JP4549111B2 - GaAs polycrystal production furnace - Google Patents

GaAs polycrystal production furnace Download PDF

Info

Publication number
JP4549111B2
JP4549111B2 JP2004178246A JP2004178246A JP4549111B2 JP 4549111 B2 JP4549111 B2 JP 4549111B2 JP 2004178246 A JP2004178246 A JP 2004178246A JP 2004178246 A JP2004178246 A JP 2004178246A JP 4549111 B2 JP4549111 B2 JP 4549111B2
Authority
JP
Japan
Prior art keywords
crucible
gaas
polycrystalline
polycrystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004178246A
Other languages
Japanese (ja)
Other versions
JP2006001771A (en
Inventor
良一 中村
嘉和 大鹿
元一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2004178246A priority Critical patent/JP4549111B2/en
Publication of JP2006001771A publication Critical patent/JP2006001771A/en
Application granted granted Critical
Publication of JP4549111B2 publication Critical patent/JP4549111B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は,GaAs単結晶を成長させる際の原料となるGaAs多結晶製造炉に関する。 The present invention relates to a furnace for producing a GaAs polycrystal used as a raw material for growing a GaAs single crystal.

GaAsは自然界には存在しない物質であり,GaAsの単結晶を得るためには,原料となるGaとAsからGaAsを合成し,GaAs融液から単結晶を成長させる,という2段階を経る必要がある。そして,この2段階を経て単結晶を製造する方法は次の2つに大別される。   GaAs is a substance that does not exist in nature. In order to obtain a single crystal of GaAs, it is necessary to synthesize GaAs from raw materials Ga and As and to grow a single crystal from a GaAs melt. is there. And the method of manufacturing a single crystal through these two steps is roughly divided into the following two.

一つは,GaAsの合成工程と単結晶成長工程を分けて行う方法である。この方法では,合成用の装置でGaとAsからGaAsを合成し,まずGaAs多結晶を得る。その後,このGaAs多結晶を単結晶成長用のるつぼに充填し,単結晶成長装置でGaAs融液から単結晶を成長させる。GaAsの合成工程と単結晶の成長工程が独立していることから,2ステップ法とも呼ばれる。他の一つは,GaAsの合成と単結晶の成長を一連の工程として,同一装置内で連続して行う方法である。この方法は直接合成法とも呼ばれる。   One is a method in which a GaAs synthesis process and a single crystal growth process are performed separately. In this method, GaAs is synthesized from Ga and As by a synthesis apparatus, and first, GaAs polycrystal is obtained. Thereafter, the GaAs polycrystal is filled into a crucible for single crystal growth, and a single crystal is grown from a GaAs melt by a single crystal growth apparatus. Since the GaAs synthesis process and the single crystal growth process are independent, it is also called a two-step method. The other is a method in which the synthesis of GaAs and the growth of a single crystal are performed as a series of steps in a single apparatus. This method is also called a direct synthesis method.

しかしながら,GaAs合成中は,Asの昇華を防ぐためにるつぼを密閉するか6MPa前後の高圧にする必要があり,また,GaAs合成時と単結晶成長時とでは温度制御条件や体積変化などが異なることから,GaAsの合成と単結晶の成長を連続して行う直接合成法は困難なことが多く,GaAsの単結晶成長では2ステップ法が採られることが多い。また,各種あるGaAsの単結晶成長方法の中でもLEC法やHB法は比較的直接合成法が実現しやすく,実用化もされているが,るつぼ底部に種結晶を設置して単結晶成長を行うVB法やVGF法では,直接合成法では,GaAs合成中に種結晶の溶解を防ぐのが煩雑であり,また,種結晶の保持部が設けられたるつぼ自体の形状も複雑なため,直接合成法を行うと,Ga融液とAs固体の平均密度がGaAs固体の密度より大きいことにより,るつぼ破損といった問題もある。よって,特にVB法やVGF法で単結晶成長を行う場合は,2ステップ法が主流となっている。   However, during GaAs synthesis, the crucible must be sealed or high pressure around 6 MPa to prevent As sublimation, and temperature control conditions and volume changes differ between GaAs synthesis and single crystal growth. Therefore, the direct synthesis method in which the GaAs synthesis and the single crystal growth are continuously performed is often difficult, and the two-step method is often adopted in the GaAs single crystal growth. Among various GaAs single crystal growth methods, the LEC method and the HB method are relatively easy to realize a direct synthesis method and have been put to practical use. A single crystal is grown by placing a seed crystal at the bottom of the crucible. In the VB method and VGF method, in the direct synthesis method, it is cumbersome to prevent the dissolution of the seed crystal during GaAs synthesis, and the shape of the crucible itself provided with the seed crystal holding portion is also complicated, so that the direct synthesis is performed. When the method is carried out, the average density of Ga melt and As solid is larger than the density of GaAs solid, which causes a problem of crucible breakage. Therefore, especially when single crystal growth is performed by the VB method or the VGF method, the two-step method is the mainstream.

ここで,GaAs多結晶を製造する方法に関し,特開昭59−111923には,融解した液体Gaに気体Asを吹き込んでGaAsを合成する方法が開示されている。また,特開平3−275517には,As雰囲気中にGa液滴を落としてGaAs多結晶を得る方法が開示されている。   Here, regarding a method for producing GaAs polycrystal, Japanese Patent Application Laid-Open No. 59-111923 discloses a method of synthesizing GaAs by blowing gas As into molten liquid Ga. Japanese Patent Laid-Open No. 3-275517 discloses a method for obtaining a GaAs polycrystal by dropping Ga droplets in an As atmosphere.

特開昭59−111923号公報JP 59-111923 A 特開平3−275517号公報JP-A-3-275517

GaAs多結晶を製造する場合,合成したGaAsをHB法,LEC法,VB法,VGF法などを利用して固化させることができる。しかし,HB法では,円筒型のGaAs多結晶を製造することができない。2ステップ法において,そのように予め製造したGaAs多結晶を原料とし,VB法やVGF法で単結晶成長を行う場合,るつぼに入れられるGaAs多結晶は,円筒形状のるつぼ内に丁度隙間なく入るような円柱形状であることが望ましい。るつぼ内に円柱形状のGaAs多結晶を隙間なく入れることにより,原料充填率を高くすることができ,より長い単結晶を製造できるようになるので,製造効率が向上する。   When manufacturing a GaAs polycrystal, the synthesized GaAs can be solidified using the HB method, the LEC method, the VB method, the VGF method, or the like. However, the HB method cannot produce a cylindrical GaAs polycrystal. In the two-step method, when a GaAs polycrystal prepared in advance is used as a raw material and single crystal growth is performed by the VB method or the VGF method, the GaAs polycrystal put in the crucible enters the cylindrical crucible without any gaps. Such a cylindrical shape is desirable. By placing the cylindrical GaAs polycrystal in the crucible without any gap, the raw material filling rate can be increased and a longer single crystal can be manufactured, so that the manufacturing efficiency is improved.

ところが,HB法では,円筒型のGaAs多結晶を得ることができないため,VB法やVGF法で単結晶成長を行う場合,大きめに作ったGaAs多結晶を削ってるつぼ内に入る大きさの円柱形状にする作業が必要になる。このため,HB法でGaAs多結晶を製造した場合は,せっかく合成したGaAs多結晶の全部を単結晶成長の原料とすることができないため,原料ロスを生じてしまう。また,GaAs多結晶を削るといった余計な手間も必要となる。更に,原料ロスを小さくするためにGaAs多結晶を破砕して粒状のGaAs多結晶をるつぼ内にチャージした場合は,充填率が悪くなってしまう。   However, since the cylindrical GaAs polycrystal cannot be obtained by the HB method, when a single crystal growth is performed by the VB method or the VGF method, a large sized GaAs polycrystal is shaved to fit into a crucible. Work to shape is required. For this reason, when a GaAs polycrystal is manufactured by the HB method, the entire synthesized GaAs polycrystal cannot be used as a raw material for single crystal growth, resulting in a raw material loss. In addition, extra work such as cutting GaAs polycrystals is required. Furthermore, when the GaAs polycrystal is crushed to charge the granular GaAs polycrystal in the crucible in order to reduce the raw material loss, the filling rate is deteriorated.

一方,LEC法は,おおむね円筒型のGaAs多結晶を得ることができるが,それでも,るつぼ内に丁度隙間なく入れられるような綺麗な円柱形状のGaAs多結晶を製造することは困難である。LEC法でGaAs多結晶を製造する場合も,やはり大きめに作ったGaAs多結晶を削ってるつぼ内に入る大きさの円柱形状に加工する操作が必要になり,原料ロスを生じ,GaAs多結晶を削るといった余計な作業も必要となる。しかも,LEC法は結晶引上げの駆動機構が必要であるため,製造炉自体が高価になる傾向があり,コスト面で不利である。   On the other hand, the LEC method can obtain a generally cylindrical GaAs polycrystal, but it is still difficult to produce a clean columnar GaAs polycrystal that can be put in a crucible without any gaps. When manufacturing GaAs polycrystals by the LEC method, it is necessary to cut the large GaAs polycrystals into a cylindrical shape that fits into the crucible. Extra work such as shaving is also required. In addition, since the LEC method requires a crystal pulling drive mechanism, the manufacturing furnace itself tends to be expensive, which is disadvantageous in terms of cost.

これに対して,VB法やVGF法によれば,るつぼの形状や大きさを選択することにより,単結晶を成長させるるつぼ内に丁度隙間なく入れられるような円柱形状のGaAs多結晶を製造することができ,原料ロスを低減させ,GaAs多結晶を削る作業も不要となる。この場合,VB法やVGF法で単結晶成長を行うるつぼをそのまま用いてGaAs多結晶を製造することも考えられるが,そうすると,るつぼ破損といった問題を生ずることは上述した通りである。また,るつぼ内で合成したGaAsを種結晶を用いずに固化させることは相当に困難である。例えば,るつぼ内で合成したGaAsをるつぼの上部から固化させたのでは,固化したGaAsがるつぼの上部を塞いでしまうことになる。そうすると,GaAs融液は固化する際に体積膨張するので,上部を塞いだ状態でるつぼ内のGaAsの固化が底部に向って進行していくことにより,体積膨張に伴ってるつぼ内のGaAsの圧力が高まり,るつぼの破損を招く心配がある。また,るつぼ内で合成したGaAsをるつぼの下部から固化させようとしても,通常は,るつぼ底面の温度が不均一なため,るつぼ底面の温度の低い部分から局所的に固化が始り,塊状にGaAs多結晶が成長する。こうして,固化する際に体積膨張したGaAs多結晶は,GaAs融液よりも比重が小さいため,その比重差によってGaAs融液中を浮上し,結局は固化したGaAsがるつぼの上部を塞ぎ,同様の問題を生じてしまうことになる。   On the other hand, according to the VB method and the VGF method, by selecting the shape and size of the crucible, a cylindrical GaAs polycrystal that can be put into a crucible for growing a single crystal without any gap is manufactured. This reduces the material loss and eliminates the need for cutting GaAs polycrystals. In this case, it is conceivable to produce a GaAs polycrystal by using a crucible for single crystal growth by the VB method or the VGF method as it is. However, as described above, this causes a problem such as crucible breakage. In addition, it is considerably difficult to solidify GaAs synthesized in a crucible without using a seed crystal. For example, if GaAs synthesized in the crucible is solidified from the upper part of the crucible, the solidified GaAs will block the upper part of the crucible. Then, since the GaAs melt expands in volume when solidified, the solidification of GaAs in the crucible progresses toward the bottom with the top closed, so that the pressure of GaAs in the crucible accompanying volume expansion There is a concern that the crucible will be damaged. In addition, when trying to solidify the GaAs synthesized in the crucible from the bottom of the crucible, the temperature at the bottom of the crucible is usually non-uniform. GaAs polycrystal grows. Thus, the volume-expanded GaAs polycrystal has a specific gravity smaller than that of the GaAs melt, so that the difference in specific gravity causes the GaAs polycrystal to float up and eventually the solidified GaAs closes the top of the crucible. It will cause problems.

従って,本発明の目的は,るつぼ内で合成したGaAsをるつぼの下部から,浮上させること無く,上部に向って固化させていくことができるGaAs多結晶合成炉を提供することにある。 Accordingly, an object of the present invention, the synthesized GaAs in a crucible from the bottom of the crucible, without to float, to provide a synthesis furnace of GaAs polycrystal can go solidified toward the top.

この目標を達成するために,本発明によれば,GaAs多結晶を製造する方法であって,略円筒形状のるつぼ内にGaとAsと封止材を入れ,るつぼ内において,上方を封止材で封止した状態で,GaとAsを融解させてGaAsを合成した後,るつぼ底面の均熱を保持しつつ,融解させたGaAsをるつぼの下方から上方に向って固化させることを特徴とする,GaAs多結晶の製造方法が提供される。なお,本発明でいう「るつぼ底面の均熱」とは,るつぼの底面全体から結晶化が開始されて固化したGaAsがるつぼ底面に密着する温度分布である。   In order to achieve this goal, according to the present invention, there is provided a method for producing a GaAs polycrystal, in which Ga, As and a sealing material are placed in a substantially cylindrical crucible, and the upper part is sealed in the crucible. It is characterized in that after melting Ga and As and synthesizing GaAs in a state sealed with a material, the melted GaAs is solidified upward from below the crucible while maintaining the soaking of the bottom of the crucible. A method for producing GaAs polycrystals is provided. The term “soaking of the bottom of the crucible” in the present invention is a temperature distribution in which GaAs that has been crystallized from the entire bottom surface of the crucible and solidified adheres to the bottom of the crucible.

前記封止材としてBを用いることが好ましい。また,前記るつぼの下方から上方に向ってGaAsを固化させるに際し,7℃/cm以上で上方に向って昇温する温度勾配をGaAsの固液界面で形成させ,かつ,GaAsの固液界面の上昇速度を5mm/hr以上とすることが好ましい。 B 2 O 3 is preferably used as the sealing material. Further, when solidifying GaAs upward from below the crucible, a temperature gradient is formed at the solid-liquid interface of GaAs at a temperature gradient of 7 ° C./cm or higher, and at the solid-liquid interface of GaAs. The rising speed is preferably 5 mm / hr or more.

また,本発明によれば,そのような製造方法によって製造されたことを特徴とする,GaAs多結晶が提供される。また,GaAs単結晶の成長炉に備えられたるつぼ内に隙間なく入る形状を有することを特徴とする,GaAs多結晶が提供される。   The present invention also provides a GaAs polycrystal produced by such a production method. In addition, a GaAs polycrystal having a shape that fits into a crucible provided in a growth furnace for a GaAs single crystal without a gap is provided.

また本発明によれば,GaAs多結晶の製造炉であって,略円筒形状のるつぼと,このるつぼを保持するカーボン製のサセプタと,このサセプタの周囲に配置された,所望の温度勾配を形成させることが可能なヒータとを備え,前記サセプタの底面の厚みが,前記るつぼの内径の0.4倍以上であることを特徴とする,GaAs多結晶の製造炉が提供される。前記サセプタの底面を均熱する補助ヒータを備え,前記補助ヒータが前記サセプタの底面下方に配置されていても良い。 According to the present invention, there is also provided a furnace for producing GaAs polycrystal, which has a substantially cylindrical crucible, a carbon susceptor holding the crucible, and a desired temperature gradient disposed around the susceptor. There is provided a GaAs polycrystal manufacturing furnace, characterized in that the bottom surface of the susceptor is 0.4 times or more the inner diameter of the crucible. An auxiliary heater for soaking the bottom surface of the susceptor may be provided, and the auxiliary heater may be disposed below the bottom surface of the susceptor .

前記るつぼは,pBNからなることが好ましい。また,前記るつぼの内径は,GaAs単結晶の成長炉が備えるるつぼの内径と等しいか僅かに小さいことが好ましい。また,前記るつぼとヒータとを相対的に昇降させる昇降機構を有することが好ましい。   The crucible is preferably made of pBN. The inner diameter of the crucible is preferably equal to or slightly smaller than the inner diameter of the crucible provided in the GaAs single crystal growth furnace. Moreover, it is preferable to have a raising / lowering mechanism which raises / lowers the crucible and the heater relatively.

本発明によればるつぼを保持するカーボン製のサセプタの底面の厚みをるつぼの内径の0.4倍以上とすることによって,るつぼ底面の均熱を保持しつつ,融解させたGaAsをるつぼの下方から上方に向って固化させることができる。そして,このようにるつぼ底面の均熱を保持した状態でGaAsを固化させることにより,るつぼ底面上の局所的な塊状の固化が抑制され,底面全体から結晶化が開始されて固化したGaAsがるつぼ底面に密着するようになる。このためGaAs融液よりも比重の小さいGaAs固体が浮きあがらずに,るつぼ下部から上方へ成長するようになる。 According to the present invention, the thickness of the bottom surface of the carbon susceptor holding the crucible is set to 0.4 times or more the inner diameter of the crucible, so that the molten GaAs is kept in the crucible while maintaining the soaking of the crucible bottom. It can be solidified from below to above. Then, by solidifying GaAs while maintaining the soaking of the bottom of the crucible in this way, local lump solidification on the bottom of the crucible is suppressed, and the solidified GaAs is started by crystallization from the entire bottom. It comes in close contact with the bottom. For this reason, a GaAs solid having a specific gravity smaller than that of the GaAs melt does not float but grows upward from the lower part of the crucible.

また本発明によれば,GaAsの合成工程と単結晶成長工程を分けて行う2ステップ法において,その後,VB法やVGF法で単結晶成長を行うのに最適な,GaAs単結晶の成長炉に備えられた円筒形状のるつぼ内に丁度隙間なく入る円柱形状のGaAs多結晶を得ることができる。本発明によれば,VB法やVGF法で単結晶成長を行う場合の原料充填率を高くすることができ,より長い単結晶を成長できるようになるので,製造効率が向上する。また,本発明によって製造されたGaAs多結晶は,るつぼの下方から徐々に上方に向って固化されているので,偏析効果により,不純物が低減される。また,合成時に液体封止材としてBを用いることにより,ゲッタリング効果による不純物低減も可能になる。 Further, according to the present invention, in a two-step method in which a GaAs synthesis step and a single crystal growth step are separately performed, a GaAs single crystal growth furnace that is optimal for performing a single crystal growth by a VB method or a VGF method thereafter. A cylindrical GaAs polycrystal that can enter the cylindrical crucible provided without any gaps can be obtained. According to the present invention, it is possible to increase the raw material filling rate when single crystal growth is performed by the VB method or the VGF method, and it becomes possible to grow a longer single crystal, thereby improving the manufacturing efficiency. Further, since the GaAs polycrystal produced according to the present invention is solidified gradually from the bottom to the top of the crucible, impurities are reduced by the segregation effect. Further, by using B 2 O 3 as a liquid sealing material at the time of synthesis, impurities can be reduced by the gettering effect.

以下,本発明の好ましい実施の形態を図面を参照にして説明する。図1は,本発明の実施の形態にかかるGaAs多結晶の製造炉1(以下「多結晶製造炉1」と呼ぶ)の概略的な構成を示す縦断面図である。この多結晶製造炉1は,VB法によりGaAs多結晶を製造するものである。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a longitudinal sectional view showing a schematic configuration of a GaAs polycrystal production furnace 1 (hereinafter referred to as “polycrystal production furnace 1”) according to an embodiment of the present invention. This polycrystal production furnace 1 is for producing GaAs polycrystals by the VB method.

図1に示すように,多結晶製造炉1は,6MPa以上の圧力に耐えられる気密容器10の内部中央に,GaAs多結晶を製造するための多結晶製造るつぼ11(以下「多結晶製造るつぼ11」と呼ぶ)を配置した構成を有している。多結晶製造るつぼ11は,pBNで構成されている。多結晶製造るつぼ11は,上端が開口した円筒部12と,この円筒部12の下部を塞ぐ底面13を備えており,多結晶製造るつぼ11の内径dは,後述するGaAs単結晶の成長炉2に備えられている単結晶成長るつぼ31の内径と等しいか僅かに小さく設定されている。また,多結晶製造るつぼ11の底面13は略水平面であり,底面13には,種結晶を入れるような部分は設けられていない。   As shown in FIG. 1, a polycrystalline production furnace 1 includes a polycrystalline crucible 11 for producing GaAs polycrystal (hereinafter referred to as “polycrystalline production crucible 11” in the center of an airtight container 10 that can withstand a pressure of 6 MPa or more. ”) Is arranged. The polycrystalline crucible 11 is made of pBN. The polycrystalline manufacturing crucible 11 includes a cylindrical portion 12 having an open top and a bottom surface 13 that closes the lower portion of the cylindrical portion 12. The inner diameter d of the polycrystalline manufacturing crucible 11 is a growth furnace 2 for a GaAs single crystal described later. It is set to be equal to or slightly smaller than the inner diameter of the single crystal growth crucible 31 provided in FIG. Further, the bottom surface 13 of the polycrystalline crucible 11 is substantially horizontal, and the bottom surface 13 is not provided with a portion into which a seed crystal is placed.

多結晶製造るつぼ11は,底面が塞がれた円筒形状のカーボン製のサセプタ15に保持されている。サセプタ15は,ロッド16の上端に支持されている。サセプタ15は,上端が開口し底面が塞がれた円筒形状をなしており,その内部に単結晶成長るつぼ31を収納している。サセプタ15の底面の厚さtは,多結晶製造るつぼ11の内径dの0.4倍以上(t>0.4d)に設定されている。ロッド16の下端は,気密容器10の下面に装着されたシールリング17を介して,気密容器10の下方に突出しており,ロッド16の下端には回転昇降機構18が接続してある。そして,この回転昇降機構18の稼動により,ロッド16を介して,サセプタ15及び多結晶製造るつぼ11を一体的に回転及び昇降させることができる。なお,シールリング17によって,気密容器10の内部は気密に保持されている。   The polycrystalline crucible 11 is held by a cylindrical carbon susceptor 15 whose bottom is closed. The susceptor 15 is supported on the upper end of the rod 16. The susceptor 15 has a cylindrical shape whose upper end is open and whose bottom is closed, and a single crystal growth crucible 31 is accommodated therein. The thickness t of the bottom surface of the susceptor 15 is set to 0.4 times or more (t> 0.4d) of the inner diameter d of the polycrystalline crucible 11. The lower end of the rod 16 protrudes below the hermetic container 10 via a seal ring 17 mounted on the lower surface of the hermetic container 10, and a rotary lifting mechanism 18 is connected to the lower end of the rod 16. The operation of the rotary lift mechanism 18 allows the susceptor 15 and the polycrystalline crucible 11 to be integrally rotated and lifted via the rod 16. The inside of the airtight container 10 is kept airtight by the seal ring 17.

気密容器10内において,サセプタ15の周囲を囲むように,複数段のヒータ20が各高さに配置されている。各高さのヒータ20は,それぞれ独立して温度制御でき,気密容器10内において上下方向に所望の温度勾配や温度分布を形成できる。ヒータ20の外側は断熱材21で囲んであり,ヒータ20の熱が効果的に多結晶製造るつぼ11内部に伝達されるようになっている。   In the airtight container 10, a plurality of stages of heaters 20 are arranged at each height so as to surround the periphery of the susceptor 15. The heaters 20 at the respective heights can be controlled independently, and a desired temperature gradient or temperature distribution can be formed in the airtight container 10 in the vertical direction. The outside of the heater 20 is surrounded by a heat insulating material 21 so that the heat of the heater 20 is effectively transferred into the inside of the polycrystalline crucible 11.

このように構成される多結晶製造炉1において,図2に示すように,多結晶製造るつぼ11内にGaとAsを入れ,更に,これらGaとAsの上に封止材aを入れる。このとき,多結晶製造るつぼ11内には,単結晶などの結晶成長時に用いられる種結晶は入れない。多結晶製造るつぼ11をサセプタ15から一旦取外した状態で多結晶製造るつぼ11内にGaとAsと封止材aを入れ,原料チャージ後,多結晶製造るつぼ11をサセプタ15内に保持させても良い。なお,Gaのチャージ形態は液体でも固体でも良い。封止材aの融点はAsの融点(昇華点)よりも低くなければならない。封止材aとして例えばBを用いる。 In the polycrystal production furnace 1 configured as described above, as shown in FIG. 2, Ga and As are put in a polycrystal production crucible 11, and a sealing material a is put on these Ga and As. At this time, the polycrystalline crystal crucible 11 does not contain a seed crystal used for crystal growth such as a single crystal. Even if polycrystalline manufacturing crucible 11 is once removed from susceptor 15, Ga, As and sealing material a are placed in polycrystalline manufacturing crucible 11, and after polycrystalline charging, polycrystalline manufacturing crucible 11 is held in susceptor 15. good. The charge form of Ga may be liquid or solid. The melting point of the sealing material a must be lower than the melting point (sublimation point) of As. For example, B 2 O 3 is used as the sealing material a.

そして,気密容器10の内部を所定の圧力に昇圧後,ヒータ20で加熱することにより,多結晶製造るつぼ11内にチャージされたGaとAsと封止材aを昇温させ,先ず封止材aが融ける温度まで昇温して,多結晶製造るつぼ11内のGaとAsの上方を融液となった封止材aで覆い,Asの揮発を防ぐ。   Then, after raising the inside of the hermetic container 10 to a predetermined pressure and heating it with the heater 20, the temperature of Ga and As and the sealing material a charged in the polycrystalline crucible 11 is raised. The temperature is raised to a temperature at which a melts, and Ga and As in the polycrystalline crucible 11 are covered with a sealing material a that is a melt to prevent As from volatilizing.

その後,更にAsの融点以上に加熱し,多結晶製造るつぼ11内において上方を封止材aで封止した状態で,GaAsを合成させる。このとき,多結晶製造るつぼ11の下部からGaAsの合成が始まるように,多結晶製造るつぼ11の下側から優先的に加熱するようにヒータ20を制御すると良い。このような加熱位置(高さ)の調整は,回転昇降機構18の稼動で多結晶製造るつぼ11を下降させることにより,容易に行うことができる。そして,合成が完了したら更にGaAsの融点以上まで昇温し,図3に示すように,多結晶製造るつぼ11内のGaAsを完全に融解させる。   Thereafter, GaAs is synthesized in a state where the melting point of As is further increased and the upper part of the polycrystalline crucible 11 is sealed with the sealing material a. At this time, the heater 20 may be controlled so as to preferentially heat from the lower side of the polycrystalline crucible 11 so that the synthesis of GaAs starts from the bottom of the polycrystalline crucible 11. Such adjustment of the heating position (height) can be easily performed by lowering the polycrystalline crucible 11 by operating the rotary lifting mechanism 18. When the synthesis is completed, the temperature is further raised to the melting point of GaAs or more, and as shown in FIG. 3, GaAs in the polycrystalline crucible 11 is completely melted.

次に,図4に示すように,多結晶製造るつぼ11内のGaAsを多結晶製造るつぼ11の底部から徐々に冷却し,GaAsを下方から徐々に上方に向って固化させることにより,多結晶製造るつぼ11の底部からGaAs多結晶bを成長させていく。この場合,前述したように多結晶製造るつぼ11を保持しているカーボン製のサセプタ15の底面の厚みtが多結晶製造るつぼ11の内径dの0.4倍以上となっていることにより,多結晶製造るつぼ11の底部は充分な厚さのあるサセプタ15の底面によって保温された状態となる。これにより,多結晶製造るつぼ11の底部は均熱されて,底部全体がほぼ等しい温度となる。   Next, as shown in FIG. 4, the GaAs in the polycrystalline crucible 11 is gradually cooled from the bottom of the polycrystalline crucible 11 to solidify the GaAs gradually from the bottom upward. A GaAs polycrystal b is grown from the bottom of the crucible 11. In this case, as described above, the thickness t of the bottom surface of the carbon susceptor 15 holding the polycrystalline manufacturing crucible 11 is 0.4 times or more the inner diameter d of the polycrystalline manufacturing crucible 11. The bottom of the crystal production crucible 11 is kept warm by the bottom surface of the susceptor 15 having a sufficient thickness. As a result, the bottom of the polycrystalline crucible 11 is soaked and the temperature of the entire bottom becomes substantially equal.

そして,このように均熱された状態の多結晶製造るつぼ11の底部全体がGaAsの融点(1238℃)よりも低い温度となると,図4に示すように,多結晶製造るつぼ11の底面全体から結晶化が開始されて,固化したGaAs多結晶bが多結晶製造るつぼ11の底面全体に密着するように形成される。   When the entire bottom of the polycrystalline crucible 11 in the soaked state becomes a temperature lower than the melting point of GaAs (1238 ° C.), as shown in FIG. 4, the entire bottom of the polycrystalline crucible 11 is removed. Crystallization is started, and the solidified GaAs polycrystal b is formed in close contact with the entire bottom surface of the polycrystal production crucible 11.

なお,このようにGaAsを固化させる場合,ヒータ20の加熱温度を制御することにより,上方がGaAsの融点(1238℃)よりも高い温度,下方がGaAsの融点(1238℃)よりも低い温度となり,上方に向って7℃/cm以上で昇温する温度勾配を形成した領域を形成させる。そして,回転昇降機構18の稼動により,多結晶製造るつぼ11を下降させて,この温度勾配の領域中に多結晶製造るつぼ11を上から下に向って通過させる。これにより,伝熱特性による誤差を無視すれば,温度勾配領域中においてヒータ20による加熱温度がGaAsの融点(1238℃)となっている位置(高さ)を通過する際に,多結晶製造るつぼ11内のGaAsが固化し,多結晶製造るつぼ11内部において下から上に向ってGaAsが順次固化されていく。そして,ヒータ20による加熱温度がGaAsの融点(1238℃)となっている位置(高さ)よりも上方(ヒータ20による加熱温度がGaAsの融点(1238℃)となっている位置よりも上方)では多結晶製造るつぼ11内のGaAsが融液であり,それよりも下方(ヒータ20による加熱温度がGaAsの融点(1238℃)となっている位置よりも下方)では多結晶製造るつぼ11内のGaAsが固体(GaAs多結晶b)となる。こうして,図5に示すように,温度勾配領域Δ中においてヒータ20による加熱温度がGaAsの融点(1238℃)となっている位置が,多結晶製造るつぼ11内において底面から徐々に上方に向って固化させられていくGaAsの固液界面Lの位置(高さ)に一致することとなる。また,換言すれば,固液界面Lを挟んで,上方がGaAsの融点(1238℃)よりも高い温度で,下方がGaAsの融点(1238℃)よりも低い温度の,上方に向って7℃/cm以上で昇温する温度勾配領域Δが形成されることとなる。   When solidifying GaAs in this way, by controlling the heating temperature of the heater 20, the upper temperature is higher than the melting point of GaAs (1238 ° C.), and the lower temperature is lower than the melting point of GaAs (1238 ° C.). , A region is formed in which a temperature gradient is formed in which the temperature is increased at a rate of 7 ° C./cm or more upward. Then, the operation of the rotary elevating mechanism 18 lowers the polycrystalline production crucible 11 and allows the polycrystalline production crucible 11 to pass through this temperature gradient region from top to bottom. Thus, if errors due to heat transfer characteristics are ignored, the polycrystalline crucible is produced when the heating temperature by the heater 20 passes through the position (height) at which the melting point of GaAs (1238 ° C.) is in the temperature gradient region. 11 is solidified, and the GaAs is solidified sequentially from the bottom to the top in the polycrystalline crucible 11. And above the position (height) where the heating temperature by the heater 20 is the melting point (1238 ° C.) of GaAs (above the position where the heating temperature by the heater 20 is the melting point of GaAs (1238 ° C.)). Then, GaAs in the polycrystalline crucible 11 is a melt, and below it (below the position where the heating temperature by the heater 20 is the melting point of GaAs (1238 ° C.)), GaAs becomes a solid (GaAs polycrystal b). Thus, as shown in FIG. 5, the position where the heating temperature by the heater 20 is the melting point of GaAs (1238 ° C.) in the temperature gradient region Δ gradually moves upward from the bottom surface in the polycrystalline crucible 11. This coincides with the position (height) of the solid-liquid interface L of GaAs to be solidified. In other words, across the solid-liquid interface L, the upper side is higher than the melting point of GaAs (1238 ° C.) and the lower side is lower than the melting point of GaAs (1238 ° C.). A temperature gradient region Δ that rises in temperature at / cm or more is formed.

また一方,このように温度勾配領域Δに多結晶製造るつぼ11を上から下に通過させながら,温度勾配領域Δ中のGaAsの融点(1238℃)となっている位置(固液界面L)でGaAsを連続的に固化させてGaAs多結晶bを多結晶製造るつぼ11内部において下から上に向って成長させていく過程において,回転昇降機構18の稼動による多結晶製造るつぼ11の下降速度Vを5mm/hr以上に制御する。これにより,相対的に,多結晶製造るつぼ11内においては,GaAsの固液界面Lの上昇速度が5mm/hr以上に制御され,GaAs多結晶bの上方に向う成長速度が5mm/hr以上に制御される。   On the other hand, at the position (solid-liquid interface L) where the melting point (1238 ° C.) of GaAs in the temperature gradient region Δ is reached while passing through the polycrystalline crucible 11 from above to the temperature gradient region Δ. In the process of continuously solidifying GaAs and growing GaAs polycrystal b from the bottom to the top inside the polycrystalline crucible 11, the descending speed V of the polycrystalline crucible 11 by the operation of the rotary elevating mechanism 18 is set. Control to 5 mm / hr or more. As a result, in the polycrystalline crucible 11, the rising speed of the solid-liquid interface L of GaAs is controlled to 5 mm / hr or more, and the growth rate upward of the GaAs polycrystal b is set to 5 mm / hr or more. Be controlled.

こうして,多結晶製造るつぼ11を下降させて,多結晶製造るつぼ11内において,GaAsの固液界面Lを上昇させていくことにより,多結晶製造るつぼ11内のGaAsを全部固化させる。なお,多結晶製造るつぼ11の下降中,必要に応じて回転昇降機構18の稼動により多結晶製造るつぼ11を回転させながら,GaAs多結晶bを成長させても良い。   Thus, by lowering the polycrystalline production crucible 11 and raising the solid-liquid interface L of GaAs in the polycrystalline production crucible 11, all the GaAs in the polycrystalline production crucible 11 is solidified. Note that, while the polycrystalline production crucible 11 is being lowered, the GaAs polycrystal b may be grown while the polycrystalline production crucible 11 is rotated by operating the rotary elevating mechanism 18 as necessary.

こうして,多結晶合成るつぼ11内のGaAsを全部固化させて,GaAs多結晶bの成長を終了した後,GaAs多結晶bを冷却し,多結晶製造るつぼ11内からGaAs多結晶bを取り出す。   Thus, after all the GaAs in the polycrystalline synthetic crucible 11 is solidified and the growth of the GaAs polycrystalline b is completed, the GaAs polycrystalline b is cooled, and the GaAs polycrystalline b is taken out from the polycrystalline manufacturing crucible 11.

以上のようにしてGaAs多結晶bを製造することにより,多結晶製造るつぼ11の底部からGaAs多結晶bが剥れることなく,常に多結晶製造るつぼ11の底部に密着させた状態で,上方に向ってGaAs多結晶bを成長させることができるようになる。多結晶製造るつぼ11を保持しているカーボン製のサセプタ15の底面の厚みtが多結晶製造るつぼ11の内径dの0.4倍以上とし,固化開始時において7℃/cm以上で昇温する温度勾配領域Δに多結晶製造るつぼ11の底部を通過させることにより,均熱された状態の多結晶製造るつぼ11の底部全体に固化したGaAsを密着させることができ,るつぼ底部で固化したGaAs多結晶bは,pBNで形成された多結晶製造るつぼ11の底部全体に密着し,成長中に剥れて浮き上る心配がない。また,種結晶を用いずに,多結晶製造るつぼ11内において,下から上に向ってGaAs多結晶bを成長させることが可能となる。また,多結晶製造るつぼ11の底面13には種結晶を入れるような部分は設けられておらず,多結晶製造るつぼ11は単純な円柱形状であるので,GaAs単結晶の成長炉2に備えられている単結晶成長るつぼ31に比べて,GaAs合成時や固化時の体積変化に対する耐性に優れる。   By producing the GaAs polycrystal b as described above, the GaAs polycrystal b is not peeled off from the bottom of the polycrystal production crucible 11 and is always in close contact with the bottom of the polycrystal production crucible 11. On the other hand, the GaAs polycrystal b can be grown. The thickness t of the bottom surface of the carbon susceptor 15 holding the polycrystalline production crucible 11 is 0.4 times or more the inner diameter d of the polycrystalline production crucible 11, and the temperature is raised at 7 ° C./cm or more at the start of solidification. By allowing the bottom of the polycrystalline crucible 11 to pass through the temperature gradient region Δ, solidified GaAs can be brought into close contact with the entire bottom of the polycrystalline crucible 11 in a soaked state, and the solidified GaAs polycrystal at the bottom of the crucible can be obtained. The crystal b is in close contact with the entire bottom of the polycrystalline crucible 11 formed of pBN, and there is no fear of peeling off during growth. Further, it is possible to grow the GaAs polycrystal b from the bottom to the top in the polycrystal production crucible 11 without using a seed crystal. Further, the bottom surface 13 of the polycrystalline crucible 11 is not provided with a portion for putting a seed crystal, and the polycrystalline crucible 11 has a simple columnar shape, so that it is provided in the GaAs single crystal growth furnace 2. Compared with the single crystal growing crucible 31, the resistance to volume change during GaAs synthesis and solidification is excellent.

また,VB法によって下から上に向ってGaAs多結晶bを成長させることにより,製造されたGaAs多結晶bにおいて,偏析を利用した不純物の低減が可能になる。また,封止材aとしてBを用いたことにより,ゲッタリング効果による不純物低減も可能になる。なお,GaAsの固液界面Lの上昇速度(実施の形態では,回転昇降機構18の稼動による多結晶製造るつぼ11の下降速度V)は,GaAs多結晶bの成長終了時及びその直前においては,結晶の急成長による固化不良を防ぐために3〜5mm/hrとすることが望ましい。 Further, by growing the GaAs polycrystal b from the bottom to the top by the VB method, it is possible to reduce impurities using segregation in the manufactured GaAs polycrystal b. Further, by using B 2 O 3 as the sealing material a, impurities can be reduced by the gettering effect. Note that the rising speed of the solid-liquid interface L of GaAs (in the embodiment, the lowering speed V of the polycrystalline crucible 11 due to the operation of the rotary lifting mechanism 18) is as follows at the end of the growth of the GaAs polycrystal b and immediately before it. In order to prevent solidification failure due to rapid crystal growth, it is desirable that the rate be 3 to 5 mm / hr.

こうして製造されたGaAs多結晶bは,後述するGaAs単結晶の成長炉2に備えられている単結晶合成るつぼ31の内径と等しいか僅かに小さい直径を有した円柱形状となる。また,多結晶合成るつぼ11内に封止材aも投入しているので,こうして製造された円柱形状のGaAs多結晶bの上面には,封止材aが凝固した状態で配置された状態となる。   The GaAs polycrystal b manufactured in this way has a cylindrical shape having a diameter equal to or slightly smaller than the inner diameter of a single crystal synthesis crucible 31 provided in a growth furnace 2 for a GaAs single crystal described later. In addition, since the sealing material a is also introduced into the polycrystalline synthetic crucible 11, the sealing material a is disposed in a solidified state on the upper surface of the cylindrical GaAs polycrystal b thus manufactured. Become.

ここで図6は,以上のようにして製造されたGaAs多結晶bを用いて,GaAs単結晶を成長させる成長炉2(以下「単結晶成長炉2」と呼ぶ)の概略的な構成を示す縦断面図である。この単結晶成長炉2は,VB法によりGaAs単結晶を成長させるものである。   FIG. 6 shows a schematic configuration of a growth furnace 2 (hereinafter referred to as “single crystal growth furnace 2”) for growing a GaAs single crystal using the GaAs polycrystal b manufactured as described above. It is a longitudinal cross-sectional view. This single crystal growth furnace 2 is for growing a GaAs single crystal by the VB method.

気密容器30の内部中央には,GaAs単結晶を製造するための単結晶製造るつぼ31(以下「単結晶製造るつぼ31」と呼ぶ)が配置される。単結晶製造るつぼ31は,上端が開口した円柱部32と,この円柱部32の下部を塞ぐように接続された円錐部33を備え,円錐部33の頂点部分(るつぼ31の最下部)には,種結晶を挿入するための種結晶載置部34が形成されている。この単結晶製造るつぼ31の内径は,先に説明した多結晶製造炉1の多結晶製造るつぼ11の内径と同じか僅かに大きく設定されている。   A single crystal manufacturing crucible 31 for manufacturing a GaAs single crystal (hereinafter referred to as “single crystal manufacturing crucible 31”) is disposed in the center of the hermetic container 30. The crucible 31 for producing a single crystal includes a cylindrical portion 32 having an open upper end and a conical portion 33 connected so as to close the lower portion of the cylindrical portion 32, and the apex portion of the conical portion 33 (the lowermost portion of the crucible 31). , A seed crystal mounting portion 34 for inserting a seed crystal is formed. The inner diameter of the single crystal production crucible 31 is set equal to or slightly larger than the inner diameter of the polycrystalline production crucible 11 of the polycrystalline production furnace 1 described above.

単結晶製造るつぼ31は,底面が塞がれた円筒形状のサセプタ40に保持されている。サセプタ40は,ロッド41の上端に支持されている。ロッド41の下端は,気密容器30の下面に装着されたシールリング42を介して,気密容器30の下方に突出しており,ロッド41の下端には回転昇降機構43が接続してある。そして,この回転昇降機構43の稼動により,ロッド41を介して,サセプタ40及び単結晶製造るつぼ31を一体的に回転及び昇降させることができる。なお,シールリング42によって,気密容器30の内部は気密に保持されている。   The single crystal manufacturing crucible 31 is held by a cylindrical susceptor 40 whose bottom is closed. The susceptor 40 is supported on the upper end of the rod 41. The lower end of the rod 41 protrudes below the hermetic container 30 through a seal ring 42 mounted on the lower surface of the hermetic container 30, and a rotary lifting mechanism 43 is connected to the lower end of the rod 41. Then, by operating the rotary lift mechanism 43, the susceptor 40 and the single crystal production crucible 31 can be integrally rotated and lifted via the rod 41. The inside of the airtight container 30 is kept airtight by the seal ring 42.

気密容器30内において,サセプタ40の周囲を囲むように,複数のヒータ45が各高さに配置されている。各高さのヒータ45は,それぞれ独立して温度制御でき,気密容器30内において上下方向に所望の温度勾配や温度分布を形成できる。ヒータ45の外側は断熱材46で囲んであり,ヒータ45の熱が効果的に単結晶製造るつぼ31に伝達されるようになっている。   In the airtight container 30, a plurality of heaters 45 are arranged at each height so as to surround the periphery of the susceptor 40. The heaters 45 at the respective heights can be controlled independently, and a desired temperature gradient or temperature distribution can be formed in the airtight container 30 in the vertical direction. The outside of the heater 45 is surrounded by a heat insulating material 46 so that the heat of the heater 45 is effectively transmitted to the single crystal manufacturing crucible 31.

このように構成される単結晶成長炉2において,単結晶製造るつぼ31の種結晶載置部34に種結晶cを挿入し,更に,先に説明した手順で予め製造しておいたGaAs多結晶bと封止材aと,必要に応じてドーパントを単結晶製造るつぼ31内に投入する。なお,封止材aは,GaAs多結晶bを製造した際に上面に残った封止材aをそのまま用いても良い。また,GaAs多結晶bの上方(GaAs多結晶bのTail端)を除去し,GaAs多結晶bを製造した際に上方に偏析した不純物の濃縮部分を取り除いても良い。   In the single crystal growth furnace 2 configured as described above, the seed crystal c is inserted into the seed crystal mounting portion 34 of the single crystal production crucible 31, and the GaAs polycrystal produced in advance by the procedure described above. b, the sealing material a, and if necessary, a dopant is introduced into the crucible 31 for producing a single crystal. As the sealing material a, the sealing material a remaining on the upper surface when the GaAs polycrystal b is manufactured may be used as it is. Alternatively, the upper portion of the GaAs polycrystal b (Tail end of the GaAs polycrystal b) may be removed, and the concentrated portion of impurities segregated upward when the GaAs polycrystal b is manufactured may be removed.

上述したように,こうして単結晶製造るつぼ31内に入れられるGaAs多結晶bは,単結晶成長炉2に備えられている単結晶合成るつぼ31の内径と等しいか僅かに小さい直径を有した円柱形状を有しているので,単結晶製造るつぼ31内にGaAs多結晶bを丁度隙間のない状態で入れることができ,原料充填率を高くすることができる。   As described above, the GaAs polycrystal b thus placed in the single crystal production crucible 31 has a cylindrical shape having a diameter equal to or slightly smaller than the inner diameter of the single crystal synthesis crucible 31 provided in the single crystal growth furnace 2. Therefore, the GaAs polycrystal b can be put in the single crystal production crucible 31 without any gaps, and the raw material filling rate can be increased.

そして,原料チャージ済の単結晶製造るつぼ31をサセプタ40内にセットし,気密容器30の内部を所定の圧力に昇圧後,ヒータ45で加熱することにより,GaAs多結晶b全体を加熱溶融し,上部に封止材aを配置させる。次に,各ヒータ45の温度制御により,単結晶製造るつぼ31内にて融液となったGaAs中に温度勾配を形成させ,回転昇降機構43の稼動により単結晶製造るつぼ31を下降させ,VB法に従ってGaAsを冷却し,種結晶cに接触している最下部からGaAsを徐々に冷却して固化させ,GaAs単結晶を成長させていく。この場合,必要に応じて回転昇降機構43の稼動により単結晶製造るつぼ31を回転させても良い。こうして,成長させたGaAs単結晶を冷却し,単結晶製造るつぼ31内からGaAs単結晶を取り出す。   Then, the raw material charged single crystal production crucible 31 is set in the susceptor 40, the inside of the hermetic vessel 30 is increased to a predetermined pressure, and then heated by the heater 45 to heat and melt the entire GaAs polycrystal b, The sealing material a is arranged on the top. Next, by controlling the temperature of each heater 45, a temperature gradient is formed in the GaAs melted in the single crystal production crucible 31, and the single crystal production crucible 31 is lowered by the operation of the rotary elevating mechanism 43. The GaAs is cooled according to the method, and the GaAs is gradually cooled and solidified from the lowermost part in contact with the seed crystal c to grow a GaAs single crystal. In this case, the single crystal production crucible 31 may be rotated by operating the rotary lifting mechanism 43 as necessary. Thus, the grown GaAs single crystal is cooled, and the GaAs single crystal is taken out from the crucible 31 for producing the single crystal.

かくして,本発明によって製造されたGaAs多結晶bは,単結晶成長炉2に備えられている単結晶合成るつぼ31内に丁度隙間のない状態で入れることができ,原料充填率を高くすることができるので,より長いGaAs単結晶を製造できるようになり,製造効率が向上する。また,単結晶合成るつぼ31内に入れるために特別な加工も必要なく,原料ロスがない。偏析効果やゲッタリング効果によって不純物の低減されたGaAs多結晶bを用いることにより,より品質の良いGaAs単結晶を製造できるようになる。   Thus, the GaAs polycrystal b produced according to the present invention can be put in the single crystal synthesis crucible 31 provided in the single crystal growth furnace 2 without any gaps, and the raw material filling rate can be increased. As a result, a longer GaAs single crystal can be manufactured, and the manufacturing efficiency is improved. In addition, no special processing is required to enter the single crystal synthesis crucible 31, and there is no material loss. By using the GaAs polycrystal b in which impurities are reduced by the segregation effect and the gettering effect, a GaAs single crystal with higher quality can be manufactured.

以上,本発明の好ましい実施の形態を説明したが,本発明はここに例示した形態に限定されない。例えば,図1中に一点鎖線で記入したように,サセプタ15の底面下方に補助ヒータ49を配置し,この補助ヒータ49によって多結晶製造るつぼ11の底面13全体をほぼ等しく加熱し,多結晶製造るつぼ11の底面13全体の温度を均一に保つ(均熱)ようにしても良い。このようにサセプタ15の底面下方に補助ヒータ49を配置して,多結晶製造るつぼ11の底面13全体を均熱することによっても,先に図4で説明した場合と同様に,多結晶製造るつぼ11の底面全体から結晶化が開始されて,固化したGaAs多結晶bを多結晶製造るつぼ11の底面全体に密着するように形成させることができ,GaAs多結晶bが成長中に剥れて浮き上る心配がない。なお,このようにサセプタの底面下方に補助ヒータ49を配置する場合は,サセプタ15の底面による保温効果は省略できるので,必ずしもサセプタ15の底面の厚さtを,多結晶製造るつぼ11の内径dの0.4倍以上(t>0.4d)に設定する必要は無い。   As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the form illustrated here. For example, as indicated by the alternate long and short dash line in FIG. 1, an auxiliary heater 49 is disposed below the bottom surface of the susceptor 15, and the entire bottom surface 13 of the polycrystalline crucible 11 is heated almost equally by the auxiliary heater 49. The temperature of the entire bottom surface 13 of the crucible 11 may be kept uniform (soaking). Thus, by arranging the auxiliary heater 49 below the bottom surface of the susceptor 15 and soaking the entire bottom surface 13 of the polycrystalline manufacturing crucible 11, the polycrystalline manufacturing crucible is similar to the case described above with reference to FIG. Crystallization is started from the entire bottom surface of the substrate 11, and the solidified GaAs polycrystal b can be formed so as to be in close contact with the entire bottom surface of the polycrystalline crucible 11, and the GaAs polycrystal b is peeled off during growth. There is no worry of going up. When the auxiliary heater 49 is arranged below the bottom surface of the susceptor as described above, the heat retaining effect by the bottom surface of the susceptor 15 can be omitted. It is not necessary to set 0.4 times or more (t> 0.4d).

その他,図1等では,GaAs多結晶bの成長時に多結晶製造るつぼ11を下降させる例を説明したが,ヒータ20を上昇させても良い。また,本発明は,VB法に限らず,VGF法でGaAs多結晶を製造する場合にも同様に適用できる。VGF法でGaAs多結晶を製造する場合であれば,るつぼとヒータとを相対的に昇降させる昇降機構は省略できる。   In addition, although FIG. 1 etc. demonstrated the example which lowers the polycrystal production crucible 11 at the time of the growth of GaAs polycrystal b, the heater 20 may be raised. Further, the present invention is not limited to the VB method, and can be similarly applied to the case where a GaAs polycrystal is manufactured by the VGF method. If a GaAs polycrystal is manufactured by the VGF method, a lifting mechanism that moves the crucible and the heater relatively up and down can be omitted.

GaAs多結晶の製造炉として,カーボンヒータで加熱する高温高圧炉を用いた。ヒータは円筒形で内径φ240mmのものが4段の多段ヒータとして構成される。また,サセプタ下側にドーナツ状の補助ヒータが2段設置されている。この多結晶製造炉を用いてVGF法によってGaAsの合成,多結晶の成長を行った。多結晶製造るつぼとして,下側φ145,上側φ150,長さ(高さ)300mmのpBN製るつぼを用いた。原料はGa(6N)8000g,As(6N)8800gをチャージした。封止材としてB2O3を2000g用いた。原料チャージした多結晶製造るつぼをサセプタにセットし,40〜60℃/hrで各ヒータの設定値500℃まで昇温し,B2O3を融解した。その後,最下段のヒータを設定値800℃まで昇温し,さらに30℃/hrで昇温を続けて多結晶製造るつぼ下部よりGaAs合成を開始した。一度GaAs合成が始まるとGaAs自身の反応熱によって多結晶製造るつぼ下部から上部まで反応が進む。全てのGaとAsが反応してGaAsになったら,さらに昇温してGaAsを完全融解した。   A high-temperature high-pressure furnace heated by a carbon heater was used as a GaAs polycrystal production furnace. A cylindrical heater having an inner diameter of 240 mm is configured as a multistage heater having four stages. In addition, two stages of donut-shaped auxiliary heaters are installed below the susceptor. Using this polycrystalline furnace, GaAs was synthesized and polycrystalline was grown by the VGF method. As a polycrystalline crucible, a pBN crucible having a lower φ145, an upper φ150, and a length (height) of 300 mm was used. The raw material was charged with 8000 g of Ga (6N) and 8800 g of As (6N). As a sealing material, 2000 g of B2O3 was used. The polycrystalline production crucible charged with the raw material was set on a susceptor and heated to 40 ° C./hr to the set value of each heater 500 ° C. to melt B 2 O 3. Thereafter, the temperature of the lowermost heater was raised to a set value of 800 ° C., and the temperature was further raised at 30 ° C./hr, and GaAs synthesis was started from the bottom of the polycrystalline crucible. Once GaAs synthesis starts, the reaction proceeds from the bottom of the polycrystalline crucible to the top due to the heat of reaction of GaAs. When all Ga and As reacted to become GaAs, the temperature was further raised to completely melt GaAs.

その後,多結晶製造るつぼ下部がGaAs融点(1238℃)以上で上方に向って7℃/cmの温度勾配で高温となるにように調整し,その後,多結晶製造るつぼ内における固液界面(温度勾配中の温度が1238℃になる点)の上昇速度が7〜10mm/hrになるように,温度勾配の位置を変化させていき,るつぼ下部から結晶化を開始し,上方に向って多結晶を成長させた。各温度条件は,事前に同じるつぼを用いた融液測温により決定した。   Thereafter, the lower part of the polycrystalline crucible is adjusted to a temperature higher than the melting point of GaAs (1238 ° C.) and upward with a temperature gradient of 7 ° C./cm. Thereafter, the solid-liquid interface (temperature) in the polycrystalline crucible is adjusted. The position of the temperature gradient is changed so that the rising speed of the temperature during the gradient is 1238 ° C. is 7 to 10 mm / hr, crystallization starts from the bottom of the crucible, and the crystal grows upward. Grew. Each temperature condition was previously determined by melt temperature measurement using the same crucible.

冷却後,多結晶製造るつぼ内にB及びGaAs多結晶が入ったままの状態で取り出し,メタノールでBを溶解除去後,多結晶製造るつぼよりGaAs多結晶を取り出した。 After cooling, the polycrystalline production crucible was taken out in a state where B 2 O 3 and GaAs polycrystalline were contained, and after dissolving and removing B 2 O 3 with methanol, the polycrystalline GaAs was taken out from the polycrystalline production crucible.

その結果,得られたGaAs多結晶は固化状態も良好であり,きれいな円柱状の結晶が得られた(図7)。Hall測定結果では,半絶縁性n型半導体であり,Tail端15mmを除く領域でのSIMSによる不純物分析では,金属不純物はすべて検出限界以下であった。   As a result, the obtained GaAs polycrystal was in a good solid state and a clean columnar crystal was obtained (FIG. 7). In the Hall measurement result, it was a semi-insulating n-type semiconductor, and all the metal impurities were below the detection limit in the impurity analysis by SIMS in the region excluding the tail end of 15 mm.

(比較例)
一般的なLEC炉を用いて,原料としてGa(6N)13000gとAs(6N)14300gをチャージし,封止材としてBを1800g用いた。昇温,GaAs合成後,通常のLEC法でφ150を目標して結晶成長を行った。得られた結晶は,固化状態は良好なものの,形状がやや不安定で,きれいな円筒状ではなかった(図8)。このため,円筒型の多結晶原料を得るためには外周を研削することが必要となり原料ロスが大きい。
(Comparative example)
Using a general LEC furnace, 13000 g of Ga (6N) and 14300 g of As (6N) were charged as raw materials, and 1800 g of B 2 O 3 was used as a sealing material. After the temperature rise and GaAs synthesis, crystal growth was performed with a target of φ150 by a normal LEC method. Although the obtained crystals were in a solidified state, the shape was somewhat unstable and not a clean cylindrical shape (Fig. 8). For this reason, in order to obtain a cylindrical polycrystalline raw material, it is necessary to grind the outer periphery, resulting in a large raw material loss.

本発明は,VB法やVGF法で単結晶成長を行う際の原料として最適なGaAs多結晶の製造に適用できる。   The present invention can be applied to the production of GaAs polycrystals that are optimal as raw materials for single crystal growth by the VB method or the VGF method.

本発明の実施の形態にかかるGaAs多結晶の製造炉の概略的な構成を示す縦断面図である。1 is a longitudinal sectional view showing a schematic configuration of a GaAs polycrystal production furnace according to an embodiment of the present invention. GaとAsと封止材を入れた状態を示す多結晶製造るつぼの縦断面図である。It is a longitudinal cross-sectional view of the polycrystal manufacturing crucible which shows the state which put Ga, As, and a sealing material. GaAsを完全に融解させた状態を示す多結晶製造るつぼの縦断面図である。It is a longitudinal cross-sectional view of a polycrystalline crucible showing a state in which GaAs is completely melted. 底部からGaAs多結晶を成長させていく状態を示す多結晶製造るつぼの縦断面図である。It is a longitudinal cross-sectional view of a polycrystalline crucible showing a state in which a GaAs polycrystal is grown from the bottom. 温度勾配とGaAsの固液界面の位置(高さ)の関係を示す説明図である。It is explanatory drawing which shows the relationship between a temperature gradient and the position (height) of the solid-liquid interface of GaAs. GaAs多結晶を用いてGaAs単結晶を成長させる成長炉の概略的な構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the schematic structure of the growth furnace which grows a GaAs single crystal using a GaAs polycrystal. 実施例で製造されたGaAs多結晶の写真である。It is a photograph of the GaAs polycrystal manufactured in the Example. 比較例で製造されたGaAs多結晶の写真である。It is a photograph of the GaAs polycrystal manufactured by the comparative example.

符号の説明Explanation of symbols

a 封止材
b GaAs多結晶
1 多結晶製造炉
10 気密容器
11 多結晶製造るつぼ
15 サセプタ
18 回転昇降機構
20 ヒータ
49 補助ヒータ
a sealing material b GaAs polycrystal 1 polycrystal production furnace 10 hermetic vessel 11 polycrystal production crucible 15 susceptor 18 rotary elevating mechanism 20 heater 49 auxiliary heater

Claims (5)

GaAs多結晶の製造炉であって,
略円筒形状のるつぼと,このるつぼを保持するカーボン製のサセプタと,このサセプタの周囲に配置された,所望の温度勾配を形成させることが可能なヒータとを備え,
前記サセプタの底面の厚みが,前記るつぼの内径の0.4倍以上であることを特徴とする,GaAs多結晶の製造炉。
A GaAs polycrystal production furnace,
A substantially cylindrical crucible, a carbon susceptor holding the crucible, and a heater arranged around the susceptor and capable of forming a desired temperature gradient;
A GaAs polycrystal production furnace, wherein the thickness of the bottom surface of the susceptor is at least 0.4 times the inner diameter of the crucible.
前記サセプタの底面を均熱する補助ヒータを備え,前記補助ヒータが前記サセプタの底面下方に配置されていることを特徴とする,請求項1に記載のGaAs多結晶の製造炉。 2. The GaAs polycrystal manufacturing furnace according to claim 1 , further comprising an auxiliary heater that soaks the bottom surface of the susceptor, wherein the auxiliary heater is disposed below the bottom surface of the susceptor. 3. 前記るつぼは,pBNからなることを特徴とする,請求項1または2に記載のGaAs多結晶の製造炉。   The GaAs polycrystal manufacturing furnace according to claim 1 or 2, wherein the crucible is made of pBN. 前記るつぼの内径は,GaAs単結晶の製造炉が備えるるつぼの内径と等しいか僅かに小さいことを特徴とする,請求項1〜3のいずれかに記載のGaAs多結晶の製造炉。   The GaAs polycrystal manufacturing furnace according to claim 1, wherein an inner diameter of the crucible is equal to or slightly smaller than an inner diameter of a crucible provided in a GaAs single crystal manufacturing furnace. 前記るつぼとヒータとを相対的に昇降させる昇降機構を有することを特徴とする,請求項1〜4のいずれかに記載のGaAs多結晶の製造炉。   The GaAs polycrystal production furnace according to any one of claims 1 to 4, further comprising an elevating mechanism for elevating and lowering the crucible and the heater relatively.
JP2004178246A 2004-06-16 2004-06-16 GaAs polycrystal production furnace Active JP4549111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178246A JP4549111B2 (en) 2004-06-16 2004-06-16 GaAs polycrystal production furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178246A JP4549111B2 (en) 2004-06-16 2004-06-16 GaAs polycrystal production furnace

Publications (2)

Publication Number Publication Date
JP2006001771A JP2006001771A (en) 2006-01-05
JP4549111B2 true JP4549111B2 (en) 2010-09-22

Family

ID=35770479

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178246A Active JP4549111B2 (en) 2004-06-16 2004-06-16 GaAs polycrystal production furnace

Country Status (1)

Country Link
JP (1) JP4549111B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084242A (en) 2012-10-22 2014-05-12 Hitachi Metals Ltd Method and apparatus for producing compound polycrystal
CN108103577A (en) * 2017-12-28 2018-06-01 广东先导先进材料股份有限公司 The synthetic method and synthesizer of a kind of gallium arsenide polycrystal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349199A (en) * 1991-05-23 1992-12-03 Nikon Corp Device for producing fluorite excellent in excimer resistance
JP2001072488A (en) * 1999-08-31 2001-03-21 Nippon Telegr & Teleph Corp <Ntt> Method for producing solid solution single crystal
JP2004137096A (en) * 2002-10-16 2004-05-13 Dowa Mining Co Ltd Compound raw material, compound single crystal, and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04349199A (en) * 1991-05-23 1992-12-03 Nikon Corp Device for producing fluorite excellent in excimer resistance
JP2001072488A (en) * 1999-08-31 2001-03-21 Nippon Telegr & Teleph Corp <Ntt> Method for producing solid solution single crystal
JP2004137096A (en) * 2002-10-16 2004-05-13 Dowa Mining Co Ltd Compound raw material, compound single crystal, and its production method

Also Published As

Publication number Publication date
JP2006001771A (en) 2006-01-05

Similar Documents

Publication Publication Date Title
JP5633732B2 (en) Sapphire single crystal manufacturing method and sapphire single crystal manufacturing apparatus
CA2620293C (en) System and method for crystal growing
JP4810346B2 (en) Method for producing sapphire single crystal
WO2006106644A1 (en) Si-DOPED GaAs SINGLE CRYSTAL INGOT AND PROCESS FOR PRODUCING THE SAME, AND Si-DOPED GaAs SINGLE CRYSTAL WAFER PRODUCED FROM SAID Si-DOPED GaAs SINGLE CRYSTAL INGOT
US5057287A (en) Liquid encapsulated zone melting crystal growth method and apparatus
EP2510138B1 (en) Methods for manufacturing monocrystalline germanium ingots/wafers having low micro-pit density (mpd)
WO2021020539A1 (en) Scalmgo4 single crystal, preparation method for same, and free-standing substrate
JP4549111B2 (en) GaAs polycrystal production furnace
JP4292300B2 (en) Method for producing semiconductor bulk crystal
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP4459519B2 (en) Compound raw material and method for producing compound single crystal
JP5029184B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus thereof
KR100868726B1 (en) Synthesis vb apparatus and method for gaas
KR100980822B1 (en) The growing method of piezoelectric single crystal
JP2013507313A (en) Crystal growth apparatus and crystal growth method
JP2010030868A (en) Production method of semiconductor single crystal
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JP2014156373A (en) Manufacturing apparatus for sapphire single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP3647964B2 (en) Single crystal substrate manufacturing method and apparatus
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
JP2004161559A (en) Apparatus for manufacturing compound semiconductor
JP2013018678A (en) Crucible for growing crystal, and method for growing crystal
JP2009208992A (en) Method for manufacturing compound semiconductor single crystal
JPH04167421A (en) Apparatus for manufacturing semiconductor single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070501

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20100518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100629

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100706

R150 Certificate of patent or registration of utility model

Ref document number: 4549111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250