JP2005200224A - Apparatus for growing single crystal - Google Patents

Apparatus for growing single crystal Download PDF

Info

Publication number
JP2005200224A
JP2005200224A JP2002004129A JP2002004129A JP2005200224A JP 2005200224 A JP2005200224 A JP 2005200224A JP 2002004129 A JP2002004129 A JP 2002004129A JP 2002004129 A JP2002004129 A JP 2002004129A JP 2005200224 A JP2005200224 A JP 2005200224A
Authority
JP
Japan
Prior art keywords
inner container
single crystal
raw material
crystal growth
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002004129A
Other languages
Japanese (ja)
Inventor
Akira Noda
朗 野田
Ryuichi Hirano
立一 平野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nikko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikko Materials Co Ltd filed Critical Nikko Materials Co Ltd
Priority to JP2002004129A priority Critical patent/JP2005200224A/en
Priority to PCT/JP2002/011988 priority patent/WO2003060202A1/en
Publication of JP2005200224A publication Critical patent/JP2005200224A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus for growing a single crystal by utilizing an LEC method while controlling vapor pressure in which a high quality compound semiconductor single crystal free from twin and polycrystal can be grown. <P>SOLUTION: In the apparatus for growing the single crystal, in which a heat resistant inside vessel (2) is provided in an outside vessel (1), a crucible (13) is arranged in the inside vessel, a semiconductor raw material(11) and a liquid sealant(12) are charged in the crucible, then the semiconductor raw material is heated by a heater (3) arranged at the outside of the inside vessel, and the compound semiconductor single crystal is grown while controlling vapor pressure of a volatile element being the semiconductor raw material in the inside vessel, at least the inner wall of the inside vessel (2) is coated with silicon carbide (SiC). <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、化合物半導体の単結晶成長装置に関し、特に、液体封止チョクラルスキー法により高解離圧の化合物半導体単結晶を成長させる単結晶成長装置に適用して有用な技術に関する。
【0002】
【従来の技術】
従来、GaAs、GaP、InAs、InP等の化合物半導体単結晶は、AsやP等の蒸気圧の高いV族元素が原料融液および育成中の結晶表面から解離しやすいため、一般に液体封止チョクラルスキー法(LEC法)により育成されている。
LEC法は、ルツボ中の原料融液をB等の液体封止剤で封止し、不活性ガスによって液体封止剤に高圧を加えながら結晶を引き上げて結晶成長させる方法であり、原料融液または育成結晶から揮発性元素が蒸発するのを液体封止剤により有効に抑制できるという利点がある。さらに、半導体原料が揮発性元素(例えば、V族元素)を含む場合は、その揮発性元素の蒸気圧を制御しながらLEC法により結晶成長を行うことにより、原料融液および育成結晶表面から前記揮発性元素が解離するのを防ぐようにしている。
この方法は特に蒸気圧制御法と呼ばれ、高圧容器からなる外側容器内に小型の密閉容器からなる内側容器を設け、内側容器内に揮発性元素の蒸気圧を充分に印加しながら内側容器内に配置されるルツボ内で結晶成長を行う方法である。
【0003】
ここで、蒸気圧制御法に用いられる結晶成長装置の一例を図1に基づいて説明する。
図中、符号1は両端を閉塞した円筒状の高圧容器からなる外側容器である。この外側容器1内には上下に分割可能な略円筒状の密閉容器からなる内側容器2が設けられており、内側容器上部2aと内側容器下部2bとは摺り合わせにより接合されている。
また、内側容器上部2aの外周には線ヒータ4が配設され、内側容器下部2b外周にはヒータ3が配設されている。
【0004】
また、外側容器1の上面および底面に設けられた導入口から上軸7と下軸8とが同軸になるように導入され、それぞれ昇降かつ回転自在に設けられている。さらに、上軸7は、その内端部に種結晶保持具(図示しない)を備え、種結晶9を保持可能に構成される。一方、下軸8は、その内端部にサセプタ10が固着され、原料融液(半導体用材料)11および液体封止材(例えば、B)12を入れたルツボ13を支持可能に構成される。
また、内側容器下部2bの底部には、内側容器下部2bと連通する、例えばMo製のリザーバ15が取り付けられている。このリザーバ15には、例えば、V族元素からなる揮発性元素材料6が収容される。また、揮発性材料6が収容されたリザーバ15の外周には、リザーバ用ヒータ5が配設されている。
【0005】
従来は、このような結晶成長装置を用いてLEC法(特に蒸気圧制御法)により化合物半導体単結晶を育成していた。具体的には、リザーバ15に収容された揮発性元素材料6を蒸発させることにより、内側容器2内における蒸気圧制御を精密かつ適切に行っていた。
なお、内側容器下部2bの少なくとも内壁は気密性を得るために、pBNで被覆していた。
【0006】
【発明が解決しようとする課題】
しかしながら、内側容器下部2bをpBNで被覆した場合でも、pBN膜は経時的に変化して、シールドとしての効果を消失してしまうという問題があった。具体的には、pBN膜はヒータの熱で昇華してしまうために、単結晶成長の回数に伴い膜厚は薄くなり、20〜30回の結晶成長でシールドとしての効果はほとんどなくなり、気密性が保持できなくなっていた。
また、pBN膜が薄くなるにつれて内側容器2内の熱環境が変化するために、内側容器2内の温度分布を最適に制御することが困難となり、特に成長結晶の肩部に双晶や多結晶が発生してしまい単結晶化率が低下してしまうという問題も生じた。
そのため、シールド効果のなくなった内側容器を交換しなければならないので、生産効率が低下するという問題も生じた。
【0007】
本発明は、上記問題を解決するためになされたもので、蒸気圧制御しながらLEC法を利用して結晶成長を行う単結晶成長装置であって、双晶や多結晶のない、高品質の化合物半導体単結晶を育成できる単結晶成長装置を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明は、外側容器(1)内に耐熱性の内側容器(2)を設け、前記内側容器内にルツボ(13)を配設するとともに、そのルツボ中に半導体原料(11)および液体封止材(12)を投入し、この内側容器外側に配設されたヒータ(3)により半導体原料を加熱するとともに、前記内側容器内における半導体原料である揮発性元素の蒸気圧を制御しながら化合物半導体単結晶を成長させる単結晶成長装置において、前記内側容器(2)の少なくとも内壁を炭化珪素(SiC)で被覆するようにしたものである。
なお、前記内側容器として上下に分割可能な内側容器を用いてもよく、その場合は、少なくとも内側容器下部の内壁をSiCで被覆すればよい。
また、被覆するSiCの厚さは100μm以上とするのが望ましく、これにより半永久的にシールドとしての効果を得ることができる。また、内側容器の製造コストや生産効率の点から1mm以下とするのが望ましい。
【0009】
この単結晶成長装置によれば、SiCにより半永久的なシールド効果を得ることができる。また、SiC膜は経時劣化がほとんどないため、膜厚の変化により内側容器内の熱環境が変化するのを回避できるので、双晶や多結晶の発生を抑制して単結晶化率を向上することができる。
【0010】
【発明の実施の形態】
以下、本発明の好適な実施の形態を図面に基づいて説明する。
図1は、本発明に係る結晶成長装置の一実施形態を示す概略構成図である。本実施形態の単結晶成長装置の基本構造は従来の単結晶成長装置と同様であり、内側容器壁面の被覆材をSiCとしている点が異なる。
図中、符号1は両端を閉塞した円筒状の高圧容器からなる外側容器である。この外側容器1内には上下に分割可能な略円筒状の密閉容器からなる内側容器2が設けられており、内側容器上部2aと内側容器下部2bとは摺り合わせにより接合されている。
【0011】
内側容器上部2aは石英製のベルジャー(断熱真空容器)からなり、その外周には線ヒータ4が配設されている。なお、線ヒータ4は周知の構造(例えば、特公平5−71559号公報に開示されている構造)を有するものを使用することができる。
一方、内側容器下部2bは、例えば、高温下で使用可能な材料により形成され、さらに、その壁面は厚さ100μmのSiC膜で被覆されている。また、内側容器下部2bの外周には、ヒータ3が内側容器下部2b外周を囲繞して配設されている。
【0012】
また、外側容器1の上面および底面に設けられた導入口から上軸7と下軸8とが同軸になるように導入され、それぞれ昇降かつ回転自在に設けられている。さらに、上軸7は、その内端部に種結晶保持具(図示しない)を備え、種結晶9を保持可能に構成される。一方、下軸8は、その内端部にサセプタ10が固着され、原料融液(半導体用材料)11および液体封止材(例えば、B)12を入れたルツボ13を支持可能に構成される。
【0013】
また、前記上軸7および下軸8は、内側容器2内に気密に導入されている。具体的には、上軸7と内側容器上部2aとは、上軸が摺り合わせ構造で挿通されたシールアダプタ14により気密にシールされている。
例えば、ヒータ3、4の加熱により外側容器内の温度が充分に高くなったときに、上軸7をシールアダプタ14に挿通して上軸7のシールを行うことにより内側容器2内を密閉状態にすることができる。
【0014】
また、内側容器下部2bの底部には、内側容器下部2bと連通する、例えばMo製のリザーバ15が取り付けられている。このリザーバ15には、例えば、V族元素からなる揮発性元素材料6が収容される。また、揮発性材料6が収容されたリザーバ15の外周には、リザーバ用ヒータ5が配設されている。
このリザーバ用ヒータ5でリザーバ15を加熱してリザーバ15内の揮発性元素材料6を蒸発させ、内側容器2内に揮発性元素材料6の蒸気を充満させることにより内側容器2内の蒸気圧を制御することができる。
【0015】
本実施形態の単結晶成長装置は上述した構造を有し、内側容器下部2bをSiCで被覆するようにしたので、半永久的に内側容器の気密を保持することができる。また、SiC膜は経時劣化がほとんどないため、膜厚の変化により内側容器内の熱環境が変化するのを回避できるので、双晶や多結晶の発生を抑制して単結晶化率を向上することができる。
【0016】
次に、本実施形態の単結晶成長装置を用いてInP単結晶を育成する場合について説明する。
まず、ルツボ13内にInP多結晶を4000g収容し、さらに、ドーピング剤としてFeを1g収容した。そして、その上にBからなる液体封止材12を700g投入した。そして、このルツボ13を下軸7の内端部に設けたサセプタ10上に載置した。また、リザーバ15内には純度99.9999%のPを約20g収容した。
【0017】
次に、内側容器上部2aを内側容器下部2b上に載置して接合した後、外側容器1を密閉して内部を真空排気した。その後、Arガスで内部を加圧するとともに、ヒータ3、4により内側容器2の加熱を開始した。ヒータ3、4による加熱に伴いルツボ13内の液体封止剤12は融解され、この液体封止材12により原料11は封止された。その後、さらに昇温してInPを溶解し液体の原料融液11とした。
この時点で、上軸7を下降させてシールアダプタ14に挿通し、上軸7と内側容器上部2aとのシールを行った。
【0018】
その後、リザーバ用ヒータ5の加熱を開始して、リザーバ15内の揮発性元素材料(P)を蒸発させて、内側容器2内にリン蒸気を充満させた。そして、上軸7および下軸8を駆動させ、上軸7の内端部に配置された種結晶9を原料融液11中に浸し、上軸7と下軸8とを相対的に回転させながら、結晶の引き上げを行い、直径3インチ、長さ150mmのInP単結晶を育成した。
このようにして育成されたInP単結晶は、表面分解が全くなかったことから、結晶育成中に内側容器2内には充分なリン蒸気圧が印加されていたことが分かった。
【0019】
さらに、同様の成長条件でInP結晶を15回成長させて、単結晶化率を計算したところ、単結晶化率は86%となり高品質なInP単結晶を成長させることができた。
また、同様の成長条件で、ドーピング剤としてS(サルファ)を使用してInP結晶を15回成長させて、単結晶化率を計算したところ、単結晶化率は87%となった。
【0020】
比較のため、本実施形態の単結晶成長装置において内側容器下部(SiCコート)2bをpBNで被覆した内側容器下部に替えた単結晶成長装置を用いて、他は同様の条件で結晶成長を行った。そして、この単結晶成長装置を用いてInP結晶を15回成長させて単結晶化率を計算した。
表1は、本実施例および比較例の単結晶成長装置を用いて得られたInP結晶の単結晶化率である。
【0021】
【表1】

Figure 2005200224
【0022】
表1より、内側容器下部2bをSiCで被覆した本実施例の場合、単結晶化率はそれぞれ、86%(Feドープ)、87%(Sドープ)であった。一方、内側容器下部2bをpBNで被覆した比較例の場合、単結晶化率はそれぞれ、71%(Feドープ)、50%(Sドープ)であり、本実施例での単結晶化率に比較して劣っていることが分かった。
【0023】
さらに、比較例では、InP単結晶成長の回数を重ねるごとに単結晶化率が低下している傾向が見られた。そして、比較例の場合は、InP単結晶成長を20〜30回行うとpBN被覆によるシールド効果がほとんど消失して単結晶化率が著しく低下してしまった。
これに対して、本実施例の場合は、InP単結晶成長の回数を重ねても単結晶化率の低下は見られず、InP単結晶成長を100回以上行ってもシールド効果は持続され高い単結晶化率を保持することができた。
【0024】
以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、上記実施形態では、揮発性元素の蒸気圧を制御しながらLEC法を利用してInP単結晶を成長させる単結晶成長装置について説明したが、InP以外にも、GaAs、GaP、InAs等の化合物半導体単結晶、すなわちAsやP等の揮発性のV族元素を原料として含む化合物半導体単結晶をLEC法により成長させる場合に適用することができる。
【0025】
【発明の効果】
本発明によれば、外側容器内に耐熱性の内側容器を設け、前記内側容器内にルツボを配設するとともに、そのルツボ中に半導体原料および液体封止材を投入し、この内側容器外側に配設されたヒータにより半導体原料を加熱するとともに、前記内側容器内における半導体原料である揮発性元素の蒸気圧を制御しながら化合物半導体単結晶を成長させる単結晶成長装置において、前記内側容器の少なくとも内壁を炭化珪素(SiC)で被覆するようにしたので、半永久的にシールド効果を得ることができ、内側容器内の気密性を保持することができる。また、SiC膜は経時劣化がほとんどなく、膜厚の変化により内側容器内の熱環境が変化するのを回避できるので、双晶や多結晶の発生を抑制して単結晶化率を向上できるとともに、内側容器を頻繁に交換する必要がなくなるので生産効率を向上できるという効果を奏する。
【図面の簡単な説明】
【図1】図1は、本発明に係る結晶成長装置の一実施形態を示す概略構成図である。
【符号の説明】
1 高圧容器
2 内側容器(内側容器上部2a、内側容器下部2b)
3 ヒータ
4 線ヒータ
5 リザーバ用ヒータ
6 揮発性元素材料
7 上軸
8 下軸
9 種結晶
10 サセプタ
11 半導体原料
12 液体封止剤(B
13 ルツボ
14 シールアダプタ
15 リザーバ[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a compound semiconductor single crystal growth apparatus, and more particularly to a technique useful when applied to a single crystal growth apparatus for growing a compound semiconductor single crystal having a high dissociation pressure by a liquid-sealed Czochralski method.
[0002]
[Prior art]
Conventionally, compound semiconductor single crystals such as GaAs, GaP, InAs, and InP generally have a liquid-sealed choke because V group elements such as As and P, which have a high vapor pressure, are easily dissociated from the raw material melt and the growing crystal surface. It is nurtured by the Lalski method (LEC method).
The LEC method is a method in which a raw material melt in a crucible is sealed with a liquid sealant such as B 2 O 3 , and a crystal is pulled up while a high pressure is applied to the liquid sealant with an inert gas to grow crystals. There is an advantage that the liquid sealant can effectively suppress the evaporation of the volatile element from the raw material melt or the grown crystal. Furthermore, when the semiconductor raw material contains a volatile element (for example, a group V element), crystal growth is performed by the LEC method while controlling the vapor pressure of the volatile element, so that the raw material melt and the growth crystal surface The volatile elements are prevented from dissociating.
This method is particularly called a vapor pressure control method, in which an inner container made of a small sealed container is provided in an outer container made of a high-pressure container, and the vapor pressure of a volatile element is sufficiently applied to the inner container. Crystal growth in a crucible placed in the above.
[0003]
Here, an example of a crystal growth apparatus used in the vapor pressure control method will be described with reference to FIG.
In the figure, reference numeral 1 denotes an outer container composed of a cylindrical high-pressure container with both ends closed. Inside this outer container 1 is provided an inner container 2 formed of a substantially cylindrical sealed container that can be divided into upper and lower parts, and the inner container upper part 2a and the inner container lower part 2b are joined by sliding.
A line heater 4 is disposed on the outer periphery of the inner container upper portion 2a, and a heater 3 is disposed on the outer periphery of the inner container lower portion 2b.
[0004]
Further, the upper shaft 7 and the lower shaft 8 are introduced from the introduction ports provided on the upper surface and the bottom surface of the outer container 1 so as to be coaxial, and are respectively provided so as to be movable up and down and rotatable. Further, the upper shaft 7 is provided with a seed crystal holder (not shown) at its inner end so as to hold the seed crystal 9. On the other hand, the lower shaft 8 has a susceptor 10 fixed to the inner end thereof, and can support a crucible 13 containing a raw material melt (semiconductor material) 11 and a liquid sealing material (for example, B 2 O 3 ) 12. Composed.
In addition, a reservoir 15 made of, for example, Mo that communicates with the inner container lower part 2b is attached to the bottom of the inner container lower part 2b. The reservoir 15 accommodates, for example, a volatile element material 6 made of a group V element. A reservoir heater 5 is disposed on the outer periphery of the reservoir 15 in which the volatile material 6 is accommodated.
[0005]
Conventionally, compound semiconductor single crystals have been grown by the LEC method (particularly, the vapor pressure control method) using such a crystal growth apparatus. Specifically, the vapor pressure control in the inner container 2 was performed accurately and appropriately by evaporating the volatile element material 6 accommodated in the reservoir 15.
Note that at least the inner wall of the inner container lower part 2b was covered with pBN in order to obtain airtightness.
[0006]
[Problems to be solved by the invention]
However, even when the inner container lower part 2b is coated with pBN, there is a problem that the pBN film changes over time and the effect as a shield is lost. Specifically, since the pBN film is sublimated by the heat of the heater, the film thickness decreases with the number of times of single crystal growth, and the effect as a shield is almost eliminated after 20 to 30 crystal growths. Couldn't hold.
Moreover, since the thermal environment in the inner container 2 changes as the pBN film becomes thinner, it becomes difficult to optimally control the temperature distribution in the inner container 2, and in particular, twins and polycrystals are formed on the shoulders of the grown crystal. As a result, there was a problem that the single crystallization rate was lowered.
For this reason, the inner container that has lost its shielding effect has to be replaced, resulting in a problem of reduced production efficiency.
[0007]
The present invention has been made to solve the above problems, and is a single crystal growth apparatus that performs crystal growth using the LEC method while controlling vapor pressure, and has high quality without twins or polycrystals. It is an object to provide a single crystal growth apparatus capable of growing a compound semiconductor single crystal.
[0008]
[Means for Solving the Problems]
In the present invention, a heat-resistant inner container (2) is provided in an outer container (1), a crucible (13) is disposed in the inner container, and a semiconductor raw material (11) and a liquid seal are placed in the crucible. The semiconductor (12) is charged, the semiconductor material is heated by the heater (3) disposed outside the inner container, and the compound semiconductor is controlled while controlling the vapor pressure of the volatile element as the semiconductor material in the inner container. In the single crystal growth apparatus for growing a single crystal, at least the inner wall of the inner vessel (2) is covered with silicon carbide (SiC).
Note that an inner container that can be divided into upper and lower parts may be used as the inner container. In that case, at least the inner wall of the lower part of the inner container may be covered with SiC.
Further, it is desirable that the thickness of the SiC to be coated be 100 μm or more, thereby obtaining a semi-permanent shielding effect. Moreover, it is desirable to set it as 1 mm or less from the point of the manufacturing cost and production efficiency of an inner side container.
[0009]
According to this single crystal growth apparatus, a semi-permanent shielding effect can be obtained with SiC. In addition, since the SiC film hardly deteriorates with time, it is possible to avoid the change of the thermal environment in the inner container due to the change of the film thickness, thereby suppressing the generation of twins and polycrystals and improving the single crystallization rate. be able to.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Preferred embodiments of the invention will be described below with reference to the drawings.
FIG. 1 is a schematic configuration diagram showing an embodiment of a crystal growth apparatus according to the present invention. The basic structure of the single crystal growth apparatus of this embodiment is the same as that of the conventional single crystal growth apparatus, except that the coating material for the inner vessel wall surface is SiC.
In the figure, reference numeral 1 denotes an outer container composed of a cylindrical high-pressure container with both ends closed. Inside this outer container 1 is provided an inner container 2 formed of a substantially cylindrical sealed container that can be divided into upper and lower parts, and the inner container upper part 2a and the inner container lower part 2b are joined by sliding.
[0011]
The inner container upper portion 2a is made of a quartz bell jar (insulated vacuum container), and a line heater 4 is disposed on the outer periphery thereof. The wire heater 4 may have a known structure (for example, a structure disclosed in Japanese Patent Publication No. 5-71559).
On the other hand, the inner container lower portion 2b is formed of, for example, a material that can be used at high temperatures, and its wall surface is covered with a SiC film having a thickness of 100 μm. A heater 3 is disposed on the outer periphery of the inner container lower portion 2b so as to surround the outer periphery of the inner container lower portion 2b.
[0012]
Further, the upper shaft 7 and the lower shaft 8 are introduced from the introduction ports provided on the upper surface and the bottom surface of the outer container 1 so as to be coaxial, and are respectively provided so as to be movable up and down and rotatable. Further, the upper shaft 7 is provided with a seed crystal holder (not shown) at its inner end so as to hold the seed crystal 9. On the other hand, the lower shaft 8 has a susceptor 10 fixed to the inner end thereof, and can support a crucible 13 containing a raw material melt (semiconductor material) 11 and a liquid sealing material (for example, B 2 O 3 ) 12. Composed.
[0013]
The upper shaft 7 and the lower shaft 8 are airtightly introduced into the inner container 2. Specifically, the upper shaft 7 and the inner container upper portion 2a are hermetically sealed by a seal adapter 14 in which the upper shaft is inserted in a sliding structure.
For example, when the temperature in the outer container becomes sufficiently high due to heating of the heaters 3 and 4, the inner container 2 is sealed by inserting the upper shaft 7 through the seal adapter 14 and sealing the upper shaft 7. Can be.
[0014]
In addition, a reservoir 15 made of, for example, Mo that communicates with the inner container lower part 2b is attached to the bottom of the inner container lower part 2b. The reservoir 15 accommodates, for example, a volatile element material 6 made of a group V element. A reservoir heater 5 is disposed on the outer periphery of the reservoir 15 in which the volatile material 6 is accommodated.
The reservoir 15 is heated by the heater 5 for the reservoir to evaporate the volatile element material 6 in the reservoir 15, and the vapor of the volatile element material 6 is filled in the inner container 2, thereby reducing the vapor pressure in the inner container 2. Can be controlled.
[0015]
Since the single crystal growth apparatus of this embodiment has the above-described structure and the inner container lower part 2b is covered with SiC, the inner container can be kept airtight semipermanently. In addition, since the SiC film hardly deteriorates with time, it is possible to avoid the change of the thermal environment in the inner container due to the change of the film thickness, thereby suppressing the generation of twins and polycrystals and improving the single crystallization rate. be able to.
[0016]
Next, the case where an InP single crystal is grown using the single crystal growth apparatus of this embodiment will be described.
First, 4000 g of InP polycrystal was accommodated in the crucible 13, and 1 g of Fe was further accommodated as a doping agent. Then, a liquid sealing member 12 made of B 2 O 3 thereon was 700g on. The crucible 13 was placed on the susceptor 10 provided at the inner end of the lower shaft 7. The reservoir 15 contained about 20 g of 99.9999% purity P.
[0017]
Next, after the inner container upper part 2a was placed on and joined to the inner container lower part 2b, the outer container 1 was sealed and the inside was evacuated. Thereafter, the inside was pressurized with Ar gas, and heating of the inner container 2 by the heaters 3 and 4 was started. With the heating by the heaters 3 and 4, the liquid sealing agent 12 in the crucible 13 was melted, and the raw material 11 was sealed by the liquid sealing material 12. Thereafter, the temperature was further raised to dissolve InP to obtain a liquid raw material melt 11.
At this time, the upper shaft 7 was lowered and inserted into the seal adapter 14, and the upper shaft 7 and the inner container upper portion 2a were sealed.
[0018]
Thereafter, heating of the heater 5 for the reservoir was started to evaporate the volatile element material (P) in the reservoir 15 and to fill the inner container 2 with phosphorus vapor. Then, the upper shaft 7 and the lower shaft 8 are driven, the seed crystal 9 disposed at the inner end portion of the upper shaft 7 is immersed in the raw material melt 11, and the upper shaft 7 and the lower shaft 8 are relatively rotated. The crystal was pulled up to grow an InP single crystal having a diameter of 3 inches and a length of 150 mm.
Since the InP single crystal grown in this way had no surface decomposition, it was found that a sufficient phosphorus vapor pressure was applied in the inner container 2 during crystal growth.
[0019]
Furthermore, when the InP crystal was grown 15 times under the same growth conditions and the single crystallization rate was calculated, the single crystallization rate was 86%, and a high quality InP single crystal could be grown.
Further, when the InP crystal was grown 15 times using S (sulfur) as a doping agent under the same growth conditions and the single crystallization rate was calculated, the single crystallization rate was 87%.
[0020]
For comparison, in the single crystal growth apparatus of this embodiment, the single crystal growth apparatus is used in which the inner container lower part (SiC coat) 2b is replaced with the lower part of the inner container covered with pBN, and the crystal growth is performed under the same conditions. It was. And using this single crystal growth apparatus, the InP crystal was grown 15 times and the single crystallization rate was calculated.
Table 1 shows single crystallization ratios of InP crystals obtained using the single crystal growth apparatuses of the present example and the comparative example.
[0021]
[Table 1]
Figure 2005200224
[0022]
From Table 1, in the case of the present example in which the inner container lower portion 2b was coated with SiC, the single crystallization ratios were 86% (Fe doped) and 87% (S doped), respectively. On the other hand, in the case of the comparative example in which the inner container lower portion 2b is covered with pBN, the single crystallization ratios are 71% (Fe doped) and 50% (S doped), respectively, which are compared with the single crystallization ratio in this embodiment. I found out that it was inferior.
[0023]
Further, in the comparative example, there was a tendency that the single crystallization rate decreased as the number of InP single crystal growth was repeated. In the case of the comparative example, when the InP single crystal growth was performed 20 to 30 times, the shielding effect by the pBN coating almost disappeared and the single crystallization rate was significantly reduced.
On the other hand, in the case of this example, even if the number of InP single crystal growths is repeated, the single crystallization rate does not decrease, and the shielding effect is maintained and high even if the InP single crystal growth is performed 100 times or more. The single crystallization rate could be maintained.
[0024]
As mentioned above, although the invention made | formed by this inventor was concretely demonstrated based on embodiment, this invention is not limited to the said embodiment, It can change in the range which does not deviate from the summary.
For example, in the above embodiment, a single crystal growth apparatus for growing an InP single crystal using the LEC method while controlling the vapor pressure of a volatile element has been described, but other than InP, GaAs, GaP, InAs, etc. The present invention can be applied to a case where a compound semiconductor single crystal, that is, a compound semiconductor single crystal containing a volatile group V element such as As or P as a raw material is grown by the LEC method.
[0025]
【The invention's effect】
According to the present invention, a heat-resistant inner container is provided in the outer container, a crucible is disposed in the inner container, and a semiconductor raw material and a liquid sealing material are placed in the crucible, and the outer container is disposed outside. In the single crystal growth apparatus for growing the compound semiconductor single crystal while heating the semiconductor raw material with the heater arranged and controlling the vapor pressure of the volatile element as the semiconductor raw material in the inner container, at least the inner container Since the inner wall is coated with silicon carbide (SiC), a shielding effect can be obtained semi-permanently and the airtightness in the inner container can be maintained. In addition, the SiC film hardly deteriorates with time, and it is possible to avoid the change of the thermal environment in the inner container due to the change in film thickness, so that the generation of twins and polycrystals can be suppressed and the single crystallization rate can be improved. As a result, there is no need to frequently change the inner container, so that the production efficiency can be improved.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing an embodiment of a crystal growth apparatus according to the present invention.
[Explanation of symbols]
1 High-pressure vessel 2 Inner vessel (inner vessel upper portion 2a, inner vessel lower portion 2b)
3 Heater 4 Wire Heater 5 Reservoir Heater 6 Volatile Element Material 7 Upper Shaft 8 Lower Shaft 9 Seed Crystal 10 Susceptor 11 Semiconductor Raw Material 12 Liquid Sealant (B 2 O 3 )
13 Crucible 14 Seal adapter 15 Reservoir

Claims (1)

外側容器内に耐熱性の内側容器を設け、前記内側容器内にルツボを配設するとともに、そのルツボ中に半導体原料および液体封止材を投入し、この内側容器外側に配設されたヒータにより半導体原料を加熱するとともに、前記内側容器内における半導体原料である揮発性元素の蒸気圧を制御しながら化合物半導体単結晶を成長させる単結晶成長装置において、
前記内側容器は、少なくともその内壁を炭化珪素で被覆されていることを特徴とする単結晶成長装置。
A heat-resistant inner container is provided in the outer container, a crucible is disposed in the inner container, and a semiconductor raw material and a liquid sealing material are placed in the crucible, and a heater disposed outside the inner container is used. In a single crystal growth apparatus for growing a compound semiconductor single crystal while heating a semiconductor raw material and controlling a vapor pressure of a volatile element which is a semiconductor raw material in the inner container,
The single crystal growth apparatus characterized in that at least an inner wall of the inner vessel is coated with silicon carbide.
JP2002004129A 2002-01-11 2002-01-11 Apparatus for growing single crystal Pending JP2005200224A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002004129A JP2005200224A (en) 2002-01-11 2002-01-11 Apparatus for growing single crystal
PCT/JP2002/011988 WO2003060202A1 (en) 2002-01-11 2002-11-18 Single crystal growth system and single crystal growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002004129A JP2005200224A (en) 2002-01-11 2002-01-11 Apparatus for growing single crystal

Publications (1)

Publication Number Publication Date
JP2005200224A true JP2005200224A (en) 2005-07-28

Family

ID=19190961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002004129A Pending JP2005200224A (en) 2002-01-11 2002-01-11 Apparatus for growing single crystal

Country Status (2)

Country Link
JP (1) JP2005200224A (en)
WO (1) WO2003060202A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1741808B1 (en) 2004-04-28 2011-04-27 Nippon Mining & Metals Co., Ltd. InP SINGLE CRYSTAL WAFER AND InP SINGLE CRYSTAL MANUFACTURING METHOD

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830315B2 (en) * 1990-03-05 1998-12-02 住友電気工業株式会社 High dissociation pressure single crystal manufacturing equipment
JP3158661B2 (en) * 1992-06-23 2001-04-23 住友電気工業株式会社 Method and apparatus for producing high dissociation pressure single crystal

Also Published As

Publication number Publication date
WO2003060202A1 (en) 2003-07-24

Similar Documents

Publication Publication Date Title
JP4135239B2 (en) Semiconductor crystal, manufacturing method thereof and manufacturing apparatus
EP1540048B1 (en) Silicon carbide single crystal and method and apparatus for producing the same
JP2010030891A (en) Compound semiconductor crystal
JP2008239480A5 (en)
JP4966007B2 (en) InP single crystal wafer and method of manufacturing InP single crystal
JP3596337B2 (en) Method for manufacturing compound semiconductor crystal
JP2979770B2 (en) Single crystal manufacturing equipment
JP2005200224A (en) Apparatus for growing single crystal
JP2000256091A (en) LIQUID PHASE GROWTH METHOD FOR SINGLE CRYSTAL SiC
JP4070353B2 (en) Method for epitaxial growth of silicon carbide
JPH06298600A (en) Method of growing sic single crystal
JPH10139589A (en) Production of single crystal
JPS5899195A (en) Producing device for single crystal of high dissociation pressure compound for semiconductor
JP2006248795A (en) Group iii nitride single crystal and method for growing the same
JPH07165488A (en) Apparatus for producing single crystal and method therefor
JP3938674B2 (en) Method for producing compound semiconductor single crystal
JPH0364477B2 (en)
JPS63307193A (en) Production of single crystal of compound of high dissociation pressure
JP3627255B2 (en) III-V compound semiconductor single crystal growth method
JPH01242489A (en) Single crystal growth apparatus
JP2000327496A (en) Production of inp single crystal
JP3392245B2 (en) Method for manufacturing compound semiconductor single crystal
JPH11335196A (en) Growth of group iii nitride single crystal, and horizontal type boat crystal-growth apparatus
JPH0959083A (en) Device for producing single crystal of compound semiconductor
JPH0585517B2 (en)