JPH0371399B2 - - Google Patents

Info

Publication number
JPH0371399B2
JPH0371399B2 JP61102984A JP10298486A JPH0371399B2 JP H0371399 B2 JPH0371399 B2 JP H0371399B2 JP 61102984 A JP61102984 A JP 61102984A JP 10298486 A JP10298486 A JP 10298486A JP H0371399 B2 JPH0371399 B2 JP H0371399B2
Authority
JP
Japan
Prior art keywords
crystal
chamber
growth
seed crystal
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61102984A
Other languages
Japanese (ja)
Other versions
JPS62256792A (en
Inventor
Tomoji Yamagami
Yoshitaka Tomomura
Masahiko Kitagawa
Shigeo Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP10298486A priority Critical patent/JPS62256792A/en
Publication of JPS62256792A publication Critical patent/JPS62256792A/en
Publication of JPH0371399B2 publication Critical patent/JPH0371399B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 <産業上の利用分野> 本発明は、昇華法またはハロゲン輸送法を用い
た−族化合物(ZnS、ZnSe、ZnTe、…)の
バルク単結晶成長方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for growing bulk single crystals of - group compounds (ZnS, ZnSe, ZnTe,...) using a sublimation method or a halogen transport method.

<従来技術とその問題点> ZnS、ZnSe等の−族化合物半導体単結晶
の成長に際し、昇華法あるいはハロゲン輸送法を
用いた従来の成長法では、単結晶成長初期に存在
する結晶性の乱れをバルク単結晶がそのまま引き
継いだ形態となるため、成長した結晶は均質な結
晶部分が著しく制限される。従つて、実用上必要
な径大寸法の単結晶を再現性良く得ることは容易
でない。これらの問題は多くの−族化合物半
導体に現出する。
<Prior art and its problems> When growing single crystals of - group compound semiconductors such as ZnS and ZnSe, conventional growth methods using sublimation or halogen transport methods do not eliminate the disordered crystallinity that exists at the early stage of single crystal growth. Since the shape is directly inherited from the bulk single crystal, the homogeneous crystal portion of the grown crystal is severely limited. Therefore, it is not easy to obtain a single crystal with a large diameter required for practical use with good reproducibility. These problems appear in many − group compound semiconductors.

<発明の目的> 本発明は斯る点に鑑みてなされたもので、昇華
法、ハロゲン輸送法を用いた−族化合物のバ
ルク単結晶を気相成長させる方法において、成長
装置中の種結晶成長及び伸長のための種結晶室と
単結晶成長室を分離し、種結晶発生部の構造に技
術的手段を駆使することによつて任意の寸法の均
質な高品質バルク単結晶を成長させる方法を提供
することを目的とするものである。
<Object of the Invention> The present invention has been made in view of the above points, and is a method for growing a bulk single crystal of a - group compound in a vapor phase using a sublimation method or a halogen transport method. and a method for growing homogeneous high-quality bulk single crystals of arbitrary dimensions by separating the seed crystal chamber for elongation and the single crystal growth chamber and making full use of technical means for the structure of the seed crystal generating section. The purpose is to provide

<発明の概要> 上記目的を達成するため、本発明の結晶成長方
法は、種結晶の成長に自然核発生を利用する種結
晶発生用ヒートシンクを備えた種結晶室と核発生
後成長した種結晶の貫穿が可能な隔壁で仕切られ
た単結晶成長室を具備した成長装置を利用した単
結晶成長法を特徴とするものである。具体的に
は、昇華法またはハロゲン輸送法を用いて種結晶
成長室中に自然核発生させるヒートシンク部より
低温となる構造を持たず、ヒートシンク部と結晶
成長室までが適度な距離を隔てて設置された成長
装置を用いることによつてヒートシンク部で自然
核発生した結晶が種結晶室で伸び結晶成長室に達
した後、その先端の良質な小単結晶から結晶成長
室で乱れの少ない単結晶成長を行なうものであ
る。
<Summary of the Invention> In order to achieve the above object, the crystal growth method of the present invention provides a seed crystal chamber equipped with a seed crystal generation heat sink that utilizes natural nucleation for seed crystal growth, and a seed crystal grown after nucleation. This method is characterized by a single crystal growth method that utilizes a growth apparatus equipped with a single crystal growth chamber partitioned by a partition wall that can be penetrated. Specifically, it does not have a structure that has a lower temperature than the heat sink part that naturally generates nuclei in the seed crystal growth chamber using the sublimation method or halogen transport method, and the heat sink part and the crystal growth chamber are installed at an appropriate distance. By using a grown growth device, the crystals naturally generated in the heat sink are elongated in the seed crystal chamber and reach the crystal growth chamber, and then a small single crystal of good quality at the tip is grown into a single crystal with little disturbance in the crystal growth chamber. It is about growth.

<実施例> ZnSの沃素輸送法による単結晶成長を例にとつ
て本発明の1実施例を説明する。
<Example> An example of the present invention will be described by taking as an example the single crystal growth of ZnS by the iodine transport method.

第1図は本実施例の説明に供する原理説明図で
ある。種発生用ヒートシンク1、自然核発生用種
結晶2を有する種結晶室3及び単結晶成長室5を
具備して気相成長装置が構成され、種発生用ヒー
トシンク部1より自然核発生させた種結晶2が、
種結晶室3で伸び隣設する単結晶成長室5で単結
晶4が成長する。第1図はこの様子を示してい
る。尚結晶成長の原材料6は装置下方に載置され
ている。
FIG. 1 is a diagram for explaining the principle of this embodiment. A vapor phase growth apparatus is constituted by a heat sink 1 for seed generation, a seed crystal chamber 3 having a seed crystal 2 for natural nucleus generation, and a single crystal growth chamber 5. Crystal 2 is
A single crystal 4 is grown in a single crystal growth chamber 5 which extends from the seed crystal chamber 3 and is adjacent thereto. Figure 1 shows this situation. The raw material 6 for crystal growth is placed below the apparatus.

第2図は、本発明の1実施例の説明に供する沃
素輸送法を用いた結晶成長装置の要部構成図であ
る。
FIG. 2 is a diagram showing the main part of a crystal growth apparatus using an iodine transport method, which is used to explain one embodiment of the present invention.

石英アンプル7′は、直径数十mm、長さ数十cm
の単結晶成長室5′と長さ10〜30mmの種結晶室
3′を有し、種結晶室3′の上方より棒状の石英ヒ
ートシンク1′が垂設されている。ヒートシンク
1′は下端に種結晶の自然核を発生させるために
用いられ、種結晶2′は種結晶室3′で成長するに
従つて径小となり、ヒートシンク1′下端より下
方に先鋭化されながら伸びる。そして単結晶成長
室5′との境界隔壁付近で最小径となる。この種
結晶2′から単結晶成長室5′で良質なバルク単結
晶が成長する。種結晶室3′にヒートシンク1′よ
りも低温部となるような構造があるとヒートシン
ク1′以外からも自然核発生し、複数の種結晶を
用いた成長即ち多結晶成長となることは明らかで
ある。石英アンプル7′の底部には、原料として
ZnS6′が載置されている。上記構成を具備する
石英アンプル7′等を温度制御する成長炉(図示
せず)には必要な温度が付与されており、各部の
温度は600℃から1200℃の範囲で適宜選定される。
Quartz ampoule 7' has a diameter of several tens of mm and a length of several tens of cm.
It has a single crystal growth chamber 5' and a seed crystal chamber 3' having a length of 10 to 30 mm, and a rod-shaped quartz heat sink 1' is vertically disposed above the seed crystal chamber 3'. The heat sink 1' is used to generate a natural nucleus of a seed crystal at the lower end, and as the seed crystal 2' grows in the seed crystal chamber 3', its diameter becomes smaller and becomes sharper downward from the lower end of the heat sink 1'. extend. The diameter reaches its minimum near the boundary partition wall with the single crystal growth chamber 5'. A high quality bulk single crystal is grown from this seed crystal 2' in a single crystal growth chamber 5'. It is clear that if the seed crystal chamber 3' has a structure where the temperature is lower than that of the heat sink 1', spontaneous nucleation will occur from areas other than the heat sink 1', resulting in growth using multiple seed crystals, that is, polycrystalline growth. be. At the bottom of the quartz ampoule 7', as a raw material,
ZnS6' is mounted. A growth furnace (not shown) for controlling the temperature of the quartz ampoule 7' having the above-mentioned structure is provided with a necessary temperature, and the temperature of each part is appropriately selected in the range of 600°C to 1200°C.

ヒートシンク1′の下端面を最も低い温度に設
定し、例として石英アンプル7′を850℃前後に加
熱する。加熱されたZnS6′原料は沃素(I2)ガ
スと反応し、ZnI2、S2分子となつて上昇し、ヒー
トシンク1′下端面で冷却されて種結晶2′が析出
する。この種結晶2′は種結晶室3′内で成長し単
結晶成長室5′との境界の最小径先端部である小
単結晶表面よりバルク状のZnS単結晶4′が成長
される。このバルクZnS単結晶4′は小単結晶表
面より成長されたものであるため、結晶欠陥の導
入される確率もきわめて小さく良好な結晶性を有
する単結晶となる。
The lower end surface of the heat sink 1' is set to the lowest temperature and, for example, the quartz ampoule 7' is heated to around 850°C. The heated ZnS 6' raw material reacts with iodine (I 2 ) gas, becomes ZnI 2 and S 2 molecules, rises, and is cooled at the lower end surface of the heat sink 1' to precipitate seed crystals 2'. This seed crystal 2' grows in a seed crystal chamber 3', and a bulk ZnS single crystal 4' is grown from the surface of the small single crystal, which is the smallest diameter tip of the boundary with the single crystal growth chamber 5'. Since this bulk ZnS single crystal 4' is grown from the surface of a small single crystal, the probability of introducing crystal defects is extremely small, resulting in a single crystal with good crystallinity.

<発明の効果> 以上詳説した本発明の装置を用いることによ
り、ヒートシンク部で自然核発生した結晶が種結
晶室で伸び、結晶成長室に達した先端の良質な小
単結晶から結晶成長室内で乱れの少ない単結晶成
長を行うことが可能となるため、任意の寸法の均
質な高品位バルク単結晶を容易に得ることができ
る。
<Effects of the Invention> By using the apparatus of the present invention described in detail above, crystals naturally generated in the heat sink grow in the seed crystal chamber, and the small single crystal of high quality at the tip reaches the crystal growth chamber. Since it is possible to grow a single crystal with less turbulence, a homogeneous, high-quality bulk single crystal of any size can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例の説明に供する成長
装置の原理図である。第2図は本発明の1実施例
の説明に供する成長装置の要部構成図である。 1,1′……種結晶自然核発生用ヒートシンク、
2,2′……自然核発生種結晶、3,3′……種結
晶室、4,4′……単結晶、5,5′……単結晶成
長室、6,6′……原料、7,7′……成長装置。
FIG. 1 is a principle diagram of a growth apparatus used to explain one embodiment of the present invention. FIG. 2 is a diagram showing the main part of a growth apparatus for explaining one embodiment of the present invention. 1,1'...Heat sink for natural seed crystal nucleation,
2,2'...Natural nucleation seed crystal, 3,3'...Seed crystal chamber, 4,4'...Single crystal, 5,5'...Single crystal growth chamber, 6,6'...Raw material, 7, 7'...growth device.

Claims (1)

【特許請求の範囲】 1 昇華法またはハロゲン輸送法を用いた−
族化合物半導体単結晶の気相成長方法において、 自然核発生させるヒートシンク部を備え、該ヒ
ートシンク部が最も低温に保たれた種結晶室と、 該結晶室に適宜空間を隔てて設けられた結晶成
長室の少なくとも2室を介して、 前記種結晶室で伸長し、前記結晶成長室との境
界で最小径先端部をなす種結晶に連結されたバル
ク単結晶を前記結晶成長室で成長せしめることを
特徴とする化合物半導体単結晶の気相成長方法。
[Claims] 1. Using sublimation method or halogen transport method -
A method for vapor phase growth of group compound semiconductor single crystals includes: a seed crystal chamber equipped with a heat sink section for spontaneous nucleation and in which the heat sink section is kept at the lowest temperature; and a crystal growth chamber provided with an appropriate space in the crystal chamber. growing in the crystal growth chamber a bulk single crystal connected to a seed crystal extending in the seed crystal chamber and forming a minimum diameter tip at a boundary with the crystal growth chamber through at least two of the chambers; Characteristic vapor phase growth method for compound semiconductor single crystals.
JP10298486A 1986-04-30 1986-04-30 Method for growing compound semiconductor single crystal in vapor phase Granted JPS62256792A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10298486A JPS62256792A (en) 1986-04-30 1986-04-30 Method for growing compound semiconductor single crystal in vapor phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10298486A JPS62256792A (en) 1986-04-30 1986-04-30 Method for growing compound semiconductor single crystal in vapor phase

Publications (2)

Publication Number Publication Date
JPS62256792A JPS62256792A (en) 1987-11-09
JPH0371399B2 true JPH0371399B2 (en) 1991-11-13

Family

ID=14341980

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10298486A Granted JPS62256792A (en) 1986-04-30 1986-04-30 Method for growing compound semiconductor single crystal in vapor phase

Country Status (1)

Country Link
JP (1) JPS62256792A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311401B1 (en) * 2012-10-31 2013-09-25 장희선 Reinforcement lifting device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0712030B2 (en) * 1989-12-22 1995-02-08 スタンレー電気株式会社 (II)-(VI) Group compound semiconductor crystal growth apparatus
US5725659A (en) * 1994-10-03 1998-03-10 Sepehry-Fard; Fareed Solid phase epitaxy reactor, the most cost effective GaAs epitaxial growth technology

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129694A (en) * 1973-04-04 1974-12-12
JPS6143275B2 (en) * 1981-06-04 1986-09-26 Westvako Corp

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143275U (en) * 1984-08-17 1986-03-20 三洋電機株式会社 crystal growth equipment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49129694A (en) * 1973-04-04 1974-12-12
JPS6143275B2 (en) * 1981-06-04 1986-09-26 Westvako Corp

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101311401B1 (en) * 2012-10-31 2013-09-25 장희선 Reinforcement lifting device

Also Published As

Publication number Publication date
JPS62256792A (en) 1987-11-09

Similar Documents

Publication Publication Date Title
US5746827A (en) Method of producing large diameter silicon carbide crystals
Niwa et al. Growth of AgGaS2 single crystals by a self-seeding vertical gradient freezing method
US3228756A (en) Method of growing single crystal silicon carbide
JPH0371399B2 (en)
JPH03295898A (en) Method and device for growing silicon carbide single crystal
US3210149A (en) Method of producing monocrystals of a semiconductor via the vapor phase
US4869776A (en) Method for the growth of a compound semiconductor crystal
JPH0371400B2 (en)
JPH06298600A (en) Method of growing sic single crystal
JPH0341440B2 (en)
JP2574618B2 (en) Crystal growth method and crucible for crystal growth
US3649210A (en) Apparatus for crucible-free zone-melting of crystalline materials
Gospodinov The growth of HgI2 crystals
US3374067A (en) Process of growing cubic zinc sulfide crystals in a molten salt solvent
JPH08750B2 (en) Single crystal growth method and apparatus using high-pressure synthesizer
GB1414202A (en) Method of manufacturing monocrystalline semiconductor bodies
JPH054894A (en) Crystal growth of compound semi-conductor
Bulakh Growth of boule DdS single crystals from the vapour phase
JPS5938199B2 (en) Compound semiconductor crystal growth equipment
RU2023770C1 (en) Method of growing semiconductor crystals
CS225509B1 (en) Low-temperature formation of the single crystals of the gallium arsenide with the structure without mozaic blocks dislocations
JP2828868B2 (en) Liquid phase crystal growth method for II-VI compound semiconductor
Ishikawa et al. Low Temperature Growth of SbSI Single Crystals
JPS60118700A (en) Production of semiconductor crystal
RU1431391C (en) Process of growing monocrystals of cadmium telluride