JP4459519B2 - Compound raw material and method for producing compound single crystal - Google Patents

Compound raw material and method for producing compound single crystal Download PDF

Info

Publication number
JP4459519B2
JP4459519B2 JP2002301508A JP2002301508A JP4459519B2 JP 4459519 B2 JP4459519 B2 JP 4459519B2 JP 2002301508 A JP2002301508 A JP 2002301508A JP 2002301508 A JP2002301508 A JP 2002301508A JP 4459519 B2 JP4459519 B2 JP 4459519B2
Authority
JP
Japan
Prior art keywords
raw material
crucible
gaas
single crystal
compound raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002301508A
Other languages
Japanese (ja)
Other versions
JP2004137096A (en
Inventor
良一 中村
嘉和 大鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2002301508A priority Critical patent/JP4459519B2/en
Publication of JP2004137096A publication Critical patent/JP2004137096A/en
Application granted granted Critical
Publication of JP4459519B2 publication Critical patent/JP4459519B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は,例えばGaAs単結晶などの化合物単結晶を製造するための化合物単結晶の製造方法に関する。
【0002】
【従来の技術】
受発光素子,高速演算素子,マイクロ波素子等の素材やホール素子などの素材として用いられるn型導電性ないし半絶縁性GaAs単結晶は,結晶中の転位密度を小さくするために横型ボート法や縦型ボート法を用いて製造される。特に縦型ボート法においては(100)方位の結晶成長が育成可能であるばかりでなく,円形で大口径の結晶が得られる利点があり,縦型温度傾斜法(VGF法)や,縦型ブリッジマン法(VB法)による結晶成長が行われている。
【0003】
一般に,縦型ボート法にてGaAs結晶成長させる場合,縦型ボート(以降「るつぼ」と表現する)の下部の種結晶部に種結晶を配置するが,直接GaとAsをるつぼに直接投入すると,純Ga及び純Asの融点の低さにより,種結晶を融解させてしまう。このため,予め合成炉などを用いて,純Ga原料と純As原料を溶融,合成しておき,GaAs化合物原料を準備する必要がある。このように予め合成したGaAs化合物原料をるつぼに投入する場合,従来は原料を破砕し,適当な粒度に調整していた(例えば特開2000−109400号公報)。
【0004】
【特許文献1】
特開2000−109400号公報(例えば図4)
【0005】
【発明が解決しようとする課題】
しかしながら,従来のように破砕したGaAs化合物原料をるつぼに投入した場合,破砕原料礫の粒子径が一定でなく,各粒ごとに表面積が異なるため,GaAs化合物原料を加熱し,溶融させるときに揮発するAs量も,各粒ごとに異なってしまう。このため,結晶成長させた後のGa/As比率が,狙いの組成に対してずれやすくなる。また,このGa/As比率のずれは,単結晶内の原子構造中に空孔欠陥を生じさせ,転位密度を高める要因となる。半導体レーザチップの作製において,転位密度の高いGaAs単結晶から作製された半導体レーザ用基板を使用した場合に,レーザの出力低下が発生し,転位密度の増加に伴って不良率が増加することが問題となる。一方,破砕原料礫の粒子径を揃えてるつぼに投入するのは主に人手での作業となり,作業員に対して負荷を強いることとなる。
【0006】
また,原料を破砕した際に発生した粒子径の小さいGaAs原料粒子が,原料投入時に下部に落下して種結晶の上面に付着し,単結晶育成を阻害することとなり,多結晶化してしまうという問題が生ずる。このような問題を解決するためには,原料を破砕後,一定の粒子径以下の原料粒子を除外することが必要となり,原料歩留の低下,製造効率の悪化などをもたらす。
【0007】
また,原料を破砕する際に,破砕設備から発生する不純物の混入といった問題が生ずる。このため,破砕後,破砕礫について不純物の除去処理が必要となり,また,処理が十分でない場合は,結晶成長の際,混入した不純物が転位発生の核となり,転位密度を増大させる結果をまねき,電気的特性にも影響を及ぼす。
【0008】
また,破砕した原料粒子はかさ密度が大きいため,るつぼに投入してGaAs単結晶を成長させた場合,製造された単結晶の高さは,るつぼに投入した原料粒子の高さの1/2から1/3程度となる。このため,長い単結晶を製造する場合は,相当に高さのあるるつぼが必要となり,設備コストやランニングコストが増大する。
【0009】
従って本発明の目的は,転位密度の低い安定した組成の化合物単結晶を製造できる手段を提供することにある。
【0012】
この目的を達成するために,本発明にあっては,予め合成された化合物原料を円柱部および円錐部からなる形状のるつぼに投入し,溶融後,固化させることにより,縦型ボート法によって種結晶を用いて化合物単結晶を成長させる化合物単結晶の製造方法であって,るつぼに投入される溶融前の化合物原料は,るつぼ内の下部に隙間の無い状態で投入され,前記化合物原料は結晶成長させるるつぼ,もしくは,高さ以外は結晶成長させるるつぼと内部形状が同じである合成用のるつぼに,化合物原料を合成させる複数の原料を投入して合成され,前記化合物原料の表面積が,結晶成長させた化合物単結晶の表面積の1.5倍以下であることを特徴としている。この場合,前記合成した化合物原料を粉砕することなく用いることが好ましい。
【0013】
また,前記化合物原料を合成するに際し,前記るつぼの種結晶部にスペーサを配置しておき,化合物原料を前記るつぼ内で冷却固化させた後,前記スペーサを外した空間に種結晶を挿入しても良い。
【0014】
こうして製造された化合物原料は,例えばGaAs単結晶である。本発明によって,例えば転位密度が,最大値で200個/cm以下,平均で10個/cmである,低転位密度の化合物原料を製造することも可能となる。
【0015】
【発明の実施の形態】
以下,本発明の好ましい実施の形態を,化合物単結晶の一例としてGaAs単結晶を製造する場合について,図面を参照にして説明する。図1は,結晶成長装置1の概略的な構成を示す縦断面図である。図2は,るつぼ11の縦断面図である。結晶成長装置1は,縦型ボート法の一つである縦型温度傾斜法によってGaAs単結晶を製造するものである。
【0016】
図1に示すように,気密容器10の内部中央には,るつぼ11が配置される。図2に示すように,るつぼ11は,上端が開口した円柱部12と,この円柱部12の下部を塞ぐように接続された円錐部13を備え,円錐部13の頂点部分(るつぼ11の最下部)には,種結晶を挿入するための種結晶部14が形成されている。種結晶部14は,キャップ50によって塞がれている。
【0017】
図1に示すように,るつぼ11は,底面が塞がれた円筒形状のるつぼ収納容器20に収納されている。るつぼ収納容器20は,ロッド21の上端に支持されている。ロッド21の下端は,気密容器10の下面に装着されたシールリング22を介して,気密容器10の下方に突出しており,そこには回転昇降機構23が接続してある。そして,この回転昇降機構23の稼動により,ロッド21を介して,るつぼ収納容器20及びるつぼ11を一体的に回転及び昇降させることができる。なお,シールリング22によって,気密容器10の内部は気密に保持されている。
【0018】
気密容器10内において,るつぼ収納容器20の周囲を囲むように,複数のヒータ25が各高さに配置されている。各高さのヒータ25は,それぞれ独立して温度制御でき,気密容器10内において上下方向に所望の温度勾配や温度分布を形成できる。ヒータ25の外側は断熱材26で囲んであり,ヒータ25の熱が効果的にるつぼ収納容器20に伝達されるようになっている。
【0019】
このように構成される結晶成長装置1において,るつぼ11の種結晶部14に種結晶30を挿入後,キャップ5で種結晶部14を塞ぎ,更に,予め合成されたGaAs化合物原料31及びBなどの液体封止剤32と,必要に応じてドーパントをるつぼ11内に投入する。
【0020】
そして,投入済のるつぼ11をるつぼ収納容器20内にセットし,気密容器10の内部を所定の圧力に昇圧後,ヒータ25で加熱することにより,GaAs化合物原料31全体を加熱溶融し,融液となったGaAs化合物原料31の上部に液体封止材32が配置されるようにする。次に,各ヒータ25の温度制御により,るつぼ11内にて融液となったGaAs化合物原料31中に温度勾配を形成させ,縦型温度傾斜法に従って原料融液を冷却し,種結晶30に接触している最下部からGaAs化合物原料31を徐々に冷却して固化させ,GaAs単結晶33を成長させていく。この場合,必要に応じて回転昇降機構23の稼動によりるつぼ11を回転及び昇降させながら,GaAs単結晶33を成長させても良い。
【0021】
こうして,GaAs化合物原料31全体が固化してGaAs単結晶33に変化した後,GaAs単結晶33を冷却し,るつぼ11内からGaAs単結晶33を取り出す。
【0022】
ここで図3は,以上のようなGaAs単結晶33の成長を行うに際して,るつぼ11内に投入されるGaAs化合物原料31の斜視図である。このGaAs化合物原料31は,円柱部35と,円柱部35の下端に配置された円錐台部36からなっている。円柱部35の直径dは,るつぼ11の円柱部12の内径以下であり,円柱部35の高さhは,るつぼ11の円柱部12の高さ以下に設定されている。円錐台部36は,るつぼ11の円錐部13の内部に丁度入る傾斜角度を有している。
【0023】
このようなGaAs化合物原料31は,例えば次のようにして製造される。即ち,図4に示すように,高さ以外についてはるつぼ11と内部形状が同じである合成用のるつぼ40の内部に,GaAs化合物原料31を合成させる原料であるGa原料41及びAs原料42と,Bなどの液体封止剤32を投入(チャージ)する。この場合,例えばGa原料41は融液状,As原料42は固体(粒状)である。るつぼ40の高さは,るつぼ11と同じか,もしくはそれ以上であることが望ましい。るつぼ40の材質は,必要な耐熱性を有し,原料融液との反応性に乏しい材料,例えば窒化ホウ素(BN)系材料を用いる。この場合,必要に応じてドーパントもるつぼ40内に投入する。なお,このようにGaAs化合物原料31を合成させるるつぼ40は,結晶成長装置1において結晶成長させるるつぼ11そのものを用いても良い。
【0024】
また,このようにGaAs化合物原料31を合成する際には,るつぼ40の種結晶部45に,種結晶30の代りに,スペーサ46を配置しておく。このスペーサ46の材質も,必要な耐熱性を有し,原料融液との反応性に乏しい材料,例えば窒化ホウ素(BN)系材料を用いる。スペーサ46は,製造されたGaAs化合物原料31をるつぼ11に投入した際に,円錐台部36の下端が,るつぼ11の種結晶部14に挿入された種結晶30を押下げないように,円錐台部36の下端の高さを調整する役割をはたす。図示のように,下端が開口しているるつぼ40を用いた場合は,スペーサ46をるつぼ40の下方から挿入して,るつぼ40下端の開口部を塞ぐことができる。
【0025】
そして,るつぼ40内に投入したGa原料41及びAs原料42と液体封止剤32等を加熱して溶融し,その後,固化させて合成する。こうして,図3に示した如きGaAs化合物原料31を得ることができる。このようにGaAs化合物原料31を製造する場合は,加熱及び冷却は必ずしもGaAs単結晶33を製造する場合と同一の条件でなくても良い。例えば生産性を考慮し,早い速度で冷却してGaAs化合物原料31を合成し,多結晶固化させても構わない。但し,溶融,固化工程で発生する酸化物や,原料中の不純物を効果的に除去するためには,GaAs単結晶33を製造する場合と同様に縦型温度傾斜法を用い,るつぼ40の下部から上部に向かって一方向に固化させていくことが望ましい。
【0026】
こうして製造されたGaAs化合物原料31は,このGaAs化合物原料31を用いて製造されるGaAs単結晶33とほぼ同形状となり,その溶融前におけるGaAs化合物原料31の表面積は,このGaAs化合物原料31を用いて製造されるGaAs単結晶33(結晶成長を終了したGaAs単結晶33)の表面積の5倍以下である。また,るつぼ40内に液体封止剤32も投入しているので,GaAs単結晶33の上面には,液体封止剤32が凝固した状態で配置された状態となる。
【0027】
そして,このように合成されたGaAs化合物原料31を,るつぼ40内から取り出し,図5に示すように,GaAs化合物原料31を粉砕することなく,そのまま結晶成長装置1のるつぼ11に投入する。また,るつぼ11の種結晶部14には種結晶30を挿入する。この場合,図5に示すような下部が開口したるつぼ11であれば,下方から種結晶30を挿入して,開口部をキャップ50で塞げば良い。これにより,容易に種結晶部14に種結晶30を配置することができる。
【0028】
こうして,GaAs化合物原料31をるつぼ11内に実質的に隙間の無い状態で投入することができる。なお,るつぼ40内でGaAs化合物原料31を固化させる際に,るつぼ40の種結晶部45にスペーサ46を配置していたことにより,円錐台部36の下端の高さが調整され,GaAs化合物原料31をるつぼ11に投入した際に,円錐台部36の下端が,るつぼ11の種結晶部14に挿入された種結晶30を押下げる心配がない。
【0029】
なお,GaAs化合物原料31を合成させるにあたり,るつぼ40として結晶成長装置1において結晶成長させるるつぼ11そのものを用いた場合は,GaAs化合物原料31をるつぼ11から一旦出す必要はない。その場合は,合成させたGaAs化合物原料31をるつぼ11内で冷却固化させた後,るつぼ11下部の開口部からスペーサ46を外し,下方から種結晶部14に種結晶30を挿入して,開口部をキャップ50で塞げば良い。
【0030】
そして,このようにGaAs化合物原料31をるつぼ11内に投入し,種結晶部14に種結晶30を挿入した状態で,先に図1で説明した結晶成長装置1において,GaAs化合物原料31全体を加熱溶融し,各ヒータ25の温度制御により,縦型温度傾斜法に従って種結晶30に接触している最下部からGaAs化合物原料31を徐々に冷却して固化させ,GaAs単結晶33を製造する。
【0031】
以上のように,GaAs単結晶33とほぼ同形状のGaAs化合物原料31を用いてGaAs単結晶33を製造することにより,溶融時に揮発するAs量を低減でき,Ga/As比率が狙い通りの,転位密度の低いGaAs単結晶33を安定して得ることが可能となる。こうして製造されたGaAs単結晶33は,例えば転位密度が,最大値で200個/cm以下,平均で10個/cmの低転位密度となる。なお,GaAs化合物原料31の形状は,必ずしも結晶成長後のGaAs単結晶33と同一の形状でなくても良いが,溶融前(結晶成長装置1においてGaAs化合物原料31を加熱溶融させる前)におけるGaAs化合物原料31の表面積が,そのGaAs化合物原料31を用いて製造されるGaAs単結晶33(結晶成長を終了したGaAs単結晶33)の表面積の5倍以下であるのが良い。溶融前のGaAs化合物原料31の表面積が,それから製造されるGaAs単結晶33の表面積の5倍を超えると,Ga/As比率の変動を抑えることができず,成長させたGaAs単結晶33内の転位発生率が急激に高くなり,低転位密度のGaAs単結晶33を安定して製造することが困難になる。また,るつぼ11に対する単位体積あたりの投入量も下がり,製造効率も低下してしまう。なお,Ga/As比率がより安定した,より低転位密度のGaAs単結晶33を得るためには,溶融前のGaAs化合物原料31の表面積が,それから製造されるGaAs単結晶33の表面積の2倍以下が望まく,1.5倍以下が更に望ましい。
【0032】
また,合成されたGaAs化合物原料31を粉砕することなくそのまま結晶成長装置1のるつぼ11に投入することにより,破砕時に発生する不純物の混入や,小径粒子の発生を回避でき,単結晶成長安定性の向上がはかれ,工程の短縮,負荷低減にも寄与する。
【0033】
また,るつぼ40として結晶成長装置1において結晶成長させるるつぼ11そのものを用いてGaAs化合物原料31を合成すれば,GaAs化合物原料31を製造するための別のるつぼ40が不要となり,設備コストを低減でき,スペースも省略できる。
【0034】
図6は,本発明の別の実施の形態を示しており,GaAs単結晶33を成長させるるつぼ11内に,円盤形状や円錐台形状をなす複数の化合物原料片60から構成されるGaAs化合物原料31を投入した状態を示している。GaAs化合物原料31の上面には液体封止剤32を投入し,るつぼ11下部の種結晶部14に種結晶30を挿入して,開口部をキャップ50で塞いでいる。
【0035】
るつぼ11内に投入されるGaAs化合物原料31は,先に図5に示した如き一体のものに限らず,この図6に示すような複数の化合物原料片60で構成されても良い。いずれにしても,つぼ11内に投入されて組合された状態において,溶融前のGaAs化合物原料31の表面積が,それから製造されるGaAs単結晶33の表面積の5倍以下であるのが良い。なお,結晶成長装置1の製造を安定させるためには,るつぼ11内に対して常に同じ状態でGaAs化合物原料31を投入することが好ましい。このように,複数の化合物原料片60で構成されるGaAs化合物原料31を用いても,一体のGaAs化合物原料31を用いた場合と同様の利点を享受できる。
【0036】
以上,本発明の好ましい実施の形態を説明したが,本発明はここに例示した形態に限定されない。例えば,結晶成長装置1は,縦型温度傾斜法に限らず,縦型ブリッジマン法など,他の方法を利用するものでも良い。また,縦型ボート法に限らず,横型ボート法においても,本発明を適用しえる。また,本発明は,GaAs単結晶以外の他の化合物単結晶の製造にも適用できる。
【0037】
【実施例】
以下,本発明の実施例を示す。
(実施例1)
GaAs化合物原料を別の合成炉(るつぼ)で合成した。合成したGaAs化合物原料の表面積を,そのGaAs化合物原料を用いてその後に結晶成長させたGaAs単結晶の表面積で割った値は1.05である。合成したGaAs化合物原料を6kgとなるように切断調整し,単結晶成長装置のるつぼに種結晶を挿入した後に投入した。なお,切断した残りの原料は別の原料として利用したため,原料ロスは,切断によるきりしろ分の0.2%であった。また,液体封止剤として無水ホウ酸(B)を365g,ドーパントとしてSiを280wtppm投入した。このようにして準備されたるつぼを単結晶成長装置のるつぼ収納容器にセットし,ヒータにより原料を溶融後,液体封止剤を原料融液の上部に配置させた状態で,縦型温度傾斜法により融液を固化,結晶成長させた。その際の融液と固化結晶との界面における温度勾配は3℃/cm,融液と固化結晶との界面の上昇速度は3mm/hrとした。
【0038】
こうして得られたGaAs単結晶のGa/As原子比率は1.010となり,結晶成長前のGaAs化合物原料と比べ,1.0%増加した。製造したGaAs単結晶を成長方向と垂直にスライス研磨し,300℃のKOHに浸漬することによって転位密度を計測した。転位密度は,最大値で150個/cm ,平均値で5個/cmという低い転位密度であった。また,SIMS分析装置によって不純物分析をした結果,特に異常は認められなかった。
【0039】
同様の条件でGaAs単結晶を10回繰り返し製造したが,すべてにおいて単結晶を製造できた。また,各結晶の転位密度の評価をしたところ,いずれも最大値は200個/cm 以下で,平均値も10個/cm 以下であった。
【0040】
(実施例2)
GaAs単結晶成長に用いる種結晶部が開口しているるつぼを用意し,るつぼ下部の種結晶配置部にBN製のスペーサを挿入した。るつぼ壁面とスペーサとの間には隙間ができないようにした。次に純Ga原料を3.0kg,純As原料を3.3kgるつぼに投入し,さらに液体封止剤365g,ドーパントとしてSiを280wtppm投入した。原料投入されたるつぼを単結晶成長装置のるつぼ収納容器に収め,ヒータにより原料を溶融後,縦型温度傾斜法によりるつぼ下部より固化結晶を成長させた。この際の原料融液と固化結晶の界面における温度勾配は10℃/cm,原料融液と固化結晶の界面の上昇速度は10mm/hrとした。こうしてGaAs化合物原料を得た後,るつぼの下部のスペーサをはずし,種結晶を挿入した後,キャップをして封止し,再度るつぼ収納容器にるつぼを収めた。その後,実施例1と同一の条件にて単結晶成長させた。GaAs化合物原料の表面積をそのGaAs化合物原料を用いて成長させたGaAs単結晶の表面積で割った値は1.00である。得られたGaAs単結晶のGa/As原子比率は1.009であり,Ga/As比率は0.9%増加した。また,転位密度を測定した結果,最大値で180個/cm ,平均で8個/cm であり,低転位密度を有するGaAs単結晶であることが判明した。この様に,従来よりも更に低い転位密度を有したGaAs単結晶をレーザ用半導体基板に用いれば,より不良チップの発生を抑え,歩留りを良くし,生産性の向上を図ることができる。
【0041】
(比較例)
実施例1と同様に予め別の合成炉でGaAs化合物原料を生成した。次に,このGaAs化合物原料をステンレス製のハンマーを用い,破砕した。得られた破砕塊を目開き1mmのふるいで分級し,1mmφ以上の原料破砕塊だけを抽出した。その際,ふるい分けされることによる原料ロスは4.3%であった。単結晶成長装置のるつぼ下部に種結晶を配置し,その上から,分級したGaAs化合物原料(破砕礫)を6Kg投入し,さらにドーパントとしてSiを280wtppm,液体封止剤として無水ホウ酸(B)365gを投入した。この際のGaAs化合物原料の表面積をそのGaAs化合物原料を用いて成長させたGaAs単結晶の表面積で割った値は,破砕礫の平均粒径より求めると22.2であった。原料投入されたるつぼをるつぼ収納容器にセットし,加熱溶融後,縦型温度勾配法を用いて結晶成長させた。その際の温度条件,成長条件などは実施例1と同様である。こうして得られたGaAs単結晶を同様に分析した結果,Ga/As原子比率は1.022となり,化合物原料に比べGa/As比率が2.2%も増加した。また,結晶成長方向に垂直にスライスして,転位密度を測定した結果,最大で800個/cm,平均で30個/cmとなり,本発明の実施例より転位密度が増えた。また,SIMS分析により不純物分析をした結果,Fe及びCrが2×1015個/cm以上検出され,破砕時に使用したステンレス製ハンマーからの不純物混入が判明した。
【0042】
同様の条件でGaAs単結晶を10回製造した結果,多結晶成長が1回発生した。また,転位密度を測定した結果,最大値の平均は1500個/cm,平均値の平均は80個/cmであり,うち4回についてSIMS分析によりFe及びCrが2×1015個/cm以上検出された。
【0043】
【発明の効果】
本発明によれば,転位密度の低い安定した組成の化合物単結晶を製造することができる。また,原料ロスの低減,安定した単結晶成長を実現でき,作業効率及び工程短縮による生産性の向上もはかれる。
【図面の簡単な説明】
【図1】結晶成長装置の概略的な構成を示す縦断面図である。
【図2】るつぼの縦断面図である。
【図3】本発明の実施の形態にかかるGaAs化合物原料の斜視図である。
【図4】GaAs化合物原料の製造工程の説明図である。
【図5】本発明の実施の形態にかかるGaAs化合物原料をるつぼに投入した状態の説明図である。
【図6】るつぼ内に複数の化合物原料片から構成されるGaAs化合物原料を投入した状態を示す縦断面図である。
【符号の説明】
1 結晶成長装置
10 気密容器
11 るつぼ
12 円柱部
13 円錐部
14 種結晶部
20 るつぼ収納容器
21 ロッド
22 シールリング
23 回転昇降機構
25 ヒータ
26 断熱材
39 種結晶
31 GaAs化合物原料
32 液体封止剤
33 GaAs単結晶
35 円柱部
36 円錐台部
40 るつぼ
41 Ga原料
42 As原料
45 種結晶部
46 スペーサ
50 キャップ
60 化合物原料片
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a compound single crystal for producing a compound single crystal such as a GaAs single crystal.
[0002]
[Prior art]
N-type conductive or semi-insulating GaAs single crystals used as materials for light emitting / receiving elements, high-speed computing elements, microwave elements, etc., or for Hall elements, use the horizontal boat method or the like to reduce the dislocation density in the crystal. Manufactured using the vertical boat method. In particular, the vertical boat method has the advantage that not only crystal growth in the (100) direction can be grown, but also a circular and large-diameter crystal can be obtained. The vertical temperature gradient method (VGF method), vertical bridge method, etc. Crystal growth is performed by the Mann method (VB method).
[0003]
In general, when growing a GaAs crystal by a vertical boat method, a seed crystal is arranged in a seed crystal portion at the bottom of a vertical boat (hereinafter referred to as “crucible”), but when Ga and As are directly charged into a crucible, , The low melting point of pure Ga and pure As causes the seed crystal to melt. For this reason, it is necessary to prepare a GaAs compound raw material by melting and synthesizing a pure Ga raw material and a pure As raw material in advance using a synthesis furnace or the like. In the case where a GaAs compound raw material synthesized in advance as described above is put into a crucible, the raw material has been conventionally crushed and adjusted to an appropriate particle size (for example, JP 2000-109400 A).
[0004]
[Patent Document 1]
JP 2000-109400 A (for example, FIG. 4)
[0005]
[Problems to be solved by the invention]
However, when a crushed GaAs compound material is put into a crucible as in the past, the particle size of the crushed material gravel is not constant, and the surface area is different for each grain. The amount of As is also different for each grain. For this reason, the Ga / As ratio after crystal growth is likely to deviate from the target composition. In addition, this Ga / As ratio shift causes vacancy defects in the atomic structure in the single crystal and increases the dislocation density. When a semiconductor laser substrate made of a GaAs single crystal with a high dislocation density is used in the manufacture of a semiconductor laser chip, the laser output decreases, and the defect rate increases as the dislocation density increases. It becomes a problem. On the other hand, throwing into the crucible with the same particle size of the crushed raw material gravel is mainly a manual work, which imposes a burden on the workers.
[0006]
In addition, GaAs raw material particles with small particle size generated when the raw material is crushed fall to the lower part when the raw material is charged and adhere to the upper surface of the seed crystal, which inhibits single crystal growth and becomes polycrystallized. Problems arise. In order to solve such a problem, it is necessary to exclude raw material particles having a certain particle diameter or less after crushing the raw material, resulting in a reduction in raw material yield and a decrease in production efficiency.
[0007]
In addition, when crushing the raw material, there arises a problem of contamination of impurities generated from the crushing equipment. For this reason, it is necessary to remove impurities from the crushed gravel after crushing, and if the treatment is not sufficient, the impurities incorporated during crystal growth become the nucleus of dislocation generation, leading to the result of increasing the dislocation density. It also affects the electrical characteristics.
[0008]
Further, since the crushed raw material particles have a high bulk density, when a GaAs single crystal is grown in a crucible, the height of the produced single crystal is ½ of the height of the raw material particles charged in the crucible. To about 1/3. For this reason, when manufacturing a long single crystal, a crucible with a considerably high height is required, and the equipment cost and running cost increase.
[0009]
Accordingly, an object of the present invention is to provide a means for producing a compound single crystal having a stable composition with a low dislocation density.
[0012]
In order to achieve this object, in the present invention, a compound raw material synthesized in advance is put into a crucible having a cylindrical portion and a conical portion , melted and solidified, and then seeded by a vertical boat method. A method for producing a compound single crystal by growing a compound single crystal using a crystal, wherein the compound raw material before melting, which is put into a crucible, is put in a state where there is no gap in the lower part of the crucible, and the compound raw material is crystal A compound crucible or a synthesis crucible having the same internal shape as the crystal growth except for the height is synthesized by introducing a plurality of raw materials for synthesizing the compound raw material, and the surface area of the compound raw material is the crystal It is characterized by being 1.5 times or less the surface area of the grown compound single crystal. In this case, it is preferable to use the synthesized compound raw material without pulverization.
[0013]
In addition, when synthesizing the compound raw material, a spacer is disposed in the seed crystal portion of the crucible, and after cooling and solidifying the compound raw material in the crucible, a seed crystal is inserted into the space from which the spacer is removed. Also good.
[0014]
The compound raw material thus manufactured is, for example, GaAs single crystal. According to the present invention, for example, it is possible to produce a low dislocation density compound raw material having a dislocation density of 200 pieces / cm 2 or less at maximum and 10 pieces / cm 2 on average.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described with reference to the drawings in the case of producing a GaAs single crystal as an example of a compound single crystal. FIG. 1 is a longitudinal sectional view showing a schematic configuration of the crystal growth apparatus 1. FIG. 2 is a longitudinal sectional view of the crucible 11. The crystal growth apparatus 1 manufactures a GaAs single crystal by a vertical temperature gradient method which is one of the vertical boat methods.
[0016]
As shown in FIG. 1, a crucible 11 is arranged at the center inside the airtight container 10. As shown in FIG. 2, the crucible 11 includes a cylindrical portion 12 having an open upper end and a conical portion 13 connected so as to close the lower portion of the cylindrical portion 12. In the lower part, a seed crystal portion 14 for inserting a seed crystal is formed. The seed crystal portion 14 is closed with a cap 50.
[0017]
As shown in FIG. 1, the crucible 11 is stored in a cylindrical crucible storage container 20 whose bottom surface is closed. The crucible storage container 20 is supported on the upper end of the rod 21. The lower end of the rod 21 protrudes below the hermetic container 10 via a seal ring 22 mounted on the lower surface of the hermetic container 10, and a rotary lifting mechanism 23 is connected thereto. The operation of the rotary lifting mechanism 23 enables the crucible storage container 20 and the crucible 11 to be integrally rotated and lifted via the rod 21. The inside of the airtight container 10 is kept airtight by the seal ring 22.
[0018]
In the airtight container 10, a plurality of heaters 25 are arranged at each height so as to surround the crucible storage container 20. The heaters 25 at the respective heights can be controlled independently, and a desired temperature gradient and temperature distribution can be formed in the airtight container 10 in the vertical direction. The outside of the heater 25 is surrounded by a heat insulating material 26 so that the heat of the heater 25 is effectively transmitted to the crucible storage container 20.
[0019]
In the crystal growth apparatus 1 configured as described above, after inserting the seed crystal 30 into the seed crystal portion 14 of the crucible 11, the seed crystal portion 14 is closed with the cap 5, and the GaAs compound raw material 31 and B 2 synthesized in advance are filled. A liquid sealant 32 such as O 3 and a dopant are introduced into the crucible 11 as necessary.
[0020]
Then, the charged crucible 11 is set in the crucible storage container 20, the inside of the hermetic container 10 is increased to a predetermined pressure, and then heated by the heater 25, whereby the entire GaAs compound raw material 31 is heated and melted, The liquid sealing material 32 is arranged on the upper part of the GaAs compound raw material 31 thus formed. Next, by controlling the temperature of each heater 25, a temperature gradient is formed in the GaAs compound raw material 31 that has become a melt in the crucible 11, and the raw material melt is cooled in accordance with the vertical temperature gradient method. The GaAs compound raw material 31 is gradually cooled and solidified from the lowermost part in contact, and a GaAs single crystal 33 is grown. In this case, the GaAs single crystal 33 may be grown while rotating and raising and lowering the crucible 11 by operating the rotary elevating mechanism 23 as necessary.
[0021]
Thus, after the entire GaAs compound raw material 31 is solidified and changed to the GaAs single crystal 33, the GaAs single crystal 33 is cooled and the GaAs single crystal 33 is taken out from the crucible 11.
[0022]
Here, FIG. 3 is a perspective view of the GaAs compound raw material 31 introduced into the crucible 11 when the GaAs single crystal 33 is grown as described above. The GaAs compound raw material 31 includes a cylindrical portion 35 and a truncated cone portion 36 disposed at the lower end of the cylindrical portion 35. The diameter d of the cylindrical portion 35 is equal to or smaller than the inner diameter of the cylindrical portion 12 of the crucible 11, and the height h of the cylindrical portion 35 is set to be equal to or smaller than the height of the cylindrical portion 12 of the crucible 11. The truncated cone part 36 has an inclination angle that just enters the inside of the cone part 13 of the crucible 11.
[0023]
Such a GaAs compound raw material 31 is manufactured as follows, for example. That is, as shown in FIG. 4, the Ga raw material 41 and the As raw material 42, which are raw materials for synthesizing the GaAs compound raw material 31, inside the synthetic crucible 40 having the same internal shape as the crucible 11 except for the height, , B 2 O 3 or the like is charged (charged). In this case, for example, the Ga raw material 41 is a melt and the As raw material 42 is a solid (granular). The height of the crucible 40 is desirably the same as or higher than that of the crucible 11. The crucible 40 is made of a material having necessary heat resistance and poor reactivity with the raw material melt, such as boron nitride (BN) material. In this case, a dopant is also introduced into the crucible 40 as necessary. Note that the crucible 40 for synthesizing the GaAs compound raw material 31 in this way may be the crucible 11 itself for crystal growth in the crystal growth apparatus 1.
[0024]
Further, when synthesizing the GaAs compound raw material 31 in this way, a spacer 46 is disposed in the seed crystal portion 45 of the crucible 40 instead of the seed crystal 30. The material of the spacer 46 is also a material having necessary heat resistance and poor reactivity with the raw material melt, such as boron nitride (BN) material. The spacer 46 has a conical shape so that the lower end of the truncated cone part 36 does not push down the seed crystal 30 inserted into the seed crystal part 14 of the crucible 11 when the manufactured GaAs compound raw material 31 is put into the crucible 11. It plays the role of adjusting the height of the lower end of the base part 36. As shown in the figure, when a crucible 40 having an open lower end is used, a spacer 46 can be inserted from below the crucible 40 to close the opening at the lower end of the crucible 40.
[0025]
Then, the Ga raw material 41 and As raw material 42 and the liquid sealing agent 32 and the like charged in the crucible 40 are heated and melted, and then solidified and synthesized. In this way, a GaAs compound raw material 31 as shown in FIG. 3 can be obtained. Thus, when manufacturing the GaAs compound raw material 31, heating and cooling do not necessarily need to be the same conditions as the case where the GaAs single crystal 33 is manufactured. For example, in consideration of productivity, the GaAs compound raw material 31 may be synthesized by cooling at a high speed and solidified. However, in order to effectively remove oxides generated in the melting and solidifying process and impurities in the raw material, the vertical temperature gradient method is used as in the case of manufacturing the GaAs single crystal 33, and the lower part of the crucible 40 is used. It is desirable to solidify in one direction from the top to the top.
[0026]
The GaAs compound raw material 31 manufactured in this way has substantially the same shape as the GaAs single crystal 33 manufactured using the GaAs compound raw material 31, and the surface area of the GaAs compound raw material 31 before melting is the same as that of the GaAs compound raw material 31. The surface area of the GaAs single crystal 33 (the GaAs single crystal 33 that has finished crystal growth) is less than five times the surface area. Further, since the liquid sealing agent 32 is also introduced into the crucible 40, the liquid sealing agent 32 is disposed in a solidified state on the upper surface of the GaAs single crystal 33.
[0027]
Then, the GaAs compound raw material 31 synthesized in this way is taken out from the crucible 40, and as shown in FIG. 5, the GaAs compound raw material 31 is directly put into the crucible 11 of the crystal growth apparatus 1 without being crushed. A seed crystal 30 is inserted into the seed crystal portion 14 of the crucible 11. In this case, if the crucible 11 is opened at the bottom as shown in FIG. 5, the seed crystal 30 may be inserted from below and the opening may be closed with the cap 50. Thereby, the seed crystal 30 can be easily arranged in the seed crystal portion 14.
[0028]
Thus, the GaAs compound raw material 31 can be put into the crucible 11 with substantially no gap. When the GaAs compound raw material 31 is solidified in the crucible 40, the spacer 46 is disposed in the seed crystal portion 45 of the crucible 40, so that the height of the lower end of the truncated cone portion 36 is adjusted, and the GaAs compound raw material is adjusted. When 31 is put into the crucible 11, there is no concern that the lower end of the truncated cone part 36 pushes down the seed crystal 30 inserted into the seed crystal part 14 of the crucible 11.
[0029]
In synthesizing the GaAs compound raw material 31, when the crucible 11 itself for crystal growth in the crystal growth apparatus 1 is used as the crucible 40, it is not necessary to take out the GaAs compound raw material 31 from the crucible 11. In that case, after the synthesized GaAs compound raw material 31 is cooled and solidified in the crucible 11, the spacer 46 is removed from the opening at the bottom of the crucible 11, and the seed crystal 30 is inserted into the seed crystal portion 14 from below to open the opening. The portion may be closed with the cap 50.
[0030]
Then, with the GaAs compound raw material 31 introduced into the crucible 11 and the seed crystal 30 inserted into the seed crystal portion 14 as described above, the entire GaAs compound raw material 31 in the crystal growth apparatus 1 described with reference to FIG. The GaAs compound raw material 31 is gradually cooled and solidified from the lowermost part in contact with the seed crystal 30 according to the vertical temperature gradient method by heating and melting and temperature control of each heater 25 to produce a GaAs single crystal 33.
[0031]
As described above, by manufacturing the GaAs single crystal 33 using the GaAs compound raw material 31 having substantially the same shape as the GaAs single crystal 33, the amount of As volatilized at the time of melting can be reduced, and the Ga / As ratio is as intended. It becomes possible to stably obtain the GaAs single crystal 33 having a low dislocation density. The GaAs single crystal 33 manufactured in this way has a low dislocation density of, for example, a maximum dislocation density of 200 pieces / cm 2 or less and an average of 10 pieces / cm 2 . The shape of the GaAs compound raw material 31 is not necessarily the same as that of the GaAs single crystal 33 after crystal growth, but GaAs before melting (before the GaAs compound raw material 31 is heated and melted in the crystal growth apparatus 1). The surface area of the compound raw material 31 is preferably not more than 5 times the surface area of a GaAs single crystal 33 (a GaAs single crystal 33 that has finished crystal growth) manufactured using the GaAs compound raw material 31. If the surface area of the GaAs compound raw material 31 before melting exceeds 5 times the surface area of the GaAs single crystal 33 produced therefrom, fluctuations in the Ga / As ratio cannot be suppressed, and the growth in the grown GaAs single crystal 33 The rate of occurrence of dislocations increases rapidly, making it difficult to stably produce a GaAs single crystal 33 having a low dislocation density. In addition, the input amount per unit volume with respect to the crucible 11 is lowered, and the production efficiency is also lowered. In order to obtain a lower dislocation density GaAs single crystal 33 with a more stable Ga / As ratio, the surface area of the GaAs compound raw material 31 before melting is twice the surface area of the GaAs single crystal 33 produced therefrom. The following is desirable, and 1.5 times or less is more desirable.
[0032]
In addition, by introducing the synthesized GaAs compound raw material 31 into the crucible 11 of the crystal growth apparatus 1 as it is without being pulverized, it is possible to avoid contamination of impurities generated during crushing and generation of small-diameter particles, and to stabilize single crystal growth. This contributes to shortening the process and reducing the load.
[0033]
Further, if the GaAs compound raw material 31 is synthesized using the crucible 11 itself for crystal growth in the crystal growth apparatus 1 as the crucible 40, another crucible 40 for producing the GaAs compound raw material 31 becomes unnecessary, and the equipment cost can be reduced. , Space can be omitted.
[0034]
FIG. 6 shows another embodiment of the present invention, in which a GaAs compound raw material composed of a plurality of compound raw material pieces 60 having a disk shape or a truncated cone shape in a crucible 11 for growing a GaAs single crystal 33. The state where 31 is input is shown. A liquid sealant 32 is introduced into the upper surface of the GaAs compound raw material 31, the seed crystal 30 is inserted into the seed crystal portion 14 below the crucible 11, and the opening is closed with a cap 50.
[0035]
The GaAs compound raw material 31 introduced into the crucible 11 is not limited to the one as shown in FIG. 5 and may be composed of a plurality of compound raw material pieces 60 as shown in FIG. In any case, it is preferable that the surface area of the GaAs compound raw material 31 before melting is 5 times or less than the surface area of the GaAs single crystal 33 produced therefrom in the state of being put into the crucible 11 and combined. In order to stabilize the production of the crystal growth apparatus 1, it is preferable that the GaAs compound raw material 31 is always put into the crucible 11 in the same state. As described above, even when the GaAs compound raw material 31 constituted by the plurality of compound raw material pieces 60 is used, the same advantages as when the integral GaAs compound raw material 31 is used can be enjoyed.
[0036]
As mentioned above, although preferable embodiment of this invention was described, this invention is not limited to the form illustrated here. For example, the crystal growth apparatus 1 is not limited to the vertical temperature gradient method but may use other methods such as the vertical Bridgman method. Further, the present invention can be applied not only to the vertical boat method but also to the horizontal boat method. The present invention can also be applied to the manufacture of compound single crystals other than GaAs single crystals.
[0037]
【Example】
Examples of the present invention will be described below.
Example 1
The GaAs compound raw material was synthesized in another synthesis furnace (crucible). The value obtained by dividing the surface area of the synthesized GaAs compound raw material by the surface area of a GaAs single crystal crystal grown thereafter using the GaAs compound raw material is 1.05. The synthesized GaAs compound raw material was cut and adjusted to 6 kg, and the seed crystal was inserted into the crucible of the single crystal growth apparatus and then charged. Since the remaining raw material cut was used as another raw material, the raw material loss was 0.2% of the margin due to cutting. Further, 365 g of boric anhydride (B 2 O 3 ) as a liquid sealant and 280 wtppm of Si as a dopant were added. The crucible prepared in this way is set in the crucible storage container of the single crystal growth apparatus, the raw material is melted by a heater, and the liquid sealant is placed on the upper part of the raw material melt. As a result, the melt was solidified and crystals were grown. At that time, the temperature gradient at the interface between the melt and the solidified crystal was 3 ° C./cm, and the rising speed at the interface between the melt and the solidified crystal was 3 mm / hr.
[0038]
The Ga / As atomic ratio of the GaAs single crystal thus obtained was 1.010, an increase of 1.0% compared to the GaAs compound raw material before crystal growth. Dislocation density was measured by slicing the manufactured GaAs single crystal perpendicularly to the growth direction and immersing in KOH at 300 ° C. Dislocation density is 150 at the maximum value / cm 2, was low dislocation density of 5 / cm 2 in average. As a result of impurity analysis using a SIMS analyzer, no abnormality was found.
[0039]
A GaAs single crystal was repeatedly manufactured 10 times under the same conditions, but single crystals could be manufactured in all cases. Further, when the dislocation density of each crystal was evaluated, the maximum value was 200 pieces / cm 2 or less and the average value was 10 pieces / cm 2 or less.
[0040]
(Example 2)
A crucible with an open seed crystal portion used for GaAs single crystal growth was prepared, and a BN spacer was inserted into the seed crystal placement portion at the bottom of the crucible. There was no gap between the crucible wall and the spacer. Next, 3.0 kg of pure Ga raw material and 3.3 kg of pure As raw material were charged into a crucible, and 365 g of liquid sealing agent and 280 wtppm of Si as a dopant were charged. The crucible charged with the raw material was placed in a crucible storage container of a single crystal growth apparatus, the raw material was melted with a heater, and solidified crystals were grown from the bottom of the crucible by the vertical temperature gradient method. At this time, the temperature gradient at the interface between the raw material melt and the solidified crystal was 10 ° C./cm, and the rising speed at the interface between the raw material melt and the solidified crystal was 10 mm / hr. After obtaining the GaAs compound raw material in this way, the spacer at the bottom of the crucible was removed, the seed crystal was inserted, the cap was sealed, and the crucible was again placed in the crucible container. Thereafter, single crystals were grown under the same conditions as in Example 1. The value obtained by dividing the surface area of the GaAs compound raw material by the surface area of the GaAs single crystal grown using the GaAs compound raw material is 1.00. The obtained GaAs single crystal had a Ga / As atomic ratio of 1.009, and the Ga / As ratio increased by 0.9%. As a result of measuring the dislocation density, the maximum value was 180 / cm 2 and the average was 8 / cm 2 , and it was found to be a GaAs single crystal having a low dislocation density. In this way, if a GaAs single crystal having a lower dislocation density than the conventional one is used for a laser semiconductor substrate, the generation of defective chips can be suppressed, the yield can be improved, and the productivity can be improved.
[0041]
(Comparative example)
In the same manner as in Example 1, a GaAs compound raw material was previously produced in another synthesis furnace. Next, this GaAs compound raw material was crushed using a stainless steel hammer. The obtained crushed lump was classified with a sieve having an opening of 1 mm, and only the raw crushed lump having a diameter of 1 mmφ or more was extracted. At that time, the raw material loss due to sieving was 4.3%. A seed crystal is arranged at the lower part of the crucible of the single crystal growth apparatus, and then 6 kg of classified GaAs compound raw material (crushed gravel) is added from the seed crystal. Further, Si is 280 wtppm as a dopant, and boric anhydride (B 2 as a liquid sealant) 365 g of O 3 ) was added. The value obtained by dividing the surface area of the GaAs compound raw material by the surface area of the GaAs single crystal grown using the GaAs compound raw material was 22.2 when calculated from the average particle size of the crushed gravel. The crucible charged with the raw material was set in a crucible storage container, heated and melted, and then crystal growth was performed using the vertical temperature gradient method. The temperature conditions, growth conditions, etc. at that time are the same as those in the first embodiment. The GaAs single crystal thus obtained was analyzed in the same manner. As a result, the Ga / As atomic ratio was 1.022, and the Ga / As ratio was increased by 2.2% compared to the compound raw material. Moreover, as a result of slicing perpendicularly to the crystal growth direction and measuring the dislocation density, the maximum was 800 / cm 2 and the average was 30 / cm 2 , and the dislocation density increased from the example of the present invention. As a result of impurity analysis by SIMS analysis, 2 × 10 15 pieces / cm 3 or more of Fe and Cr were detected, and contamination of the stainless steel hammer used during crushing was found.
[0042]
As a result of manufacturing the GaAs single crystal 10 times under the same conditions, polycrystalline growth occurred once. Further, as a result of measuring the dislocation density, the average of the maximum value was 1500 / cm 2 , and the average of the average value was 80 / cm 2 , of which 4 times of Fe and Cr were 2 × 10 15 / cm 2 by SIMS analysis. cm 3 or more was detected.
[0043]
【The invention's effect】
According to the present invention, a compound single crystal having a stable composition with a low dislocation density can be produced. In addition, material loss can be reduced, stable single crystal growth can be realized, and work efficiency and productivity can be improved by shortening the process.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view showing a schematic configuration of a crystal growth apparatus.
FIG. 2 is a longitudinal sectional view of a crucible.
FIG. 3 is a perspective view of a GaAs compound raw material according to an embodiment of the present invention.
FIG. 4 is an explanatory diagram of a manufacturing process of a GaAs compound raw material.
FIG. 5 is an explanatory diagram of a state in which a GaAs compound raw material according to an embodiment of the present invention is charged into a crucible.
FIG. 6 is a longitudinal sectional view showing a state in which a GaAs compound raw material composed of a plurality of compound raw material pieces is charged into a crucible.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal growth apparatus 10 Airtight container 11 Crucible 12 Cylindrical part 13 Conical part 14 Seed crystal part 20 Crucible storage container 21 Rod 22 Seal ring 23 Rotation raising / lowering mechanism 25 Heater 26 Heat insulating material 39 Seed crystal 31 GaAs compound raw material 32 Liquid sealant 33 GaAs single crystal 35 cylindrical part 36 truncated cone part 40 crucible 41 Ga raw material 42 As raw material 45 seed crystal part 46 spacer 50 cap 60 compound raw material piece

Claims (3)

予め合成された化合物原料を円柱部および円錐部からなる形状のるつぼに投入し,溶融後,固化させることにより,縦型ボート法によって種結晶を用いて化合物単結晶を成長させる製造方法であって,
るつぼに投入される溶融前の化合物原料は,るつぼ内の下部に隙間の無い状態で投入され,
前記化合物原料は結晶成長させるるつぼ,もしくは,高さ以外は結晶成長させるるつぼと内部形状が同じである合成用のるつぼに,化合物原料を合成させる複数の原料を投入して合成され,
前記化合物原料の表面積が,結晶成長させた化合物単結晶の表面積の1.5倍以下であることを特徴とする,化合物単結晶の製造方法。
A method of growing a compound single crystal using a seed crystal by a vertical boat method, in which a compound raw material synthesized in advance is put into a crucible having a cylindrical part and a conical part , melted and solidified. ,
The raw material of the compound before being poured into the crucible is charged with no gap at the bottom of the crucible.
The compound raw material is synthesized by introducing a plurality of raw materials for synthesizing the compound raw material into a crucible for crystal growth or a synthesis crucible having the same internal shape as the crystal growth crucible except for the height,
A method for producing a compound single crystal, wherein the surface area of the compound raw material is 1.5 times or less of the surface area of the compound single crystal that has been crystal-grown.
前記合成した化合物原料を粉砕することなく用いることを特徴とする,請求項1に記載の化合物単結晶の製造方法。The method for producing a compound single crystal according to claim 1, wherein the synthesized compound raw material is used without being pulverized. 前記化合物原料を合成するに際し,前記るつぼの種結晶部にスペーサを配置しておき,化合物原料を前記るつぼ内で冷却固化させた後,前記スペーサを外した空間に種結晶を挿入することを特徴とする,請求項1または2に記載の化合物単結晶の製造方法。In synthesizing the compound raw material, a spacer is arranged in the seed crystal part of the crucible, and after cooling and solidifying the compound raw material in the crucible, the seed crystal is inserted into the space from which the spacer is removed. The method for producing a compound single crystal according to claim 1 or 2.
JP2002301508A 2002-10-16 2002-10-16 Compound raw material and method for producing compound single crystal Expired - Lifetime JP4459519B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002301508A JP4459519B2 (en) 2002-10-16 2002-10-16 Compound raw material and method for producing compound single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002301508A JP4459519B2 (en) 2002-10-16 2002-10-16 Compound raw material and method for producing compound single crystal

Publications (2)

Publication Number Publication Date
JP2004137096A JP2004137096A (en) 2004-05-13
JP4459519B2 true JP4459519B2 (en) 2010-04-28

Family

ID=32449825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002301508A Expired - Lifetime JP4459519B2 (en) 2002-10-16 2002-10-16 Compound raw material and method for producing compound single crystal

Country Status (1)

Country Link
JP (1) JP4459519B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4549111B2 (en) * 2004-06-16 2010-09-22 Dowaホールディングス株式会社 GaAs polycrystal production furnace
WO2006106644A1 (en) * 2005-03-31 2006-10-12 Dowa Electronics Materials Co., Ltd. Si-DOPED GaAs SINGLE CRYSTAL INGOT AND PROCESS FOR PRODUCING THE SAME, AND Si-DOPED GaAs SINGLE CRYSTAL WAFER PRODUCED FROM SAID Si-DOPED GaAs SINGLE CRYSTAL INGOT
EP1739210B1 (en) 2005-07-01 2012-03-07 Freiberger Compound Materials GmbH Method for production of doped semiconductor single crystal, and III-V semiconductor single crystal
US8329295B2 (en) 2008-07-11 2012-12-11 Freiberger Compound Materials Gmbh Process for producing doped gallium arsenide substrate wafers having low optical absorption coefficient
DE102008032628A1 (en) * 2008-07-11 2010-01-28 Freiberger Compound Materials Gmbh Preparation of doped gallium arsenide single crystal, useful to produce gallium arsenide substrate wafer, comprises melting gallium arsenide starting material and subsequently making the gallium arsenide melts

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05286798A (en) * 1992-04-07 1993-11-02 Furukawa Electric Co Ltd:The Production of iii-v compound semiconductor single crystal block material
JP3391503B2 (en) * 1993-04-13 2003-03-31 同和鉱業株式会社 Method for manufacturing compound semiconductor single crystal by vertical boat method
JPH11116373A (en) * 1997-10-21 1999-04-27 Kobe Steel Ltd Compound semiconductor single crystal of low dislocation density, its production and apparatus for producing the same
JP2001072488A (en) * 1999-08-31 2001-03-21 Nippon Telegr & Teleph Corp <Ntt> Method for producing solid solution single crystal
JP2001354495A (en) * 2001-06-08 2001-12-25 Sony Corp Method for producing manganese zinc ferrite single crystal

Also Published As

Publication number Publication date
JP2004137096A (en) 2004-05-13

Similar Documents

Publication Publication Date Title
JP5216123B2 (en) Si-doped GaAs single crystal ingot, method for producing the same, and Si-doped GaAs single crystal wafer produced from the Si-doped GaAs single crystal ingot
JP4810346B2 (en) Method for producing sapphire single crystal
JPWO2007063637A1 (en) Method for producing semiconductor bulk polycrystal
EP3305948B1 (en) Apparatus for producing single crystal and method for producing single crystal
CN108203844B (en) Magnesium tantalate series crystal and its preparing process
CN102312279A (en) Method for casting crystal by seed crystal induction
US4652332A (en) Method of synthesizing and growing copper-indium-diselenide (CuInSe2) crystals
JP4459519B2 (en) Compound raw material and method for producing compound single crystal
Deitch et al. Bulk single crystal growth of silicon-germanium
CN100412239C (en) Technique for growing Cd-Zn-Te crystal
JP4930166B2 (en) Method for producing aluminum oxide single crystal
JP2012041200A (en) Crystal growth method
US20020148402A1 (en) Growing of homogeneous crystals by bottom solid feeding
US11326270B2 (en) Single-crystal production equipment and single-crystal production method
JP4549111B2 (en) GaAs polycrystal production furnace
US20210222318A1 (en) Single-Crystal Production Equipment and Single-Crystal Production Method
CN115233305B (en) Method for preparing ultra-high purity polycrystalline germanium by VB method
JP4524527B2 (en) Method for producing Langasite single crystal
JPH11116373A (en) Compound semiconductor single crystal of low dislocation density, its production and apparatus for producing the same
KR100868726B1 (en) Synthesis vb apparatus and method for gaas
JP4141467B2 (en) Method and apparatus for producing spherical silicon single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
Capper Bulk growth techniques
CN118773718A (en) Preparation method of indium phosphide single crystal and stepped crucible for growing indium phosphide single crystal
CN118422310A (en) Method for growing ruby crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050701

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080901

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090716

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091020

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100202

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4459519

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term