe Research Institute of Kobe Steel, Ltd. (72) Inventor Seiichiro Omoto 1-5-5 Takatsukadai, Nishi-ku, Kobe-shi, Hyogo Inside Kobe Research Institute of Kobe Works, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 炉体内に一端側よりも他端側の温度を高
くした加熱領域を形成する一方、単結晶成長用の原料を
収容した第1原料収納容器と、上記単結晶成長用の原料
とほぼ同一組成の原料を収容した第2原料収納容器と
を、第1原料収納容器における上記他端側に第2原料収
納容器を位置させて両容器を囲う気密性容器内に収納
し、この気密性容器を上記加熱領域で昇降温することに
より、第1原料収納容器内の原料の融液から単結晶を成
長させることを特徴とする化合物半導体の単結晶成長方
法。
1. A first raw material container for holding a raw material for growing a single crystal while forming a heating region in which a temperature at the other end side is made higher than that at the one end side in the furnace body, and the raw material for growing the single crystal. And a second raw material storage container containing a raw material having substantially the same composition as that of the first raw material storage container, the second raw material storage container is located on the other end side of the first raw material storage container, and the second raw material storage container is stored in an airtight container surrounding both containers. A method for growing a single crystal of a compound semiconductor, wherein a single crystal is grown from a melt of a raw material in a first raw material storage container by raising and lowering the temperature of an airtight container in the heating region.
【請求項2】 第1原料収納容器における上記一端側に
種結晶を配置し、この種結晶に接する側の融液から単結
晶を成長させることを特徴とする化合物半導体の単結晶
成長方法。
2. A method for growing a single crystal of a compound semiconductor, comprising disposing a seed crystal on the one end side of the first raw material container and growing the single crystal from the melt on the side in contact with the seed crystal.
【請求項3】 外部に接続されるガス供給排出路を有す
る密閉状の炉体と、 炉体内に一端側よりも他端側の温度を高くした加熱領域
を形成すべく炉体内に設けられた加熱手段と、 単結晶成長用の原料を収容する第1原料収納容器と、 上記単結晶成長用の原料とほぼ同一組成の原料を収容す
る第2原料収納容器と、 第1原料収納容器における上記他端側に第2原料収納容
器を位置させて両容器を収納し加熱領域に配置される気
密性容器と、 気密性容器を加熱手段よりも内側で囲う気密性材料から
なるチャンバーとを備え、 上記気密性容器に、この気密性容器の内外を連通する連
通孔が設けられる一方、加熱手段よりも下方にチャンバ
ー内外を相互に連通する通気開口が設けられていること
を特徴とする化合物半導体の単結晶製造装置。
3. A closed furnace body having a gas supply / discharge path connected to the outside, and a furnace body provided to form a heating region in which the temperature of the other end side is higher than that of the one end side in the furnace body. Heating means, a first raw material storage container for storing a raw material for single crystal growth, a second raw material storage container for storing a raw material having substantially the same composition as the raw material for single crystal growth, and the above-mentioned first raw material storage container An airtight container, in which the second raw material storage container is located on the other end side and which stores both containers and is placed in the heating region, and a chamber made of an airtight material that surrounds the airtight container inside the heating means, The airtight container is provided with a communication hole for communicating the inside and the outside of the airtight container, while a ventilation opening for communicating the inside and the outside of the chamber is provided below the heating means. Single crystal manufacturing equipment.
JP15041895A 1995-06-16 1995-06-16 Single crystal growth of compound semiconductor and apparatus therefor Pending JPH092890A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15041895A JPH092890A (en) 1995-06-16 1995-06-16 Single crystal growth of compound semiconductor and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15041895A JPH092890A (en) 1995-06-16 1995-06-16 Single crystal growth of compound semiconductor and apparatus therefor

Publications (1)

Publication Number Publication Date
JPH092890A true JPH092890A (en) 1997-01-07

Family

ID=15496514

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15041895A Pending JPH092890A (en) 1995-06-16 1995-06-16 Single crystal growth of compound semiconductor and apparatus therefor

Country Status (1)

Country Link
JP (1) JPH092890A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603031A (en) * 2013-12-06 2014-02-26 北京大学东莞光电研究院 Method for preparation of high quality single crystal material by regulating internal flow field of kettle body
CN104357908A (en) * 2014-10-28 2015-02-18 西安建筑科技大学 Crystal growing device and application thereof for being used as fluoro boron beryllium acid potassium crystal growing device
CN104451859A (en) * 2014-10-28 2015-03-25 西安建筑科技大学 Method and device thereof for growing fluoro-boron beryllium kalium crystal
CN117232259A (en) * 2023-11-15 2023-12-15 国镓芯科(成都)半导体科技有限公司 Sectional type samming heating furnace

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603031A (en) * 2013-12-06 2014-02-26 北京大学东莞光电研究院 Method for preparation of high quality single crystal material by regulating internal flow field of kettle body
CN104357908A (en) * 2014-10-28 2015-02-18 西安建筑科技大学 Crystal growing device and application thereof for being used as fluoro boron beryllium acid potassium crystal growing device
CN104451859A (en) * 2014-10-28 2015-03-25 西安建筑科技大学 Method and device thereof for growing fluoro-boron beryllium kalium crystal
CN117232259A (en) * 2023-11-15 2023-12-15 国镓芯科(成都)半导体科技有限公司 Sectional type samming heating furnace
CN117232259B (en) * 2023-11-15 2024-01-26 国镓芯科(成都)半导体科技有限公司 Sectional type samming heating furnace

Similar Documents

Publication Publication Date Title
US4404172A (en) Method and apparatus for forming and growing a single crystal of a semiconductor compound
KR100246712B1 (en) Method and apparatus for preparing compound single crystals
KR100441357B1 (en) Single Crystal Pulling Method and Apparatus for its Implementation
US5698029A (en) Vertical furnace for the growth of single crystals
US4664742A (en) Method for growing single crystals of dissociative compounds
JPH092890A (en) Single crystal growth of compound semiconductor and apparatus therefor
JP2979770B2 (en) Single crystal manufacturing equipment
JP2004256392A (en) Method of manufacturing compound semiconductor crystal and compound semiconductor crystal
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP3881052B2 (en) Single crystal manufacturing equipment
KR100816764B1 (en) Synthetic apparatus of semiconductor polycrystal compound and synthetic method of the same
JP3725700B2 (en) Compound single crystal growth apparatus and method
JPH08119784A (en) Production of compound single crystal and production device therefor
JP3391598B2 (en) Compound semiconductor single crystal manufacturing apparatus and manufacturing method using the same
JP3492820B2 (en) Compound semiconductor single crystal manufacturing equipment
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JPH0959090A (en) Production of chemical single crystal and apparatus therefor
JP4549111B2 (en) GaAs polycrystal production furnace
JP2818552B2 (en) Vertical single crystal manufacturing equipment
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP2000016892A (en) Production apparatus of compound single crystal
JPH08259397A (en) Production of znse single crystal and device for producing the same
JPH05105585A (en) Method for growing compound semiconductor single crystal and device therefor
JP3445046B2 (en) Method and apparatus for producing compound crystal
JPH08259398A (en) Production of znse single crystal and device for producing the same