JP3158661B2 - Method and apparatus for producing high dissociation pressure single crystal - Google Patents

Method and apparatus for producing high dissociation pressure single crystal

Info

Publication number
JP3158661B2
JP3158661B2 JP16327492A JP16327492A JP3158661B2 JP 3158661 B2 JP3158661 B2 JP 3158661B2 JP 16327492 A JP16327492 A JP 16327492A JP 16327492 A JP16327492 A JP 16327492A JP 3158661 B2 JP3158661 B2 JP 3158661B2
Authority
JP
Japan
Prior art keywords
single crystal
airtight container
container
dissociation pressure
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16327492A
Other languages
Japanese (ja)
Other versions
JPH061693A (en
Inventor
智博 川瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP16327492A priority Critical patent/JP3158661B2/en
Publication of JPH061693A publication Critical patent/JPH061693A/en
Application granted granted Critical
Publication of JP3158661B2 publication Critical patent/JP3158661B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、主にGaAs,Ga
P,GaSb,InAs,InP,InSbなどのIII
−V族化合物半導体単結晶及びCdTe,Hg1-xCdx
Te,ZnSeなどのII−VI族化合物半導体単結晶など
の高解離圧単結晶の製造方法及び製造装置に関するもの
である。
BACKGROUND OF THE INVENTION The present invention relates mainly to GaAs, Ga
III such as P, GaSb, InAs, InP, InSb
-V group compound semiconductor single crystal and CdTe, Hg 1-x Cd x
The present invention relates to a method and an apparatus for producing a high dissociation pressure single crystal such as a II-VI compound semiconductor single crystal such as Te and ZnSe.

【0002】[0002]

【従来の技術】高解離圧単結晶の成長方法として代表的
なものにLEC法がある。通常のLEC法では窒素やア
ルゴンなど不活性なガス中で結晶成長が行われる。これ
らのガス中では、低転位密度化のために成長軸方向の温
度勾配を小さくすると、結晶表面で分解が起こり結晶欠
陥が発生してしまうため、低転位密度の結晶を成長する
ことは不可能であった。
2. Description of the Related Art A typical method for growing a high dissociation pressure single crystal is the LEC method. In a normal LEC method, crystal growth is performed in an inert gas such as nitrogen or argon. In these gases, if the temperature gradient in the direction of the growth axis is reduced to lower the dislocation density, decomposition will occur on the crystal surface and crystal defects will occur, making it impossible to grow crystals with a low dislocation density. Met.

【0003】LEC法のこのような問題点を解決するた
めに、図3に示したような、高解離圧成分元素ガスを密
閉した気密容器内で結晶成長を行う方法が開発された。
この方法では結晶の温度が高くなっても高解離圧成分元
素ガス雰囲気であるため分解反応は起こらない。従って
小さな温度勾配の下で、低転位密度の結晶を成長でき
る。この方法の例は、たとえば特開昭60−3639
7、特開昭63−215593などに記載がある。
In order to solve such a problem of the LEC method, a method for growing a crystal in an airtight container hermetically sealing a high dissociation pressure component gas as shown in FIG. 3 has been developed.
In this method, even if the temperature of the crystal becomes high, the decomposition reaction does not occur because of the high dissociation pressure component element gas atmosphere. Therefore, a crystal having a low dislocation density can be grown under a small temperature gradient. An example of this method is described in, for example, JP-A-60-3639.
7, and JP-A-63-215593.

【0004】この種の装置は、成長した結晶の取り出し
を可能にするために、一般に気密容器を2分割可能に構
成されている。分割した気密容器の接合部を気密にする
ために、液体シール剤を使用する方法、固体ガスケット
を使用する方法、すりあわせにする方法、などが考案さ
れている。このうち最も容易で気密の良い方法は液体シ
ール剤を使用する方法である。
[0004] This type of apparatus is generally constructed so that an airtight container can be divided into two parts so that grown crystals can be taken out. A method using a liquid sealant, a method using a solid gasket, a method for fitting, and the like have been devised to make the junction of the divided hermetic containers airtight. Among them, the easiest and airtight method is to use a liquid sealant.

【0005】[0005]

【発明が解決しようとする課題】従来のこの種の装置で
接合部に液体シール剤を使用するものでは、結晶成長
後、室温まで冷却してから気密容器を分割し結晶を取り
出していた。しかし室温では液体シール剤が固化して気
密容器の接合部を固着しているため、気密容器を分割す
る際に接合部が損傷を受けたり、あるいは液体シール剤
の冷却固化時の収縮応力によって容器が破損したりし
て、気密容器の寿命は著しく短かかった。
In a conventional apparatus of this type using a liquid sealant at a joint, after cooling the crystal to room temperature, the airtight container is divided and the crystal is taken out. However, at room temperature, the liquid sealant solidifies and fixes the joint of the airtight container, so the joint is damaged when the airtight container is split, or the shrinkage stress during cooling and solidification of the liquid sealant causes the container to break. And the life of the hermetic container was significantly shortened.

【0006】気密容器の材質としては、PBN(パイロ
リティックボロンナイトライド)、PG(パイロリティ
ックグラファイト)、ガラス化カーボン、SiCまたは
それらをグラファイトの基材にコーティングしたものな
どが適しているが、十分な強度が得られ、複雑な形状の
容器を容易に製作できることから、PBN(パイロリテ
ィックボロンナイトライド)、PG(パイロリティック
グラファイト)、ガラス化カーボン、SiCなどをグラ
ファイトの基材にコーティングしたものが一般に使用さ
れている。
As the material of the airtight container, PBN (pyrolytic boron nitride), PG (pyrolytic graphite), vitrified carbon, SiC or a material obtained by coating them on a graphite base material is suitable. Since a strong strength is obtained and a container having a complicated shape can be easily manufactured, a material in which PBN (pyrolytic boron nitride), PG (pyrolytic graphite), vitrified carbon, SiC, etc. are coated on a graphite base material is used. Commonly used.

【0007】しかしながら、この様な材料では気密容器
を分割する際に薄いコーティング層が損傷を受け、容器
の気密性が損なわれ易い。また基材のグラファイトが表
面に露出して結晶材料を汚染するなどの問題を生じ、容
器の寿命が特に短いという問題があった。
However, with such a material, the thin coating layer is damaged when the airtight container is divided, and the airtightness of the container is likely to be impaired. Further, there arises a problem that the graphite of the base material is exposed on the surface and contaminates the crystal material, and the life of the container is particularly short.

【0008】[0008]

【課題を解決するための手段】本発明は、分割可能に構
成し、分割した部分の接合部を液体シール剤によって密
閉する構造とした気密容器内に高解離圧成分元素ガスを
密閉し、その容器内で高解離圧単結晶の成長を行う単結
晶の成長方法において、液体封止材が固化する温度より
も高い温度で気密容器の接合部を分割し、気密容器を開
放することを特徴とする高解離圧単結晶の成長方法であ
る。気密容器の分割は結晶の融点の85%以下の温度で
行うことが適当である。
SUMMARY OF THE INVENTION According to the present invention, a high dissociation pressure element gas is sealed in an airtight container which is constructed so as to be dividable and has a structure in which a junction of the divided parts is sealed with a liquid sealant. A method for growing a single crystal in which a high dissociation pressure single crystal is grown in a container, wherein the junction of the hermetic container is divided at a temperature higher than the temperature at which the liquid sealing material solidifies, and the hermetic container is opened. This is a method for growing a high dissociation pressure single crystal. Suitably, the hermetic container is divided at a temperature not higher than 85% of the melting point of the crystal.

【0009】本発明の高解離圧単結晶の製造装置は、分
割可能に構成し、その接合部を液体シール剤によって密
封する構造とした気密容器内に高解離圧成分元素ガスを
密閉し、その容器内で高解離圧単結晶の成長を行う単結
晶の成長装置において、結晶引上軸に上部気密容器を支
持するための突起を設けたことを特徴とする。また本発
明の高解離圧単結晶の製造装置は、上部気密容器に昇降
操作棒を設けたことを特徴とする。
The high-dissociation pressure single crystal manufacturing apparatus of the present invention is configured such that a high-dissociation pressure component gas is sealed in an airtight container that is configured to be dividable and that has a structure in which the joint is sealed with a liquid sealant. In a single crystal growth apparatus for growing a high dissociation pressure single crystal in a container, a projection for supporting an upper airtight container is provided on a crystal pulling shaft. Further, the apparatus for producing a high dissociation pressure single crystal of the present invention is characterized in that an elevating operation rod is provided in an upper airtight container.

【0010】[0010]

【作用】本発明の方法及び装置では、液体シール剤が固
化して気密容器の接合部が固着される前に気密容器を分
割するため、気密容器の分割による接合部の損傷や、液
体シール剤の冷却固化時の収縮応力による容器の破損な
どがなく、また、気密容器がPBN(パイロリティック
ボロンナイトライド)、PG(パイロリティックグラフ
ァイト)、ガラス化カーボン、SiCなどをグラファイ
トの基材にコーティングして作られたものではコーティ
ングが剥離しにくいため、気密容器の寿命が著しく長く
なる。
According to the method and the apparatus of the present invention, the airtight container is divided before the liquid sealant is solidified and the joint of the airtight container is fixed. There is no breakage of the container due to shrinkage stress during cooling and solidification of the airtight container. In addition, the airtight container is coated with PBN (pyrolytic boron nitride), PG (pyrolytic graphite), vitrified carbon, SiC, etc. on a graphite base material. Since the coating is hard to be peeled off when made, the life of the airtight container is significantly prolonged.

【0011】また、PBN(パイロリティックボロンナ
イトライド)、PG(パイロリティックグラファイ
ト)、ガラス化カーボン、SiCなどのコーティングが
剥離しにくいため、基材のグラファイトが表面に露出し
て結晶材料を汚染するなどの問題を生じることがない。
上部気密容器の昇降操作を、結晶引上軸に設けた突起ま
たは昇降操作棒を用いて行うため、結晶成長に影響を与
えることなく容易に昇降が可能である。
Further, since coatings such as PBN (pyrolytic boron nitride), PG (pyrolytic graphite), vitrified carbon, and SiC are difficult to peel off, the graphite of the base material is exposed on the surface and contaminates the crystalline material. No problem such as
Since the raising and lowering operation of the upper airtight container is performed by using the projection or the raising and lowering operation rod provided on the crystal pulling shaft, it is possible to easily raise and lower the crystal growth without affecting the crystal growth.

【0012】[0012]

【実施例】図1を参照して本発明の一実施例である高解
離圧単結晶の製造装置を説明する。図1において、チャ
ンバー1には、回転昇降可能な引上軸2及びるつぼ回転
軸3が設けられている。チャンバー1内に設けた気密容
器は、上部気密容器4と下部気密容器5に2分割されて
いる。下部気密容器5はるつぼ回転軸3の上端に取り付
けられており、るつぼ回転軸3を回転昇降することによ
ってるつぼと一緒に回転昇降できるようになっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An apparatus for producing a high dissociation pressure single crystal according to an embodiment of the present invention will be described with reference to FIG. In FIG. 1, a chamber 1 is provided with a pull-up shaft 2 that can be rotated up and down and a crucible rotation shaft 3. The airtight container provided in the chamber 1 is divided into an upper airtight container 4 and a lower airtight container 5. The lower airtight container 5 is attached to the upper end of the crucible rotation shaft 3, and can be rotated up and down together with the crucible by rotating the crucible rotation shaft 3 up and down.

【0013】上部気密容器4、下部気密容器5、導管1
0及び高解離圧成分分圧制御部11の材質としては、P
BN(パイロリティックボロンナイトライド)、PG
(パイロリティックグラファイト)、ガラス化カーボ
ン、SiC及びそれらをグラファイトの基材にコーティ
ングしたものなどが適しているが、ここではPBN(パ
イロリティックボロンナイトライド)をグラファイトの
基材にコーティングした材料を使用した。気密容器は石
英でも製作可能であるが、容器が高温で変形したり、原
料がSiで汚染されたり、液体シール剤が固化した際に
液体シール剤溜が割れるなどの問題がある。
Upper airtight container 4, lower airtight container 5, conduit 1
P and the material of the high-dissociation pressure component partial pressure control unit 11 are P
BN (Pyrolytic boron nitride), PG
(Pyrolytic graphite), vitrified carbon, SiC, and those obtained by coating them on a graphite substrate are suitable. In this case, a material obtained by coating PBN (pyrotic boron nitride) on a graphite substrate is used. did. Although the airtight container can be made of quartz, there are problems such as deformation of the container at high temperatures, contamination of the raw material with Si, and breakage of the liquid sealant reservoir when the liquid sealant solidifies.

【0014】下部気密容器5の上端には液体シール剤溜
6が設けられており、液体シール剤7が蓄えられてい
る。上部気密容器4の下端は液体シール剤7中に浸かっ
ており、上部気密容器4と下部気密容器5の接続部が気
密に保たれる。また引上軸2が上部気密容器4を貫通す
る部分には液体シール剤溜8が設けられ液体シール剤9
が蓄えられており、引上軸2が回転可能に気密されてい
る。引上軸2の先端部分には突起23が設けてあり、引
上軸2を上方に引き上げることにより上部気密容器4を
持ち上げて、下部気密容器5と分割することが出来るよ
うになっている。
A liquid sealant reservoir 6 is provided at the upper end of the lower hermetic container 5, and a liquid sealant 7 is stored therein. The lower end of the upper airtight container 4 is immersed in the liquid sealant 7, and the connection between the upper airtight container 4 and the lower airtight container 5 is kept airtight. A liquid sealant reservoir 8 is provided at a portion where the pulling shaft 2 penetrates the upper airtight container 4, and a liquid sealant 9 is provided.
Is stored, and the pulling shaft 2 is rotatably airtightly sealed. A protrusion 23 is provided at a tip portion of the pulling shaft 2, and the upper airtight container 4 can be lifted by pulling the pulling shaft 2 upward to be separated from the lower airtight container 5.

【0015】上部気密容器4の一部には、導管10を通
して高解離圧成分分圧制御部11が取り付けられてお
り、ヒーター12によって温度制御を行って気密容器内
を所望の高解離圧成分分圧に制御する。図中13は、気
密容器内に必要な高解離圧成分元素ガスを供給するため
の固体原料である。下部気密容器5には石英あるいはP
BN製のるつぼ14が保持されており、原料15及び必
要であれば液体封止剤16が投入される。引上軸2の先
端には種結晶17が取り付けられる。また図中18〜2
1はヒーターである。
A high-dissociation pressure component partial pressure control unit 11 is attached to a part of the upper hermetic container 4 through a conduit 10, and a temperature is controlled by a heater 12 so that a desired high-dissociation pressure component Control to pressure. In the figure, reference numeral 13 denotes a solid raw material for supplying a necessary high dissociation pressure component element gas into the hermetic container. Quartz or P
A crucible 14 made of BN is held, and a raw material 15 and, if necessary, a liquid sealant 16 are charged. A seed crystal 17 is attached to the tip of the pulling shaft 2. 18 to 2 in the figure
1 is a heater.

【0016】図2は本発明の高解離圧単結晶の製造装置
の他の実施例を示す。図2において、上部気密容器4に
操作棒24が設けてある。結晶成長後冷却中に操作棒2
4を上方に引き上げることにより上部気密容器4を持ち
上げて、下部気密容器5と分割することが出来るように
なっている。操作棒24は必ずしも直接上部気密容器4
に固着させる必要はなく、分割操作の際に上部気密容器
4に結合してこれを持ち挙げることができる構造であれ
ばよい。
FIG. 2 shows another embodiment of the apparatus for producing a high dissociation pressure single crystal of the present invention. In FIG. 2, an operation rod 24 is provided on the upper airtight container 4. Operation rod 2 during cooling after crystal growth
By pulling up the upper airtight container 4, the upper airtight container 4 can be lifted and divided from the lower airtight container 5. The operation rod 24 is not necessarily directly connected to the upper airtight container 4.
It is not necessary to fix to the upper airtight container 4 at the time of the dividing operation.

【0017】図1に示す第1の実施例では引上軸2を用
いて上部気密容器4を持ち上げるために、成長した結晶
22が上部気密容器4と同時に上方に持ち上げられる。
そのために気密容器を分割する際に、成長した結晶を独
立して必要な温度領域に置いておくことが難しい。一
方、図2に示す第2の実施例では成長した結晶22と上
部気密容器4とを別々に操作することが出来るために、
結晶22を必要な温度領域に置いたままで上部気密容器
4を持ち上げることが可能である。すなわち第2の実施
例では成長した結晶の冷却中の熱履歴を、より自由に制
御することが出来るという利点がある。
In the first embodiment shown in FIG. 1, the grown crystal 22 is lifted simultaneously with the upper hermetic container 4 in order to lift the upper hermetic container 4 using the pulling shaft 2.
Therefore, when dividing the airtight container, it is difficult to keep the grown crystal independently in a required temperature range. On the other hand, in the second embodiment shown in FIG. 2, since the grown crystal 22 and the upper airtight container 4 can be operated separately,
It is possible to lift the upper airtight container 4 while keeping the crystal 22 in the required temperature range. That is, the second embodiment has an advantage that the heat history of the grown crystal during cooling can be controlled more freely.

【0018】次に本発明の高解離圧単結晶の成長方法の
一つの実施例を説明する。図1に示す装置を用いてGa
As単結晶の成長を行った。るつぼ14には直径200
mmのPBN製るつぼを使用し、GaAs多結晶原料1
2kg及び液体封止剤16としてB231kgを投入し
た。液体シール剤7,9にもB23を使用した。気密容
器内に必要な高解離圧成分元素ガスを供給するための固
体原料13としてAs100gを投入した。
Next, one embodiment of the method for growing a high dissociation pressure single crystal of the present invention will be described. Ga using the apparatus shown in FIG.
An As single crystal was grown. The crucible 14 has a diameter of 200
mm PBN crucible and GaAs polycrystalline raw material 1
2 kg and 1 kg of B 2 O 3 were charged as the liquid sealant 16. B 2 O 3 was also used for the liquid sealants 7 and 9. 100 g of As was charged as a solid raw material 13 for supplying a necessary high dissociation pressure component element gas into the airtight container.

【0019】気密容器内にはAsと窒素の混合ガスを、
またチャンバー1内には窒素ガスをそれぞれ5kg/c
2 づつ満たして気密容器の内外圧力をバランスさせ
た。るつぼ回転軸3によってるつぼ14を回転し、引上
軸2の先端に取り付けた種結晶17を原料融液15に漬
けて回転しながら引き上げ、直径110mm、長さ27
0mmのGaAs単結晶を成長した。結晶成長中は、気
密容器内のAsガス分圧は高解離圧成分分圧制御部11
の温度を制御することによって行った。
A gas mixture of As and nitrogen is placed in the airtight container.
Further, 5 kg / c of nitrogen gas was introduced into the chamber 1 respectively.
m 2 each to balance the pressure inside and outside the airtight container. The crucible 14 is rotated by the crucible rotating shaft 3, and the seed crystal 17 attached to the tip of the pulling shaft 2 is immersed in the raw material melt 15 and pulled up while rotating, and has a diameter of 110 mm and a length of 27 mm.
A 0 mm GaAs single crystal was grown. During the crystal growth, the partial pressure of As gas in the hermetic container is controlled by the high dissociation pressure component partial pressure controller 11.
By controlling the temperature.

【0020】結晶成長後、気密容器内を所望の温度分布
に制御しながらヒーター12及び18〜21の温度を徐
々に低下させ、3〜5℃/分の速度で結晶を冷却した。
650℃になったところで引上軸2を上方に引き上げる
ことによって上部気密容器4を上昇させ、気密容器を開
放した。その後ただちにチャンバー1の内部を減圧して
液体シール剤7,9および液体封止剤16を泡立て、そ
のまま室温まで冷やした。液体シール剤7,9にB23
を使用しているので、気密容器の開放はシール材の軟化
温度である400℃以上で行う必要がある。シール材の
粘度の点から600℃以上で気密容器を開放することが
望ましい。
After the crystal growth, the temperature of the heaters 12 and 18 to 21 was gradually lowered while controlling the inside of the airtight container to a desired temperature distribution, and the crystal was cooled at a rate of 3 to 5 ° C./min.
When the temperature reached 650 ° C., the upper airtight container 4 was raised by lifting the pulling shaft 2 upward, and the airtight container was opened. Immediately thereafter, the inside of the chamber 1 was depressurized to foam the liquid sealants 7, 9 and the liquid sealant 16, and then cooled to room temperature. B 2 O 3 for liquid sealants 7 and 9
Therefore, it is necessary to open the airtight container at 400 ° C. or higher, which is the softening temperature of the sealing material. It is desirable to open the airtight container at 600 ° C. or higher from the viewpoint of the viscosity of the sealing material.

【0021】以上の様な操作を行ったところ、上部気密
容器4、下部気密容器5の割れなどは皆無であり、上部
気密容器4及び下部気密容器5の寿命は飛躍的に長くな
った。またPBN(パイロリティックボロンナイトライ
ド)の剥離がなくなったので、低カーボン濃度の結晶を
安定して成長できるようになった。
As a result of the above operation, there was no crack in the upper hermetic container 4 and the lower hermetic container 5, and the life of the upper hermetic container 4 and the lower hermetic container 5 was greatly extended. Further, since PBN (pyrolytic boron nitride) was not removed, crystals having a low carbon concentration could be grown stably.

【0022】気密容器を開放する最適温度は、結晶と液
体シール剤の種類によって異なる。あまり低い温度まで
下げてから開放しようとすると液体シール剤7が固化し
て気密容器の分割が困難になる。またあまり高い温度で
気密容器の分割を行うと結晶が高温にさらされ、結晶が
ダメージを受ける。結晶の融点の85%以下の温度で気
密容器を開放するのが適当である。実施例のように気密
容器を分割した後チャンバー1内を減圧すれば、液体シ
ール剤中に溶け込んでいた成分がガス化して液体シール
剤が泡状になって固化するため、気密容器の保護のため
により好ましい。
The optimum temperature for opening the airtight container differs depending on the type of crystal and liquid sealant. If the temperature is lowered to a very low temperature before opening, the liquid sealant 7 solidifies, and it becomes difficult to divide the airtight container. Further, if the airtight container is divided at an excessively high temperature, the crystal is exposed to a high temperature, and the crystal is damaged. Suitably, the airtight container is opened at a temperature below 85% of the melting point of the crystal. If the pressure in the chamber 1 is reduced after the airtight container is divided as in the embodiment, the components dissolved in the liquid sealant are gasified and the liquid sealant is foamed and solidified. More preferred.

【0023】実施例では引上軸2を上方に引き上げるこ
とによって上部気密容器4を上昇させ気密容器を開放し
たが、図2に示す装置を用いて操作棒24を上方に引き
上げることにより上部気密容器4を持ち上げる方法でも
よいし、単にるつぼ回転軸3を降下して気密容器を開放
してもよい。気密容器の開放の操作は、引上軸2を用い
ても、るつぼ回転軸3を用いても、操作棒24を用いて
も、同様の効果が得られる。
In the embodiment, the upper airtight container 4 is raised by pulling up the pulling shaft 2 to open the airtight container. However, the operation rod 24 is pulled upward by using the apparatus shown in FIG. 4 may be lifted, or the crucible rotating shaft 3 may be simply lowered to open the airtight container. Regarding the operation of opening the airtight container, the same effect can be obtained by using the pulling shaft 2, the crucible rotating shaft 3, or the operating rod 24.

【0024】[0024]

【発明の効果】本発明の方法及び装置では、液体シール
剤が固化して気密容器の接合部が固着される前に気密容
器を分割するため、気密容器の分割による接合部の損傷
や、液体シール剤の冷却固化時の収縮応力による容器の
破損などがなく、また、気密容器がPBN(パイロリテ
ィックボロンナイトライド)、PG(パイロリティック
グラファイト)、ガラス化カーボン、SiCなどをグラ
ファイトの基材にコーティングして作られたものではコ
ーティングが剥離しにくいため、気密容器の寿命が著し
く長くなる。
According to the method and the apparatus of the present invention, the hermetic container is divided before the liquid sealant solidifies and the joint of the hermetic container is fixed. There is no breakage of the container due to shrinkage stress at the time of cooling and solidification of the sealant, and the airtight container is made of PBN (pyrolytic boron nitride), PG (pyrolytic graphite), vitrified carbon, SiC, etc. In the case of a product made by coating, the life of the airtight container is significantly prolonged because the coating is difficult to peel off.

【0025】そのため、高価な気密容器を頻繁に取り替
える必要がなく、コスト低減がはかれる。また、PBN
(パイロリティックボロンナイトライド)、PG(パイ
ロリティックグラファイト)、ガラス化カーボン、Si
Cなどのコーティングが剥離しにくいため、基材のグラ
ファイトが表面に露出して結晶材料を汚染するなどの問
題を生じることがないため、電気特性の安定した高品質
単結晶が安定して得られる。
Therefore, it is not necessary to frequently replace the expensive airtight container, and the cost can be reduced. Also, PBN
(Pyrolytic boron nitride), PG (Pyrolytic graphite), vitrified carbon, Si
Since the coating such as C does not easily peel off, there is no problem that the graphite of the base material is exposed on the surface and contaminates the crystal material, so that a high-quality single crystal with stable electric characteristics can be stably obtained. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す高解離圧単結晶の製造
装置の断面模式図である。
FIG. 1 is a schematic cross-sectional view of an apparatus for producing a high dissociation pressure single crystal showing one embodiment of the present invention.

【図2】本発明の他の実施例を示す高解離圧単結晶の製
造装置の断面模式図である。
FIG. 2 is a schematic cross-sectional view of an apparatus for producing a high dissociation pressure single crystal showing another embodiment of the present invention.

【図3】従来の高解離圧単結晶の製造装置の断面模式図
である。
FIG. 3 is a schematic sectional view of a conventional apparatus for producing a high dissociation pressure single crystal.

【符号の説明】[Explanation of symbols]

1:チャンバー 2:引上軸 3:るつぼ回転軸 4:上部気密容器 5:下部気密容器 6,8:液体シール剤溜 7,9:液体シール剤 10:導管 11:高解離圧成分分圧制御部 12:ヒーター 13:固体原料 14:るつぼ 15:原料 16:液体封止剤 17:種結晶 18〜21:ヒーター 22:単結晶 23:突起 24:操作棒 25:保温材 1: Chamber 2: Pull-up shaft 3: Crucible rotating shaft 4: Upper airtight container 5: Lower airtight container 6,8: Liquid sealant reservoir 7, 9: Liquid sealant 10: Conduit 11: High dissociation pressure component partial pressure control Part 12: Heater 13: Solid raw material 14: Crucible 15: Raw material 16: Liquid sealant 17: Seed crystal 18-21: Heater 22: Single crystal 23: Projection 24: Operation rod 25: Heat insulating material

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 分割可能に構成し、その接合部を液体シ
ール剤によって密封する構造とした気密容器内に高解離
圧成分元素ガスを密閉し、その容器内で高解離圧単結晶
の成長を行う単結晶の成長方法において、単結晶成長後
冷却中に液体シール材が固化する温度よりも高い温度で
気密容器の接合部を分割し、気密容器を開放することを
特徴とする高解離圧単結晶の製造方法。
1. A high-dissociation pressure component element gas is sealed in an airtight container which is configured to be separable and has a structure in which a joint portion is sealed with a liquid sealant, and a high-dissociation pressure single crystal is grown in the container. In the method for growing a single crystal to be performed, the junction of the hermetic container is divided at a temperature higher than the temperature at which the liquid sealing material solidifies during cooling after the single crystal is grown, and the hermetic container is opened. Method for producing crystals.
【請求項2】 分割可能に構成し、その接合部を液体シ
ール剤によって密封する構造とした気密容器内に高解離
圧成分元素ガスを密閉し、その容器内で高解離圧単結晶
の成長を行う単結晶の成長装置において、結晶引上軸に
上部気密容器を支持するための突起を設けたことを特徴
とする高解離圧単結晶の製造装置。
2. A high-dissociation pressure component element gas is sealed in an airtight container that is configured to be separable and has a structure in which a joint is sealed with a liquid sealant, and a high-dissociation pressure single crystal is grown in the container. An apparatus for producing a high dissociation pressure single crystal, wherein a projection for supporting an upper airtight container is provided on a crystal pulling shaft in a single crystal growth apparatus to be performed.
【請求項3】 分割可能に構成し、その接合部を液体シ
ール剤によって密封する構造とした気密容器内に高解離
圧成分元素ガスを密閉し、その容器内で高解離圧単結晶
の成長を行う単結晶の成長装置において、上部気密容器
を昇降するための操作棒を設けたことを特徴とする高解
離圧単結晶の製造装置。
3. A high dissociation pressure component element gas is sealed in an airtight container that is configured to be separable and has a structure in which a joint portion is sealed with a liquid sealant, and a high dissociation pressure single crystal is grown in the container. An apparatus for producing a high dissociation pressure single crystal, comprising an operation rod for raising and lowering an upper airtight container in a single crystal growth apparatus to be performed.
【請求項4】 気密容器を、結晶の融点の85%以下の
温度で分割することを特徴とする請求項1に記載の高解
離圧単結晶の製造方法。
4. The method for producing a high dissociation pressure single crystal according to claim 1, wherein the airtight container is divided at a temperature of 85% or less of the melting point of the crystal.
JP16327492A 1992-06-23 1992-06-23 Method and apparatus for producing high dissociation pressure single crystal Expired - Lifetime JP3158661B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16327492A JP3158661B2 (en) 1992-06-23 1992-06-23 Method and apparatus for producing high dissociation pressure single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16327492A JP3158661B2 (en) 1992-06-23 1992-06-23 Method and apparatus for producing high dissociation pressure single crystal

Publications (2)

Publication Number Publication Date
JPH061693A JPH061693A (en) 1994-01-11
JP3158661B2 true JP3158661B2 (en) 2001-04-23

Family

ID=15770698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16327492A Expired - Lifetime JP3158661B2 (en) 1992-06-23 1992-06-23 Method and apparatus for producing high dissociation pressure single crystal

Country Status (1)

Country Link
JP (1) JP3158661B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005200224A (en) * 2002-01-11 2005-07-28 Nikko Materials Co Ltd Apparatus for growing single crystal

Also Published As

Publication number Publication date
JPH061693A (en) 1994-01-11

Similar Documents

Publication Publication Date Title
EP0162467A2 (en) Device for growing single crystals of dissociative compounds
JP2979770B2 (en) Single crystal manufacturing equipment
JP3158661B2 (en) Method and apparatus for producing high dissociation pressure single crystal
JP3254329B2 (en) Method and apparatus for producing compound single crystal
JP3707110B2 (en) Method for growing compound semiconductor single crystal
EP0355833B1 (en) Method of producing compound semiconductor single crystal
JP2830307B2 (en) Method for producing high dissociation pressure single crystal
JP4498457B1 (en) Crystal growth method
JPH08119784A (en) Production of compound single crystal and production device therefor
JP2830315B2 (en) High dissociation pressure single crystal manufacturing equipment
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JP2531875B2 (en) Method for producing compound semiconductor single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JP2733898B2 (en) Method for manufacturing compound semiconductor single crystal
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP4549111B2 (en) GaAs polycrystal production furnace
JP2690420B2 (en) Single crystal manufacturing equipment
JPH092890A (en) Single crystal growth of compound semiconductor and apparatus therefor
JP2781856B2 (en) Method for manufacturing compound semiconductor single crystal
JPS606918B2 (en) Method for producing Group 3-5 compound single crystal
JPH11189499A (en) Production of compound semiconductor single crystal
JPS63303893A (en) Method and device for growing silicon single crystal
JPH0952789A (en) Production of single crystal
JP2009067620A (en) Method and apparatus for producing compound semiconductor single crystal
JPH0364477B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090216

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100216

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110216

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120216

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130216

Year of fee payment: 12