JP4399631B2 - Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same - Google Patents

Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same Download PDF

Info

Publication number
JP4399631B2
JP4399631B2 JP2003350832A JP2003350832A JP4399631B2 JP 4399631 B2 JP4399631 B2 JP 4399631B2 JP 2003350832 A JP2003350832 A JP 2003350832A JP 2003350832 A JP2003350832 A JP 2003350832A JP 4399631 B2 JP4399631 B2 JP 4399631B2
Authority
JP
Japan
Prior art keywords
compound semiconductor
raw material
single crystal
carbon
semiconductor single
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003350832A
Other languages
Japanese (ja)
Other versions
JP2005112685A (en
Inventor
良一 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Electronics Materials Co Ltd
Original Assignee
Dowa Electronics Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Electronics Materials Co Ltd filed Critical Dowa Electronics Materials Co Ltd
Priority to JP2003350832A priority Critical patent/JP4399631B2/en
Publication of JP2005112685A publication Critical patent/JP2005112685A/en
Application granted granted Critical
Publication of JP4399631B2 publication Critical patent/JP4399631B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、主にVB法やVGF法などの縦型ボード法によってGaAs単結晶などの化合物半導体単結晶を製造する方法、特に、カーボンを含有する化合物半導体単結晶の製造方法、製造装置に関するものである。
The present invention relates to a method of manufacturing a compound semiconductor single crystal such as a GaAs single crystal mainly by a vertical board method such as a VB method or a VGF method, and more particularly to a method and apparatus for manufacturing a compound semiconductor single crystal containing carbon. It is.

化合物半導体単結晶の製造方法として、例えば、LEC法(液体封止引き上げ法)、VB法(縦型ブリッジマン法)、VGF法(垂直温度勾配法)などが知られている。   As a method for producing a compound semiconductor single crystal, for example, an LEC method (liquid sealing pulling method), a VB method (vertical Bridgman method), a VGF method (vertical temperature gradient method), and the like are known.

LEC法は、化合物半導体原料をルツボ内で融解した後、液状の封止剤である酸化ホウ素を用いて融液の上面全体を覆いながら、結晶を徐々に引き上げることによって結晶を育成する方法である。   The LEC method is a method in which a compound semiconductor raw material is melted in a crucible, and then the crystal is grown by gradually pulling up the crystal while covering the entire top surface of the melt with boron oxide which is a liquid sealing agent. .

VGF法・VB法(以下、縦型ボート法と記載する。)は、化合物半導体原料をルツボ内で融解し、その融液を上部が高く下部が低い温度分布を有する縦型炉の中で、当該温度分布全体を降温するか、またはルツボを相対的に降下させることで、ルツボの下端より順次上方に結晶を成長させる方法である。   The VGF method / VB method (hereinafter referred to as a vertical boat method) is a method in which a compound semiconductor raw material is melted in a crucible, and the melt is melted in a vertical furnace having a temperature distribution with a high upper portion and a lower lower portion. This is a method of growing crystals sequentially from the lower end of the crucible by lowering the temperature of the entire temperature distribution or lowering the crucible relatively.

図5は縦型ボード法によってGaAs単結晶などの半導体単結晶を製造する装置の構成を示す。図において、1は気密容器、2はその中に装備されたヒーター、3は熱分解窒化ホウ素(以下、PBNという)製のルツボ、4はルツボ3を収容保持する保持筒である。ルツボ3は、原料収容部3aと、その底部の種結晶収容部(ノズル部)3bとを有し、上面が開放している。   FIG. 5 shows the configuration of an apparatus for manufacturing a semiconductor single crystal such as a GaAs single crystal by the vertical board method. In the figure, 1 is an airtight container, 2 is a heater provided therein, 3 is a crucible made of pyrolytic boron nitride (hereinafter referred to as PBN), and 4 is a holding cylinder for accommodating and holding the crucible 3. The crucible 3 has a raw material container 3a and a seed crystal container (nozzle part) 3b at the bottom thereof, and the upper surface is open.

半導体単結晶を製造する場合は、ルツボ3の種結晶収容部3b内に種結晶10を収容すると共に、原料収容部3a内に固体の化合物半導体原料11を収容し、この化合物半導体原料11の上部に封止剤12を配置する。その後、ルツボ3の外周を取り囲むように配置されたヒーター2によって、所定の温度分布になるようにルツボ3内を昇温させることによって、化合物半導体原料11及び封止剤12を融解させると共に、種結晶10の上部を融解させ、この状態を所定時間保持する。その後、種結晶側からルツボ3内の温度を徐々に下げて、種結晶10と原料11の融液との界面から、種結晶10の結晶方位を再現させながら結晶を成長させて半導体単結晶を得る。   When manufacturing a semiconductor single crystal, the seed crystal 10 is accommodated in the seed crystal accommodating part 3b of the crucible 3, and the solid compound semiconductor raw material 11 is accommodated in the raw material accommodating part 3a. The sealing agent 12 is arrange | positioned. Thereafter, the temperature of the inside of the crucible 3 is increased by the heater 2 disposed so as to surround the outer periphery of the crucible 3 so that the compound semiconductor raw material 11 and the sealant 12 are melted, The upper part of the crystal 10 is melted and this state is maintained for a predetermined time. Thereafter, the temperature in the crucible 3 is gradually lowered from the seed crystal side, and a crystal is grown from the interface between the seed crystal 10 and the melt of the raw material 11 while reproducing the crystal orientation of the seed crystal 10, thereby producing a semiconductor single crystal. obtain.

PBN製のルツボ3で単結晶を育成する場合、封止剤12としては酸化ホウ素(B23)を使用するのが一般的である。封止剤としてB23を使用する理由は、高温で軟化し溶解したB23が原料融液及び種結晶の表面を覆うことにより、化合物を構成する元素が、融液及び種結晶から解離するのを抑えられるからである。また、当該B23が、原料融液及び種結晶とPBN製ルツボとの間に入り込むことにより、原料融液及び種子結晶とPBN製ルツボとの直接接触を防止して、多結晶の発生を抑制する効果も付随して期待できる。 When growing a single crystal with a crucible 3 made of PBN, it is common to use boron oxide (B 2 0 3 ) as the sealant 12. The reason for using B 2 0 3 as a sealant, by the B 2 0 3 was dissolved softens at high temperature to cover the surface of the raw material melt and the seed crystal, an element constituting the compound melt and the seed crystal It is because it can suppress dissociation from. In addition, the B 2 0 3 enters between the raw material melt and seed crystal and the PBN crucible, thereby preventing direct contact between the raw material melt and seed crystal and the PBN crucible and generating polycrystals. The effect of suppressing the phenomenon can also be expected.

ところで、LEC法、縦型ボート法などで、原料融液から単結晶を成長させることにより化合物半導体単結晶を製造する場合、得られる単結晶に通常、カーボン等が残留不純物として混入する。これらの不純物は、ヒーターやその他の炉部材に通常用いられているグラファイトから発生し、雰囲気ガスを介してルツボ内の原料融液に混入するものと考えられている。   By the way, when a compound semiconductor single crystal is manufactured by growing a single crystal from a raw material melt by the LEC method, the vertical boat method or the like, carbon or the like is usually mixed as a residual impurity in the obtained single crystal. These impurities are considered to be generated from graphite usually used for heaters and other furnace members and mixed into the raw material melt in the crucible through the atmospheric gas.

このように化合物半導体単結晶に混入する残留不純物は、得られた単結晶の成長方向に沿って濃度変化を示すのが通常であり、特に化合物半導体単結晶の電気的特性に影響を与える不純物の濃度変化は、デバイス化した段階で種々の不都合をもたらす可能性がある。   As described above, the residual impurities mixed in the compound semiconductor single crystal usually show a concentration change along the growth direction of the obtained single crystal, and in particular, impurities that affect the electrical characteristics of the compound semiconductor single crystal. The change in concentration may cause various inconveniences in the device stage.

一方、ステンレスチャンバーを気密容器として用いたLEC法では、高圧ArまたはN2ガス雰囲気で、チャンバー内のCOガス濃度とGaAs結晶中のカーボン濃度との間に相関があることが知られている。例えば、特許文献1において、LEC炉内のCOガス濃度とGaAs結晶中のカーボン濃度との間に強い相関があることが示されている。 On the other hand, in the LEC method using a stainless steel chamber as an airtight container, it is known that there is a correlation between the CO gas concentration in the chamber and the carbon concentration in the GaAs crystal in a high-pressure Ar or N 2 gas atmosphere. For example, Patent Document 1 shows that there is a strong correlation between the CO gas concentration in the LEC furnace and the carbon concentration in the GaAs crystal.

LEC法では、このような相関関係を利用して、チャンバー内のCOガス濃度をコントロールすることにより、GaAs結晶中のカーボン濃度をコントロールすることができる。そこで、例えば特許文献1には、LEC法による例として、原料融液を収容した原料収容部を所定のガス雰囲気中に置き、該雰囲気ガス中のH2 、O2 、CO2 及びCOのうち少なくとも1種類の成分ガス濃度を検知し、該検知された成分濃度を所定値となるように制御することにより、得られる単結晶中に混入する残留不純物をインゴット全体にわたって所定の濃度に保つ技術が開示されている。 In the LEC method, the carbon concentration in the GaAs crystal can be controlled by controlling the CO gas concentration in the chamber using such correlation. Therefore, for example, in Patent Document 1, as an example based on the LEC method, a raw material container containing a raw material melt is placed in a predetermined gas atmosphere, and among the H 2 , O 2 , CO 2, and CO in the atmospheric gas, A technique for detecting a concentration of at least one component gas and controlling the detected component concentration to a predetermined value so that residual impurities mixed in the obtained single crystal are maintained at a predetermined concentration throughout the ingot. It is disclosed.

また、例えば特許文献2には、所定の分圧の酸化炭素ガスと化合物半導体原料とをガス不透過性気密容器(石英製アンプル)内に密封し、気密容器の温度を上昇させて化合物半導体原料を融解させた後、気密容器の温度を低下させて融解した化合物半導体原料を固化させて、化合物半導体結晶を成長することによって、化合物半導体結晶に極めて再現性良くカーボンを添加することができる技術が開示されている。   For example, Patent Document 2 discloses that a compound semiconductor material is produced by sealing a carbon oxide gas having a predetermined partial pressure and a compound semiconductor material in a gas impermeable hermetic container (quartz ampoule) and increasing the temperature of the hermetic container. After melting, the temperature of the hermetic container is lowered to solidify the melted compound semiconductor raw material, and the compound semiconductor crystal is grown, so that carbon can be added to the compound semiconductor crystal with extremely high reproducibility. It is disclosed.

特開平1−209089号公報Japanese Patent Laid-Open No. 1-209089 特開平11−335195号公報JP 11-335195 A アドバンスト エレクトロニクス シリーズ I−4 バルク結晶成長技術(干川圭吾編著 培風館)p184 図7.22Advanced Electronics Series I-4 Bulk Crystal Growth Technology (Takeshi Hikawa Henfukan) p184 Fig. 7.22

しかしながら、特許文献1に記載の従来技術は、LEC法において雰囲気ガス濃度制御を行うことにより結晶中のカーボン濃度を制御する技術であり、そのまま縦型ボート法に適用しても、効果が十分に得られないことは容易に推察できる。即ち、縦型ボート法では、雰囲気ガスとルツボ内融液との接触面積が小さい上、LEC法のように結晶が、B23や原料の融液を攪拌するといった反応促進の役割を担う手段がない。そのため、雰囲気ガス濃度だけを制御しても十分なカーボン濃度を制御することが困難であった。 However, the prior art described in Patent Document 1 is a technique for controlling the carbon concentration in the crystal by controlling the atmospheric gas concentration in the LEC method, and the effect is sufficient even when applied to the vertical boat method as it is. It can be easily inferred that it cannot be obtained. That is, in the vertical boat method, on the contact area between the atmospheric gas and the crucible melt is small, the crystal as the LEC method is responsible for reaction promotion, such stirring the melt of B 2 0 3 and raw materials There is no means. Therefore, it is difficult to control a sufficient carbon concentration even if only the atmospheric gas concentration is controlled.

また、特許文献2に記載の従来技術は、ガス不透過性気密容器(石英製アンプル)の中に化合物半導体原料と所定の分圧の酸化炭素ガスを密封した状態で結晶育成を行うので、外部からガス供給を行わない方法であり、カーボン濃度を調整する手段に乏しいという問題があった。 In addition, the conventional technique described in Patent Document 2 performs crystal growth in a state in which a compound semiconductor raw material and a carbon oxide gas having a predetermined partial pressure are sealed in a gas impermeable hermetic container (quartz ampule). Therefore, there is a problem that the means for adjusting the carbon concentration is scarce.

本発明は、上記事情を考慮し、従来の設備に簡単な装備を付加するだけで、カーボン濃度の均一な化合物半導体単結晶を製造することのできる化合物半導体結晶の製造方法、及びその製造装置を提供することを目的とする。
In view of the above circumstances, the present invention provides a compound semiconductor crystal manufacturing method and apparatus for manufacturing a compound semiconductor single crystal having a uniform carbon concentration by simply adding simple equipment to conventional equipment. The purpose is to provide.

第1の発明の化合物半導体単結晶の製造方法は、縦型ボート法による化合物半導体単結晶の製造方法であって、
化合物半導体原料と封止剤原料とを気密容器内に収容する工程と、
前記化合物半導体原料と封止剤原料とを加熱融解させる工程と、
前記気密容器内を所定濃度の酸化炭素ガス雰囲気に調整する工程と、
前記封止剤、および/または、前記融解した化合物半導体原料を、適宜な攪拌手段により攪拌し、前記酸化炭素ガス雰囲気中のカーボンを前記融解した化合物半導体原料へ溶解させる工程と、
前記融解した封止剤を攪拌しながら、冷却・固化させることにより化合物半導体単結晶を製造する工程と、を有することを特徴とする。
The method for producing a compound semiconductor single crystal of the first invention is a method for producing a compound semiconductor single crystal by a vertical boat method,
Storing the compound semiconductor raw material and the sealant raw material in an airtight container;
Heating and melting the compound semiconductor raw material and the encapsulant raw material,
Adjusting the inside of the airtight container to a carbon oxide gas atmosphere of a predetermined concentration;
A step of stirring the sealing compound and / or the molten compound semiconductor raw material by an appropriate stirring means to dissolve carbon in the carbon oxide gas atmosphere into the molten compound semiconductor raw material;
A step of producing a compound semiconductor single crystal by cooling and solidifying the melted sealant while stirring .

第2の発明の化合物半導体単結晶の製造方法は、縦型ボート法による化合物半導体単結晶の製造方法であって、
化合物半導体原料と封止剤原料とを気密容器内に収容する工程と、
前記化合物半導体原料と封止剤原料とを加熱融解させる工程と、
前記封止剤中、および/または、前記融解した化合物半導体原料中へ、適宜なカーボン製部材を浸積し、前記カーボン製部材中のカーボンを前記融解した化合物半導体原料へ溶解させる工程と、
前記融解した封止剤を攪拌しながら、冷却・固化させることにより化合物半導体単結晶を製造する工程と、を有することを特徴とする。
A method for producing a compound semiconductor single crystal of the second invention is a method for producing a compound semiconductor single crystal by a vertical boat method,
Storing the compound semiconductor raw material and the sealant raw material in an airtight container;
Heating and melting the compound semiconductor raw material and the encapsulant raw material,
In the sealant and / or in the molten compound semiconductor raw material, an appropriate carbon member is immersed, and the carbon in the carbon member is dissolved in the molten compound semiconductor raw material;
A step of producing a compound semiconductor single crystal by cooling and solidifying the melted sealant while stirring .

第3の発明の化合物半導体単結晶の製造方法は、第2の発明に記載の化合物半導体単結晶の製造方法であって、
前記封止剤、および/または、前記融解した化合物半導体原料を、前記カーボン製部材により攪拌することを特徴とする。
A method for producing a compound semiconductor single crystal according to a third invention is the method for producing a compound semiconductor single crystal according to the second invention ,
The sealing agent and / or the melted compound semiconductor raw material is stirred by the carbon member.

第4の発明の化合物半導体単結晶の製造方法は、縦型ボート法による化合物半導体単結晶の製造方法であって、
化合物半導体原料と封止剤原料とを気密容器内に収容する工程と、
前記化合物半導体原料と封止剤原料とを加熱融解させる工程と、
前記気密容器内を所定濃度の酸化炭素ガス雰囲気に調整する工程と、
前記封止剤中、および/または、前記融解した化合物半導体原料中へ、適宜なカーボン製攪拌手段を浸積して攪拌し、前記酸化炭素ガス雰囲気中のカーボンおよび前記カーボン製部材中のカーボンを前記融解した化合物半導体原料へ溶解させる工程と、
前記融解した封止剤を攪拌しながら、冷却・固化させることにより化合物半導体単結晶を製造する工程と、を有することを特徴とする。
A method for producing a compound semiconductor single crystal of a fourth invention is a method for producing a compound semiconductor single crystal by a vertical boat method,
Storing the compound semiconductor raw material and the sealant raw material in an airtight container;
Heating and melting the compound semiconductor raw material and the encapsulant raw material,
Adjusting the inside of the airtight container to a carbon oxide gas atmosphere of a predetermined concentration;
In the sealing agent and / or in the molten compound semiconductor raw material, an appropriate carbon stirring means is immersed and stirred, and the carbon in the carbon oxide gas atmosphere and the carbon in the carbon member are removed. Dissolving in the molten compound semiconductor raw material;
A step of producing a compound semiconductor single crystal by cooling and solidifying the melted sealant while stirring .

第5の発明の化合物半導体単結晶の製造方法は、第1から第4の発明のいずれかにおいて、前記封止剤として酸化ホウ素を使用することを特徴とする。
The method for producing a compound semiconductor single crystal according to a fifth invention is characterized in that, in any one of the first to fourth inventions , boron oxide is used as the sealing agent.

第6の発明の化合物半導体単結晶の製造方法は、第5の発明において、前記酸化ホウ素の重量を前記化合物半導体原料の重量の1〜10%とすることを特徴とする。
According to a sixth aspect of the present invention , there is provided the method for producing a compound semiconductor single crystal according to the fifth aspect , wherein the weight of the boron oxide is 1 to 10% of the weight of the compound semiconductor raw material.

第7の発明の化合物半導体単結晶の製造方法は、第1の発明第4から第6の発明のいずれかにおいて、前記酸化炭素ガスが、COガスもしくはCOガスの少なくとも1つのガスを含むことを特徴とする。
In the method for producing a compound semiconductor single crystal according to a seventh aspect of the present invention , in any one of the first aspect and the fourth to sixth aspects, the carbon oxide gas contains at least one gas of CO gas or CO 2 gas. It is characterized by that.

第8の発明の化合物半導体単結晶の製造方法は、第1から第7の発明のいずれかにおいて、前記化合物半導体原料がGaAsを含むことを特徴とする。
According to an eighth aspect of the present invention , there is provided the method for producing a compound semiconductor single crystal according to any one of the first to seventh aspects, wherein the compound semiconductor material contains GaAs.

第9の発明の化合物半導体単結晶の製造装置は、第1から第8の発明のいずれかに記載の化合物半導体単結晶の製造方法に用いる化合物半導体単結晶の製造装置であって、
所定濃度の酸化炭素ガス雰囲気を保持可能な気密容器と、該気密容器内に配され少なくとも化合物半導体原料を入れるルツボと、前記気密容器内に配され前記ル ツボ内の原料
を加熱融解させると共にルツボに対して上下方向の温度分布を生成可能なヒーターと、を具備し、加熱融解させた化合物半導体原料の融液下部から 徐々に冷却・固化させること
により化合物半導体単結晶を育成する化合物半導体単結晶の製造装置において、
前記気密容器内に、前記化合物半導体原料の融液中または原料融液の上部を封止する封
止剤中に浸漬可能なカーボン製部材を配設すると共に、このカーボン製部材の上下方向の位置を移動可能な昇降機構を設けたことを特徴とする。
An apparatus for producing a compound semiconductor single crystal according to a ninth aspect of the invention is an apparatus for producing a compound semiconductor single crystal used in the method for producing a compound semiconductor single crystal according to any one of the first to eighth aspects,
An airtight container capable of maintaining a carbon oxide gas atmosphere of a predetermined concentration, a crucible placed in the airtight container and containing at least a compound semiconductor raw material, and the raw material in the crucible placed in the airtight container is heated and melted and the crucible And a compound semiconductor single crystal that grows a compound semiconductor single crystal by gradually cooling and solidifying from a melt lower part of the heated and melted compound semiconductor raw material In the manufacturing equipment of
In the airtight container, a carbon member that can be immersed in a melt of the compound semiconductor raw material or a sealant that seals the upper part of the raw material melt is disposed, and the vertical position of the carbon member is arranged. And an elevating mechanism capable of moving the head.

第10の発明の化合物半導体単結晶の製造装置は、第9の発明において、前記カーボン製部材を更に回転させる機構を設けたことを特徴とする。
An apparatus for producing a compound semiconductor single crystal according to a tenth aspect of the invention is characterized in that, in the ninth aspect, a mechanism for further rotating the carbon member is provided.

第11の発明の化合物半導体単結晶の製造装置は、第9または第10の発明において、前記昇降機構の動作を制御することで、前記カーボン製部材を化合物半導体原料の融液中または前記封止剤中に浸漬させる際の位置と時間を調整する制御手段を設けたことを特徴とする。
An apparatus for producing a compound semiconductor single crystal according to an eleventh aspect of the invention is the ninth or tenth aspect of the invention, in which the carbon member is placed in the melt of the compound semiconductor raw material or the sealing by controlling the operation of the elevating mechanism. Control means for adjusting the position and time for immersion in the agent is provided.

本発明によれば、気密容器内に配した部材を用いて雰囲気中の酸化炭素中のカーボンを原料融液へのカーボン供給源とする、および/または、気密容器内に配した部材をカーボン製とし当該部材を原料融液へのカーボン供給源とすることで、特に複雑な設備を必要とせず、従来の設備に若干の設備を付加するか、および/または、設備の当該部分をカーボン製とするだけで、カーボン濃度の均一な化合物半導体単結晶を製造することができる。   According to the present invention, carbon in the carbon oxide in the atmosphere is used as a carbon supply source to the raw material melt using a member disposed in the hermetic container, and / or a member disposed in the hermetic container is made of carbon. By using the member as a carbon supply source to the raw material melt, it is possible to add some equipment to the conventional equipment and / or to make the part of the equipment made of carbon without requiring particularly complicated equipment. By doing so, a compound semiconductor single crystal having a uniform carbon concentration can be produced.

図1は本発明の実施形態に係る化合物半導体単結晶の製造装置を示す断面図である。
この製造装置は、GaAs単結晶などの半導体単結晶を縦型ボート法によって製造するためのものであり、次に説明する方式がある。
(a)従来の技術に係る気密容器1内の酸化炭素(COガス等)の濃度制御によるカーボン供給に付加して、封止剤(B23)12、または、封止剤(B23)12と化合物半導体原料融液11とを攪拌する攪拌板20を有する方式。
(b)従来の技術に係る気密容器1内の酸化炭素に替わるカーボン供給源として、攪拌板20をカーボン製部材とする方式。
(c)上述した(a)と(b)とを併用する方式。
FIG. 1 is a cross-sectional view showing a compound semiconductor single crystal manufacturing apparatus according to an embodiment of the present invention.
This manufacturing apparatus is for manufacturing a semiconductor single crystal such as a GaAs single crystal by a vertical boat method, and there is a method described below.
(A) Sealing agent (B 2 O 3 ) 12 or sealing agent (B 2 ) in addition to carbon supply by controlling the concentration of carbon oxide (CO gas or the like) in the hermetic container 1 according to the prior art A system having a stirring plate 20 for stirring O 3 ) 12 and the compound semiconductor raw material melt 11.
(B) A method in which the stirring plate 20 is a carbon member as a carbon supply source that replaces the carbon oxide in the hermetic container 1 according to the prior art.
(C) A method in which (a) and (b) described above are used in combination.

まず、(a)方式について説明する。
(a)方式に用いる製造装置は、外部より真空排気並びに雰囲気ガス充填が可能な気密容器1と、気密容器1内の中央に配置された熱分解窒化ホウ素(PBN)よりなるルツボ3と、ルツボ3を収容保持する保持筒4と、保持筒4を昇降および/または回転させる機構5(昇降・回転ロッドのみ図示)と、気密容器1内において保持筒4を取り囲むように装備されたヒーター2と、ルツボ3の上方に設けられた攪拌板20と、攪拌板20を昇降及び回転させる機構22(昇降・回転ロッドのみ図示)と、を備えている。
First, the method (a) will be described.
The manufacturing apparatus used in the method (a) includes an airtight container 1 that can be evacuated and filled with atmospheric gas from the outside, a crucible 3 made of pyrolytic boron nitride (PBN) disposed in the center of the airtight container 1, and a crucible. A holding cylinder 4 that accommodates and holds 3, a mechanism 5 that raises and lowers and / or rotates the holding cylinder 4 (only a lifting / rotating rod is shown), and a heater 2 that is provided in the airtight container 1 so as to surround the holding cylinder 4, And a stirring plate 20 provided above the crucible 3, and a mechanism 22 (only the lifting / rotating rod is shown) for moving the stirring plate 20 up and down.

ルツボ3は、化合物半導体原料を収容する原料収容部3aと、その底部の種結晶収容部(ノズル部)3bとを有し、上端が開放している。ヒーター2は、ルツボ3内の原料を加熱融解させるもので、ルツボ3に対して上下方向の温度分布を生成可能となっている。また、この製造装置は、ヒーター2、ルツボの昇降・回転機構5、並びにカーボン板の昇降・回転機構22などを制御するための制御手段(図示せず)を有している。この制御手段は、カーボン板の昇降・回転機構22の動作を制御することで、攪拌板20をルツボ3内の原料融液中または封止剤中に浸漬させる際の位置と時間を調整することができる。攪拌板20の材質として、BN等の化合物半導体原料11への影響が少ない材料が用いられる。   The crucible 3 has a raw material storage part 3a for storing a compound semiconductor raw material and a seed crystal storage part (nozzle part) 3b at the bottom, and the upper end is open. The heater 2 heats and melts the raw material in the crucible 3 and can generate a temperature distribution in the vertical direction with respect to the crucible 3. The manufacturing apparatus also includes control means (not shown) for controlling the heater 2, the crucible lifting / lowering mechanism 5, the carbon plate lifting / lowering mechanism 22, and the like. This control means adjusts the position and time when the stirring plate 20 is immersed in the raw material melt or sealant in the crucible 3 by controlling the operation of the carbon plate lifting and rotating mechanism 22. Can do. As the material of the stirring plate 20, a material that has little influence on the compound semiconductor raw material 11, such as BN, is used.

次に半導体単結晶を製造する際の方法について述べる。
単結晶を製造する場合は、まず、ルツボ3の種結晶収容部3b内に種結晶10を収容すると共に、原料収容部3a内に固体の化合物半導体原料(GaAsを含む原料)11を収容し、この化合物半導体原料11の上部に封止剤12を配置する。封止剤12としては酸化ホウ素(B23)を使用し、酸化ホウ素の重量は、化合物半導体原料11の重量の1〜10%とする。この封止剤12は、単結晶を育成する際に原料融液の上面全体を覆うためのものである。
Next, a method for manufacturing a semiconductor single crystal will be described.
In the case of producing a single crystal, first, the seed crystal 10 is accommodated in the seed crystal accommodating portion 3b of the crucible 3, and the solid compound semiconductor raw material (raw material containing GaAs) 11 is accommodated in the raw material accommodating portion 3a. A sealing agent 12 is disposed on the top of the compound semiconductor raw material 11. Boron oxide (B 2 O 3 ) is used as the sealant 12, and the weight of boron oxide is 1 to 10% of the weight of the compound semiconductor raw material 11. The sealant 12 is for covering the entire upper surface of the raw material melt when growing a single crystal.

次に、気密容器1内のルツボ3の外周を取り囲むように配置されたヒーター2により、ルツボ3内を昇温させることによって、化合物半導体原料11及び封止剤12を融解させると共に、種結晶10の上部を融解させる。
この状態を所定時間保持しながら、雰囲気のガス置換を行って所定濃度の酸化炭素ガス(COガスもしくはCO2 ガスの少なくとも1つのガスを含む)雰囲気に調整する。次に、ルツボ3内の温度を種結晶側から徐々に下げ単結晶の成長を開始する。ここで、攪拌板20の昇降・回転機構22を制御して攪拌板20を封止剤12中および/または化合物半導体原料11中まで降下させ1〜20rpm、好ましくは4〜10rpmの攪拌をおこなう。単結晶成長時に、雰囲気ガス中の酸化炭素ガスの濃度を調整しても良いことはいうまでもない。
Next, the temperature of the inside of the crucible 3 is raised by the heater 2 disposed so as to surround the outer periphery of the crucible 3 in the hermetic container 1, thereby melting the compound semiconductor raw material 11 and the sealing agent 12, and the seed crystal 10. Thaw the top of the.
While maintaining this state for a predetermined time, the atmosphere is replaced with gas to adjust the atmosphere to a carbon oxide gas having a predetermined concentration (including at least one of CO gas and CO 2 gas). Next, the temperature in the crucible 3 is gradually lowered from the seed crystal side to start growing a single crystal. Here, the raising / lowering / rotating mechanism 22 of the stirring plate 20 is controlled to lower the stirring plate 20 into the sealant 12 and / or the compound semiconductor raw material 11, and stirring is performed at 1 to 20 rpm, preferably 4 to 10 rpm. Needless to say, the concentration of the carbon oxide gas in the atmospheric gas may be adjusted during single crystal growth.

ここで、攪拌板20を降下させる際、攪拌板20自体の高さ方向のサイズや降下位置の調整によって、封止剤12の攪拌、化合物半導体原料11中での攪拌、封止剤12および化合物半導体原料11中での攪拌という構成を選択することが出来る。いずれの構成を採った場合でも本発明に係る効果を得ることが出来るが、成長中の化合物半導体単結晶へ余分な擾乱を与えない方が好ましいという観点からは、封止剤12の攪拌の構成が好ましい。   Here, when the stirring plate 20 is lowered, the sealing plate 12 is stirred, the compound semiconductor raw material 11 is stirred, the sealing agent 12 and the compound by adjusting the height direction size and the lowering position of the stirring plate 20 itself. A configuration of stirring in the semiconductor raw material 11 can be selected. In any case, the effect of the present invention can be obtained, but from the viewpoint that it is preferable not to give extra disturbance to the growing compound semiconductor single crystal, the configuration of stirring the sealing agent 12 Is preferred.

この攪拌により、雰囲気中の酸化炭素ガスから化合物半導体原料11融液中へ、カーボンを供給しながら当該化合物半導体原料11を、冷却・固化させることにより化合物半導体単結晶を育成する。尚、当該攪拌は連続的に行っても良いが、冷却・固化されてゆく化合物半導体単結晶中のカーボン分布をみながら、適宜、途中停止するのも好ましい構成である。   By this stirring, the compound semiconductor single crystal is grown by cooling and solidifying the compound semiconductor raw material 11 while supplying carbon from the carbon oxide gas in the atmosphere to the melt of the compound semiconductor raw material 11. The stirring may be performed continuously, but it is also preferable to stop the operation appropriately while observing the carbon distribution in the compound semiconductor single crystal that is cooled and solidified.

次に、(b)方式について説明する。
(b)方式に用いる製造装置は、上述した(a)方式に用いる製造装置と、殆ど同様であるが、攪拌板20の替わりにカーボン製部材を用いている。カーボン製部材は、板状、棒状等、形状に拘わりなく多様なものが使用可能である。昇降及び回転させる機構22において回転機構は、必須要件ではないが、所望により設けてもよい。
Next, the method (b) will be described.
The manufacturing apparatus used for the method (b) is almost the same as the manufacturing apparatus used for the method (a) described above, but a carbon member is used instead of the stirring plate 20. Various members can be used as the carbon member regardless of the shape, such as a plate shape or a rod shape. In the mechanism 22 for raising and lowering and rotating, the rotation mechanism is not an essential requirement, but may be provided as desired.

次に半導体単結晶を製造する際の方法について述べる。
(b)方式に用いる製造方法は、上述した(a)方式に用いる製造方法と、殆ど同様である。但し、ルツボ3内に種結晶10、固体の化合物半導体原料(GaAsを含む原料)11、封止剤12を配置し、ヒーター2により化合物半導体原料11及び封止剤12を融解させると共に、種結晶10の上部を融解させ、この状態を所定時間保持しながら、雰囲気のガス置換を行い、所定濃度の酸化炭素ガス雰囲気に調整する。もちろん、所定濃度以下の酸化炭素ガス雰囲気であれば、特段の調整をしなくてもカーボンは上述のカーボン製部材より化合物半導体原料11融液中へ供給することが可能である。
Next, a method for manufacturing a semiconductor single crystal will be described.
The manufacturing method used for the method (b) is almost the same as the manufacturing method used for the method (a) described above. However, a seed crystal 10, a solid compound semiconductor raw material (raw material containing GaAs) 11 and a sealing agent 12 are disposed in the crucible 3, and the compound semiconductor raw material 11 and the sealing agent 12 are melted by the heater 2, and the seed crystal While the upper part of 10 is melted and this state is maintained for a predetermined time, the atmosphere is replaced with a gas to adjust the carbon oxide gas atmosphere to a predetermined concentration. Of course, in a carbon oxide gas atmosphere of a predetermined concentration or less, carbon can be supplied into the compound semiconductor raw material 11 melt from the above-described carbon member without any special adjustment.

ここで、カーボン製部材を降下させ位置を定めるとき、カーボン製部材を封止剤12中に浸積させるか、化合物半導体原料11中に浸積させるか、封止剤12および化合物半導体原料11中に浸積させるか、という構成を選択することが出来る。いずれの構成を採った場合でも本発明に係る効果を得ることが出来るが、化合物半導体原料11中のカーボンの濃度分布が、あまり急にならない方が好ましいという観点からは、封止剤12中に浸積させる構成が好ましい。さらに各々、カーボン製部材の回転の有無という構成を選択することが出来るが、冷却・固化されてゆく化合物半導体単結晶中のカーボン分布をみながら、回転の一旦停止も含め、適宜決めればよい。カーボン製部材を回転させた場合は、当該部材がカーボン製攪拌手段となる。このように、融解した化合物半導体原料11を、冷却・固化させることにより化合物半導体単結晶を育成する。   Here, when the carbon member is lowered and the position is determined, the carbon member is immersed in the sealant 12, or in the compound semiconductor raw material 11, or in the sealant 12 and the compound semiconductor raw material 11. It is possible to select a configuration of whether or not to immerse. In any case, the effect according to the present invention can be obtained, but from the viewpoint that the concentration distribution of carbon in the compound semiconductor raw material 11 is preferably not so steep, it is contained in the sealant 12. The structure to immerse is preferable. Further, the configuration of whether or not the carbon member is rotated can be selected. However, it may be determined as appropriate, including the temporary stoppage of rotation, while observing the carbon distribution in the compound semiconductor single crystal that is cooled and solidified. When the carbon member is rotated, the member becomes the carbon stirring means. Thus, the compound semiconductor single crystal is grown by cooling and solidifying the melted compound semiconductor raw material 11.

さらに、(c)方式について説明する。
(c)方式に用いる製造装置は、上述した(a)および(b)方式に用いた製造装置とを併せた構成を有し、攪拌板20の替わりにカーボン製部材を用いている。
Further, the method (c) will be described.
The manufacturing apparatus used for the method (c) has a configuration that combines the manufacturing apparatuses used for the methods (a) and (b) described above, and uses a carbon member in place of the stirring plate 20.

次に半導体単結晶を製造する際の方法について述べる。
(c)方式に用いる製造方法は、上述した(a)および(b)方式に用いる製造方法を併せた構成を有している。即ち、ルツボ3内に種結晶10、固体の化合物半導体原料(GaAsを含む原料)11、封止剤12を配置し、ヒーター2により化合物半導体原料11及び封止剤12を融解させると共に、種結晶10の上部を融解させ、この状態を所定時間保持しながら、雰囲気のガス置換を行う際、所定濃度の酸化炭素ガス雰囲気に調整し、カーボンは、上述の酸化炭素ガス雰囲気とカーボン製部材とより化合物半導体原料11融液中へ供給される。このとき、カーボン製部材の降下位置、回転の有無は、上述した(b)方式と同様に決めればよい。このように、融解した化合物半導体原料11を、冷却・固化させることにより化合物半導体単結晶を育成する。
Next, a method for manufacturing a semiconductor single crystal will be described.
The manufacturing method used for the method (c) has a configuration that combines the manufacturing methods used for the methods (a) and (b) described above. That is, a seed crystal 10, a solid compound semiconductor raw material (raw material containing GaAs) 11 and a sealant 12 are disposed in the crucible 3, and the compound semiconductor raw material 11 and the sealant 12 are melted by the heater 2, and the seed crystal When the atmosphere is replaced with the gas while the upper part of 10 is melted and this state is maintained for a predetermined time, the carbon oxide gas atmosphere is adjusted to a predetermined concentration, and the carbon is obtained from the above-described carbon oxide gas atmosphere and the carbon member. The compound semiconductor raw material 11 is supplied into the melt. At this time, the lowered position of the carbon member and the presence or absence of rotation may be determined in the same manner as in the above-described method (b). Thus, the compound semiconductor single crystal is grown by cooling and solidifying the melted compound semiconductor raw material 11.

以上説明した(a)〜(c)方式により半導体単結晶を製造することで、0.1〜20×1015cm-3の範囲の均一なカーボン濃度を有する半導体単結晶、結晶肩部からテール肩部までの抵抗率分布が±13%以内にある半導体単結晶、が得られる。これらの単結晶からは、所望範囲のカーボン濃度、所望範囲の抵抗率を有するウェハが、高い生産性をもって製造される。
また、この製造に使用する装置は、従来の設備に攪拌板20と、その昇降・回転機構22を付加するか、カーボン製部材を準備する程度のものであるから、特殊で高価な装備を加える必要なく、設備コストを抑制できるし、操作も簡単に済む。
A semiconductor single crystal having a uniform carbon concentration in the range of 0.1 to 20 × 10 15 cm −3 by manufacturing the semiconductor single crystal by the methods (a) to (c) described above, the tail from the crystal shoulder A semiconductor single crystal having a resistivity distribution within ± 13% to the shoulder is obtained. From these single crystals, wafers having a desired range of carbon concentration and a desired range of resistivity are manufactured with high productivity.
In addition, since the apparatus used for this production is the one that adds the stirring plate 20 and its up-and-down / rotation mechanism 22 to a conventional facility or prepares a carbon member, special and expensive equipment is added. There is no need, the equipment cost can be reduced, and the operation is simple.

次に単結晶製造の実施例と比較例について説明する。ここでは、まず、比較例について先に説明し、その後で実施例について説明する。   Next, examples and comparative examples of single crystal production will be described. Here, first, a comparative example will be described first, and then an example will be described.

(比較例1)
従来の技術に係る縦型ボート法の例である。
この比較例1では、まず、内径φ80mmの円筒形の熱分解窒化ホウ素(PBN)製のルツボに、原料(GaAs)を6kgと、方位<100>のGaAs種結晶、さらに封止剤としてB23を285g入れ、気密容器内の所定の位置にセットする。
(Comparative Example 1)
It is an example of the vertical boat method which concerns on a prior art.
In Comparative Example 1, first, a cylindrical crucible made of pyrolytic boron nitride (PBN) with an inner diameter of 80 mm, a raw material (GaAs) of 6 kg, a GaAs seed crystal of orientation <100>, and B 2 as a sealing agent are used. 285 g of O 3 is put and set at a predetermined position in the airtight container.

次いで、気密容器内を真空引きし、雰囲気ガスとしてArガスによるガス置換を行った後、所定の圧力まで加圧し、縦型のヒーターにより昇温し、原料結晶と種結晶の上部を溶解した。この時、封止剤B23は原料融液の上で溶解して、原料融液からAsの飛散を防止している。 Next, the inside of the hermetic container was evacuated and replaced with Ar gas as an atmospheric gas, and then pressurized to a predetermined pressure, and heated with a vertical heater to dissolve the upper portion of the raw material crystal and the seed crystal. At this time, the sealing agent B 2 O 3 is dissolved on the raw material melt to prevent As from scattering from the raw material melt.

この原料が溶解した状態で、雰囲気ガス中のCOガス濃度を一定値に調整した。この調整が完了した後、種結晶側からヒーター温度を降下させ、原料融液全体を固化させて結晶を成長させた。なお、結晶成長中、COガス濃度は常に一定になるように調整を継続した。   With this raw material dissolved, the CO gas concentration in the atmospheric gas was adjusted to a constant value. After this adjustment was completed, the heater temperature was lowered from the seed crystal side, and the entire raw material melt was solidified to grow crystals. During crystal growth, adjustment was continued so that the CO gas concentration was always constant.

成長が完了した後、室温まで温度を降下させた後、ルツボより結晶を取り出した。得られた結晶は、直径80mmの直胴の長さが約190mmであった。この結晶の肩部(固化率g=0.1)、直胴テール部(固化率g=0.9)の位置で、厚さ4mmのFT−IR法(Fourier Transform Infrared Spectroscopy)用サンプル切り出しを行った。残された結晶は所定のアニールを行った後、厚さ1mmの抵抗率測定用のサンプル切り出しを行った。   After the growth was completed, the temperature was lowered to room temperature, and then the crystal was taken out from the crucible. In the obtained crystal, the length of the straight cylinder having a diameter of 80 mm was about 190 mm. At the position of the crystal shoulder (solidification rate g = 0.1) and straight body tail (solidification rate g = 0.9), a 4 mm thick FT-IR (Fourier Transform Infrared Spectroscopy) sample was cut out. went. The remaining crystal was subjected to predetermined annealing, and then a sample for resistivity measurement having a thickness of 1 mm was cut out.

FT−IR法により砒素サイトに置換したカーボン濃度を測定したところ、結晶肩部で2.0×1015cm-3、結晶テール部で4.0×1014cm-3あった。同様にして、雰囲気中のCO濃度を変えて結晶成長を行い、カーボン濃度測定を行った結果を図2に示す。図2は、横軸に雰囲気中のCO濃度、縦軸にカーボン濃度を採ったグラフであり、結晶肩部の測定結果を◆で、結晶テール部の測定結果を△でプロットしたものである。図2が示すように、結晶肩部での炉内のCOガス濃度と結晶中のカーボン濃度には良い相関が見られるが、結晶テール部では相関は見られなかった。 When the carbon concentration substituted with arsenic sites was measured by the FT-IR method, it was 2.0 × 10 15 cm −3 at the crystal shoulder and 4.0 × 10 14 cm −3 at the crystal tail. Similarly, FIG. 2 shows the results of crystal growth by changing the CO concentration in the atmosphere and measuring the carbon concentration. FIG. 2 is a graph in which the horizontal axis represents the CO concentration in the atmosphere, and the vertical axis represents the carbon concentration. The measurement result of the crystal shoulder is plotted with ◆, and the measurement result of the crystal tail is plotted with Δ. As shown in FIG. 2, a good correlation was found between the CO gas concentration in the furnace at the crystal shoulder and the carbon concentration in the crystal, but no correlation was found in the crystal tail.

また、アニールした後の結晶を用いて、抵抗率とカーボン濃度との関係を調べた結果を図3に示す。図3は、横軸にカーボン濃度、縦軸に抵抗率を採り、測定結果をプロットしたものである。図3が示すように、抵抗率とカーボン濃度との間には、良い相関が見られた。これらの結果から、気密容器内のCOガス濃度を制御しても、その効果は、結晶の肩部程度の位置までであり、結晶全体にわたって再現性良く抵抗率すなわちカーボン濃度を制御するには、従来の炉内のCOガス濃度の制御だけでは不十分であることが判明した。   Further, FIG. 3 shows the result of examining the relationship between the resistivity and the carbon concentration using the crystal after annealing. In FIG. 3, the horizontal axis represents the carbon concentration and the vertical axis represents the resistivity, and the measurement results are plotted. As shown in FIG. 3, there was a good correlation between resistivity and carbon concentration. From these results, even if the CO gas concentration in the hermetic container is controlled, the effect is up to the position of the shoulder portion of the crystal. It has been found that conventional control of the CO gas concentration in the furnace alone is not sufficient.

(比較例2)
従来技術の延長線上の技術である。
比較例2では、比較例1とほぼ同じ手順だが、成長中の気密容器内COガス濃度を初期の濃度に対して増加させ、結晶成長が結晶テール部に到達した時点において、当所濃度の2倍、4倍、10倍となるように調整しながら成長を行った。しかし、図2とほぼ同じ結果が得られた。
(Comparative Example 2)
This is an extension of the prior art.
In Comparative Example 2, the procedure is almost the same as in Comparative Example 1, but the CO gas concentration in the growing hermetic vessel is increased with respect to the initial concentration, and when the crystal growth reaches the crystal tail portion, it is twice the concentration at this point. Growth was carried out while adjusting to 4 times or 10 times. However, almost the same result as in FIG. 2 was obtained.

(実施例1)
この実施例では、図1に示すようにBN製の攪拌板20を装備し、結晶成長中に攪拌板20を封止剤12であるB23に浸漬し回転させながら成長を行った。この時、気密容器内のCOガス濃度は、成長中の気密容器内COガス濃度を初期の濃度に対して増加させ、結晶成長が結晶テール部に到達した時点において、当所濃度の4倍となるように調整しながら成長を行った。
Example 1
In this example, as shown in FIG. 1, a BN stirring plate 20 was provided, and the growth was performed while the stirring plate 20 was immersed in B 2 O 3 as the sealing agent 12 and rotated during crystal growth. At this time, the CO gas concentration in the hermetic container is increased to 4 times the concentration at the time when the growth of the gas gas in the hermetic container is increased from the initial concentration and the crystal growth reaches the crystal tail. Growing while adjusting.

このようにして、成長させた結晶の成長方向における抵抗率の分布を調べた結果を図4に示す。図4は、横軸に成長させた結晶の肩部からの結晶位置を採り、縦軸に抵抗率を採り、比較例(改善前)の値を■でプロットし破線で結び、本実施例(改善後)の値を◆でプロットし実線で結んだグラフである。図4が示すように、比較例(改善前)に比べて本実施例(改善後)の場合、結晶肩部からテール部の結晶全体にわたってバラツキの小さい均一な抵抗率を有していることがわかった。即ち、結晶全体にわたって均一なカーボン濃度が達成できたことが確認された。   FIG. 4 shows the result of examining the resistivity distribution in the growth direction of the crystal thus grown. FIG. 4 shows the crystal position from the shoulder of the crystal grown on the horizontal axis, the resistivity on the vertical axis, the value of the comparative example (before improvement) plotted with ■, and connected with a broken line. This is a graph in which the value after improvement is plotted with ◆ and connected with a solid line. As shown in FIG. 4, in the case of this example (after improvement) as compared with the comparative example (before improvement), it has a uniform resistivity with less variation from the crystal shoulder portion to the entire crystal of the tail portion. all right. That is, it was confirmed that a uniform carbon concentration could be achieved throughout the crystal.

(実施例2)
この実施例では、図1に示すようにカーボン製の攪拌板20を装備し、結晶成長中に攪拌板20を封止剤12であるB23に浸漬して成長を行った。この時、気密容器内のCOガス濃度は一定値とした。
(Example 2)
In this example, as shown in FIG. 1, a carbon stirring plate 20 was provided, and growth was performed by immersing the stirring plate 20 in B 2 O 3 as the sealant 12 during crystal growth. At this time, the CO gas concentration in the airtight container was set to a constant value.

攪拌板20は、任意の位置で任意の時間でだけ封止剤12中に浸漬できるようになっており、更に回転できるようになっている。このように攪拌板20を浸漬することで、原料融液中にカーボンを供給することができる。また、この攪拌板20を利用して、B23またはGaAs融液を撹拌することにより、COガスからのカーボンの供給を促進することも可能である。 The stirring plate 20 can be immersed in the sealant 12 at an arbitrary position and for an arbitrary time, and can further rotate. By soaking the stirring plate 20 in this manner, carbon can be supplied into the raw material melt. Further, it is possible to promote the supply of carbon from the CO gas by stirring the B 2 O 3 or GaAs melt using the stirring plate 20.

このようにして成長させた結晶の成長方向の抵抗率の分布を調べてみたところ、図4に示すように、比較例(改善前)に比べて本実施例(改善後)の場合、結晶肩部からテール部迄の、結晶全体にわたって、バラツキの小さい均一な抵抗率を有していることがわかった。即ち、ウェハを製造する部分に係る結晶全体にわたって均一なカーボン濃度が達成できたことが確認された。   When the distribution of resistivity in the growth direction of the crystal thus grown was examined, as shown in FIG. 4, in the case of this example (after improvement), the crystal shoulder as compared with the comparative example (before improvement). It was found that there was a uniform resistivity with little variation over the entire crystal from the head to the tail. In other words, it was confirmed that a uniform carbon concentration could be achieved over the entire crystal related to the wafer manufacturing part.

本発明の実施形態に係る化合物半導体単結晶の製造装置の縦断面図である。It is a longitudinal cross-sectional view of the manufacturing apparatus of the compound semiconductor single crystal which concerns on embodiment of this invention. 比較例(従来法及びその延長技術)に係る気密容器内(炉内)のCOガス濃度とGaAs結晶中のカーボン濃度との関係を示す図である。It is a figure which shows the relationship between the CO gas density | concentration in the airtight container (inside a furnace) and the carbon density | concentration in a GaAs crystal concerning the comparative example (conventional method and its extension technique). 比較例(従来法及びその延長技術)に係る結晶中のカーボン濃度と抵抗率との関係を示す図である。It is a figure which shows the relationship between the carbon density | concentration in the crystal which concerns on a comparative example (conventional method and its extension technique), and resistivity. 本発明の実施例(改善後)と比較例(改善前)の特性比較図で、結晶中の成長方向の抵抗率の分布を示した図である。It is the characteristic comparison figure of the Example (after improvement) of this invention, and a comparative example (before improvement), and is the figure which showed distribution of the resistivity of the growth direction in a crystal | crystallization. 従来の化合物半導体単結晶の製造装置の縦断面図である。It is a longitudinal cross-sectional view of the manufacturing apparatus of the conventional compound semiconductor single crystal.

符号の説明Explanation of symbols

1 気密容器
2 ヒーター
3 ルツボ
3a 原料収容部
3b 種結晶収容部
5 ルツボの昇降・回転機構
10 種結晶
11 化合物半導体原料
12 封止剤(B23
DESCRIPTION OF SYMBOLS 1 Airtight container 2 Heater 3 Crucible 3a Raw material accommodating part 3b Seed crystal accommodating part 5 Elevating and rotating mechanism of crucible 10 Seed crystal 11 Compound semiconductor raw material 12 Sealant (B 2 O 3 )

Claims (11)

縦型ボート法による化合物半導体単結晶の製造方法であって、
化合物半導体原料と封止剤原料とを気密容器内に収容する工程と、
前記化合物半導体原料と封止剤原料とを加熱融解させる工程と、
前記気密容器内を所定濃度の酸化炭素ガス雰囲気に調整する工程と、
前記封止剤、および/または、前記融解した化合物半導体原料を、適宜な攪拌手段により攪拌し、前記酸化炭素ガス雰囲気中のカーボンを前記融解した化合物半導体原料へ溶解させる工程と、
前記融解した封止剤を攪拌しながら、冷却・固化させることにより化合物半導体単結晶を製造する工程と、を有することを特徴とする化合物半導体単結晶の製造方法。
A method for producing a compound semiconductor single crystal by a vertical boat method,
Storing the compound semiconductor raw material and the sealant raw material in an airtight container;
Heating and melting the compound semiconductor raw material and the encapsulant raw material,
Adjusting the inside of the airtight container to a carbon oxide gas atmosphere of a predetermined concentration;
A step of stirring the sealing compound and / or the molten compound semiconductor raw material by an appropriate stirring means to dissolve carbon in the carbon oxide gas atmosphere into the molten compound semiconductor raw material;
A method of producing a compound semiconductor single crystal by cooling and solidifying the melted sealant while stirring .
縦型ボート法による化合物半導体単結晶の製造方法であって、
化合物半導体原料と封止剤原料とを気密容器内に収容する工程と、
前記化合物半導体原料と封止剤原料とを加熱融解させる工程と、
前記封止剤中、および/または、前記融解した化合物半導体原料中へ、適宜なカーボン製部材を浸積し、前記カーボン製部材中のカーボンを前記融解した化合物半導体原料へ溶解させる工程と、
前記融解した封止剤を攪拌しながら、冷却・固化させることにより化合物半導体単結晶を製造する工程と、を有することを特徴とする化合物半導体単結晶の製造方法。
A method for producing a compound semiconductor single crystal by a vertical boat method,
Storing the compound semiconductor raw material and the sealant raw material in an airtight container;
Heating and melting the compound semiconductor raw material and the encapsulant raw material,
In the sealant and / or in the molten compound semiconductor raw material, an appropriate carbon member is immersed, and the carbon in the carbon member is dissolved in the molten compound semiconductor raw material;
A method of producing a compound semiconductor single crystal by cooling and solidifying the melted sealant while stirring .
請求項2に記載の化合物半導体単結晶の製造方法であって、
前記封止剤、および/または、前記融解した化合物半導体原料を、前記カーボン製部材により攪拌することを特徴とする化合物半導体単結晶の製造方法。
A method for producing a compound semiconductor single crystal according to claim 2,
A method for producing a compound semiconductor single crystal, wherein the sealing agent and / or the melted compound semiconductor raw material is stirred by the carbon member.
縦型ボート法による化合物半導体単結晶の製造方法であって、
化合物半導体原料と封止剤原料とを気密容器内に収容する工程と、
前記化合物半導体原料と封止剤原料とを加熱融解させる工程と、
前記気密容器内を所定濃度の酸化炭素ガス雰囲気に調整する工程と、
前記封止剤中、および/または、前記融解した化合物半導体原料中へ、適宜なカーボン製攪拌手段を浸積して攪拌し、前記酸化炭素ガス雰囲気中のカーボンおよび前記カーボン製部材中のカーボンを前記融解した化合物半導体原料へ溶解させる工程と、
前記融解した封止剤を攪拌しながら、冷却・固化させることにより化合物半導体単結晶を製造する工程と、を有することを特徴とする化合物半導体単結晶の製造方法。
A method for producing a compound semiconductor single crystal by a vertical boat method,
Storing the compound semiconductor raw material and the sealant raw material in an airtight container;
Heating and melting the compound semiconductor raw material and the encapsulant raw material,
Adjusting the inside of the airtight container to a carbon oxide gas atmosphere of a predetermined concentration;
In the sealing agent and / or in the molten compound semiconductor raw material, an appropriate carbon stirring means is immersed and stirred, and the carbon in the carbon oxide gas atmosphere and the carbon in the carbon member are removed. Dissolving in the molten compound semiconductor raw material;
A method of producing a compound semiconductor single crystal by cooling and solidifying the melted sealant while stirring .
前記封止剤として酸化ホウ素を使用することを特徴とする請求項1から4のいずれかに記載の化合物半導体単結晶の製造方法。   The method for producing a compound semiconductor single crystal according to claim 1, wherein boron oxide is used as the sealant. 前記酸化ホウ素の重量を前記化合物半導体原料の重量の1〜10%とすることを特徴とする請求項5に記載の化合物半導体単結晶の製造方法。   6. The method for producing a compound semiconductor single crystal according to claim 5, wherein the weight of the boron oxide is 1 to 10% of the weight of the compound semiconductor raw material. 前記酸化炭素ガスが、COガスもしくはCOガスの少なくとも1つのガスを含むことを特徴とする請求項1、請求項4〜6のいずれかに記載の化合物半導体単結晶の製造方法。 The method for producing a compound semiconductor single crystal according to claim 1, wherein the carbon oxide gas contains at least one of a CO gas and a CO 2 gas. 前記化合物半導体原料がGaAsを含むことを特徴とする請求項1〜7のいずれかに記載の化合物半導体単結晶の製造方法。   The method for producing a compound semiconductor single crystal according to claim 1, wherein the compound semiconductor raw material contains GaAs. 請求項1〜8のいずれかに記載の化合物半導体単結晶の製造方法に用いる化合物半導体単結晶の製造装置であって、
所定濃度の酸化炭素ガス雰囲気を保持可能な気密容器と、該気密容器内に配され少なくとも化合物半導体原料を入れるルツボと、前記気密容器内に配され前記ル ツボ内の原料
を加熱融解させると共にルツボに対して上下方向の温度分布を生成可能なヒーターと、を具備し、加熱融解させた化合物半導体原料の融液下部から 徐々に冷却・固化させること
により化合物半導体単結晶を育成する化合物半導体単結晶の製造装置において、
前記気密容器内に、前記化合物半導体原料の融液中または原料融液の上部を封止する封止剤中に浸漬可能なカーボン製部材を配設すると共に、このカーボン製部材の上下方向の位置を移動可能な昇降機構を設けたことを特徴とする化合物半導体単結晶の製造装置。
A manufacturing apparatus for a compound semiconductor single crystal used in the method for manufacturing a compound semiconductor single crystal according to claim 1,
An airtight container capable of maintaining a carbon oxide gas atmosphere of a predetermined concentration, a crucible placed in the airtight container and containing at least a compound semiconductor raw material, and the raw material in the crucible placed in the airtight container is heated and melted and the crucible And a compound semiconductor single crystal that grows a compound semiconductor single crystal by gradually cooling and solidifying from a melt lower part of the heated and melted compound semiconductor raw material In the manufacturing equipment of
In the airtight container, a carbon member that can be immersed in the melt of the compound semiconductor raw material or a sealant that seals the upper portion of the raw material melt is disposed, and the vertical position of the carbon member is arranged. An apparatus for manufacturing a compound semiconductor single crystal, characterized in that an elevating mechanism capable of moving is provided.
前記カーボン製部材を更に回転させる機構を設けたことを特徴とする請求項9に記載の化合物半導体単結晶の製造装置。 The apparatus for producing a compound semiconductor single crystal according to claim 9, further comprising a mechanism for rotating the carbon member. 前記昇降機構の動作を制御することで、前記カーボン製部材を化合物半導体原料の融液中または前記封止剤中に浸漬させる際の位置と時間を調整する制御手段を設けたことを特徴とする請求項9または10に記載の化合物半導体単結晶の製造装置。 Control means for adjusting the position and time when the carbon member is immersed in the melt of the compound semiconductor raw material or in the sealant by controlling the operation of the lifting mechanism is provided. The manufacturing apparatus of the compound semiconductor single crystal of Claim 9 or 10 .
JP2003350832A 2003-10-09 2003-10-09 Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same Expired - Lifetime JP4399631B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003350832A JP4399631B2 (en) 2003-10-09 2003-10-09 Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003350832A JP4399631B2 (en) 2003-10-09 2003-10-09 Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2005112685A JP2005112685A (en) 2005-04-28
JP4399631B2 true JP4399631B2 (en) 2010-01-20

Family

ID=34542275

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003350832A Expired - Lifetime JP4399631B2 (en) 2003-10-09 2003-10-09 Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4399631B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5110026B2 (en) * 2009-04-03 2012-12-26 住友電気工業株式会社 Method for producing group III-V compound semiconductor crystal
CN103160933B (en) * 2011-12-18 2016-07-06 洛阳金诺机械工程有限公司 To the temperature equalization system of crucible and method thereof during a kind of worked crystal material
CN103160934B (en) * 2011-12-18 2016-05-18 洛阳金诺机械工程有限公司 Thermograde control device and method thereof when a kind of grown crystal material

Also Published As

Publication number Publication date
JP2005112685A (en) 2005-04-28

Similar Documents

Publication Publication Date Title
US20090098377A1 (en) Si-Doped GaAs Single Crystal Ingot and Process for Producing the Same, and Si-Doped GaAs Single Crystal Wafer Produced From Si-Doped GaAs Single Crystal Ingot
KR100912219B1 (en) Apparatus for producing semiconductor single crystal
JP2009149452A (en) Method for growing semiconductor crystal
US6989059B2 (en) Process for producing single crystal of compound semiconductor and crystal growing apparatus
JP2010030891A (en) Compound semiconductor crystal
JP4399631B2 (en) Method for manufacturing compound semiconductor single crystal and apparatus for manufacturing the same
JP2004256392A (en) Method of manufacturing compound semiconductor crystal and compound semiconductor crystal
JP5637778B2 (en) Method for producing polycrystalline gallium arsenide compound semiconductor
JP7398702B2 (en) Single crystal growth equipment and single crystal growth equipment protection method
JPH0952788A (en) Manufacture of single crystal and manufacturing apparatus
JP5029184B2 (en) Semiconductor crystal manufacturing method and manufacturing apparatus thereof
US10815586B2 (en) Gallium-arsenide-based compound semiconductor crystal and wafer group
JP7318884B2 (en) Single crystal growth method for iron-gallium alloy
JP2010030868A (en) Production method of semiconductor single crystal
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP2010030847A (en) Production method of semiconductor single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
JPH08119784A (en) Production of compound single crystal and production device therefor
JP2022146328A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JP2005200279A (en) Method for manufacturing silicon ingot and solar battery
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
CN117604611A (en) Gallium antimonide crystal growth method
JPH11130578A (en) Growth of single crystal and apparatus therefor
JPH0952789A (en) Production of single crystal
JP2003119095A (en) Method of producing fluoride single crystal

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090915

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20091007

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091007

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20091007

R150 Certificate of patent or registration of utility model

Ref document number: 4399631

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131106

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term