JPS5938199B2 - Compound semiconductor crystal growth equipment - Google Patents
Compound semiconductor crystal growth equipmentInfo
- Publication number
- JPS5938199B2 JPS5938199B2 JP971182A JP971182A JPS5938199B2 JP S5938199 B2 JPS5938199 B2 JP S5938199B2 JP 971182 A JP971182 A JP 971182A JP 971182 A JP971182 A JP 971182A JP S5938199 B2 JPS5938199 B2 JP S5938199B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- crystal
- compound semiconductor
- ampoule
- crystal growth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/003—Heating or cooling of the melt or the crystallised material
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
Description
【発明の詳細な説明】
本発明は化合物半導体の溶液成長法に用いる化合物半導
体結晶成長装置に関するもめである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a compound semiconductor crystal growth apparatus used in a compound semiconductor solution growth method.
従来のこの種の装置はr3 Crystais Gro
wtjProperties會andApplicat
ions III−VSemi −con duct
ors * Springer −Verlag 1
980 Jに詳しく紹介されている。The conventional device of this type is r3 Crystais Gro.
wtjProperties Association and Application
ions III-VSemi-conduct
ors * Springer-Verlag 1
980J is introduced in detail.
第1図はこの種装置の代表である5SD
(Syn thesis * 5olute s D
1ffusion )法に用いられ℃いる装置である。Figure 1 shows a 5SD (Synthesis * 5olute s D), which is representative of this type of device.
This is a device used for the 1 ffusion method.
この第1図より明かなように、この従来の装置は基本的
に、高温炉1及び低温炉2より成り、これらは相互に離
間して設けられている。As is clear from FIG. 1, this conventional apparatus basically consists of a high temperature furnace 1 and a low temperature furnace 2, which are spaced apart from each other.
この高温炉1及び低温炉2を挿通して均熱管3が備えら
れており、この均熱管3内に、半導体化合物原料4を底
部に収納し、さらに原料溶液5を入れたるつぼ6を前記
高温炉1部分に収納した合成アンプル7が設けられてい
る。A soaking tube 3 is provided through the high-temperature furnace 1 and the low-temperature furnace 2. A semiconductor compound raw material 4 is stored in the bottom of the soaking tube 3, and a crucible 6 containing a raw material solution 5 is placed at the high temperature. A synthesis ampoule 7 housed in the furnace 1 section is provided.
このような構成になっているため以下のような欠点があ
った。This configuration has the following drawbacks.
これらの欠点の大部分は温度分布に起因するものである
。Most of these drawbacks are due to temperature distribution.
すなわち、結晶8が溶液5を入れたるつぼ6の底に成長
するにつれて、固液界面が上の方へ移動する。That is, as the crystals 8 grow on the bottom of the crucible 6 containing the solution 5, the solid-liquid interface moves upward.
このとき、るつぼ6は温度勾配のなかにあるので固液界
面は初期温度T1 からT2 (>T1)へとより高温
へ、かつ低温度勾配領域へと移動することになる。At this time, since the crucible 6 is in a temperature gradient, the solid-liquid interface moves to a higher temperature from the initial temperature T1 to T2 (>T1) and to a lower temperature gradient region.
固液界面温度の変化は結晶組成均一性を損わせ、温度勾
配の低下は成長速度の低下を招く。Changes in solid-liquid interface temperature impair crystal composition uniformity, and a decrease in temperature gradient leads to a decrease in growth rate.
また、高温炉1下端の温度勾配は高温炉1と低温炉2の
間隙によってしか調整できないため、大きな温度勾配を
とることが難しい上、周囲温度の影響を受は易いという
問題があった。Furthermore, since the temperature gradient at the lower end of the high temperature furnace 1 can only be adjusted by the gap between the high temperature furnace 1 and the low temperature furnace 2, there are problems in that it is difficult to obtain a large temperature gradient and it is easily influenced by the ambient temperature.
とくに温度勾配の低下と周囲温度の変動による固液界面
温度のゆらぎは、固液界面において多数の結晶核を発生
させ、第2図に示すような小粒の多結晶集合体を成長さ
せる。In particular, fluctuations in the temperature at the solid-liquid interface due to a decrease in the temperature gradient and fluctuations in the ambient temperature generate a large number of crystal nuclei at the solid-liquid interface, causing the growth of small polycrystalline aggregates as shown in FIG.
このような多結晶集合体では粒界に不純度が捕獲され、
純度を低下させるという欠点があった(第1図参照)。In such polycrystalline aggregates, impurities are trapped at grain boundaries,
This had the disadvantage of reducing purity (see Figure 1).
以上みてきたように、合成アンプル7が固定されたSS
D装置では結晶組成不均一、成長速度低下、多結晶化に
ともなう純度の低下などの欠点を有していた。As we have seen above, the SS in which the synthetic ampoule 7 is fixed
Device D had drawbacks such as non-uniform crystal composition, reduced growth rate, and reduced purity due to polycrystallization.
このような欠点を改善するものとして、合成アンプル1
を結晶8のほぼ成長速度でもって引下げる引下げ合成装
置を有するものがある。To improve these drawbacks, synthetic ampoule 1
Some devices have a pull-down synthesizer that pulls down the crystal at approximately the growth rate of the crystal 8.
この装置によって成長したる結晶の断面図は第3図に示
すように、引下げ方向に伸長した紡錘状結晶の集合体と
なる。As shown in FIG. 3, the cross-sectional view of the crystal grown by this device is an aggregate of spindle-shaped crystals extending in the pulling direction.
しかし、この種の引下げ合成装置では固液界面での結晶
核の不規則発生の制御は難しく大形の単結晶取得に到っ
ていない(K−SugiitE −Kubota t
H−IWasaki s J−Cryst 5Gro
−Wth、46,289(1979))。However, in this type of pull-down synthesis apparatus, it is difficult to control the irregular generation of crystal nuclei at the solid-liquid interface, and it has not been possible to obtain large-sized single crystals.
H-Iwasaki's J-Cryst 5Gro
-Wth, 46, 289 (1979)).
この原因として固液界面での温度分布の不均一性とそ・
こでの温度のゆらぎがあげられる。The cause of this is the non-uniformity of temperature distribution at the solid-liquid interface.
One example is the fluctuation in temperature here.
第4図は、この種装置のもう一つの代表である種子結晶
を用いることを可能にした装置である。FIG. 4 shows a device that makes it possible to use seed crystals, which is another representative of this type of device.
図中、9は種子結晶、10はグラファイト製シリンダ、
11は高周波コイルである。In the figure, 9 is a seed crystal, 10 is a graphite cylinder,
11 is a high frequency coil.
このような構成になっているため以下のような欠点があ
った。This configuration has the following drawbacks.
一つは種子結晶9の液解である。One is the liquid dissolution of the seed crystal 9.
この現象は種子結晶9とクラファイト製シリンダ10が
一様に接触していない場合や種子結晶9上の溶液5が未
飽和状態にときに生じる。This phenomenon occurs when the seed crystal 9 and the graphite cylinder 10 are not in uniform contact or when the solution 5 on the seed crystal 9 is unsaturated.
他の欠点はクラファイト製シリンダ10を用いるために
生ずる成長結晶8純度の低下である。Another disadvantage is the reduction in purity of the grown crystal 8 due to the use of the graphite cylinder 10.
これは高温にさらされたグラファイトから揮発する不純
物と溶液とグラファイトの接触による不純物混入が原因
である。This is caused by impurities volatilized from graphite exposed to high temperatures and impurity contamination due to contact between the solution and graphite.
本発明はこれらの欠点を除去するために、高温部下端に
温度勾配設定専用ヒータを設けさらに合成アンプルを回
転しながら引下げる機構を設けることにより、結晶成長
温度の一定安定化および固液界面での温度分布の均一化
を図り、とくに種子結晶を用いることなく高純度大形単
結晶の取得を可能にしたものである。In order to eliminate these drawbacks, the present invention provides a heater dedicated to setting a temperature gradient at the lower end of the high temperature, and further provides a mechanism for pulling down the synthesis ampoule while rotating, thereby stabilizing the crystal growth temperature at a constant level and maintaining the temperature at the solid-liquid interface. This makes it possible to obtain high-purity, large-sized single crystals without the use of seed crystals.
以下、本発明の一実施例を図面に基づき説明する。Hereinafter, one embodiment of the present invention will be described based on the drawings.
第5図は本発明の実施例であって1は高温炉、2は低温
炉、3は均熱管、4はV族元素原料、5は原料溶液、6
はるつぼ、7は合成アンプル、8は成長結晶、12は温
度勾配設定専用ヒーl、13は熱遮蔽板、14ばつり下
げ棒、15は回転引下げ機構である。FIG. 5 shows an embodiment of the present invention, in which 1 is a high-temperature furnace, 2 is a low-temperature furnace, 3 is a soaking tube, 4 is a group V element raw material, 5 is a raw material solution, 6
1 is a melting pot, 7 is a synthesis ampoule, 8 is a growing crystal, 12 is a heater dedicated for setting a temperature gradient, 13 is a heat shield plate, 14 is a hanging rod, and 15 is a rotational pull-down mechanism.
この第5図より明かなように、本発明による化合物半導
体結晶成長装置の一実施例は、高温炉1及び低温炉2を
有し、これらの高温炉1及び低温炉2は相互に離間する
と共に、その内部は全体に亘って均熱管3が挿通してい
る。As is clear from FIG. 5, one embodiment of the compound semiconductor crystal growth apparatus according to the present invention has a high temperature furnace 1 and a low temperature furnace 2, and these high temperature furnace 1 and low temperature furnace 2 are spaced apart from each other. A heat soaking tube 3 is inserted throughout the interior thereof.
均熱管3はV族元素4を底部に収納し、さらに高温炉1
底部に相当する部分付近に原料溶液5の入れられたるつ
ぼ6を備えている。The soaking tube 3 stores the V group element 4 at the bottom, and further contains the high temperature furnace 1.
A crucible 6 containing a raw material solution 5 is provided near a portion corresponding to the bottom.
さらに、高温炉1下端には温度勾配を大きくとれるよう
に、温度勾配を設定し、制御する温度勾配設定専用ヒー
タ12が設けられ、また前記専用ヒータ12下端及び低
温炉2上端に、この専用ヒータ12を周囲より影響受け
ないようにする熱遮蔽板13が備えられている。Further, a dedicated heater 12 for setting a temperature gradient is provided at the lower end of the high temperature furnace 1 to set and control a temperature gradient so that a large temperature gradient can be obtained. A heat shield plate 13 is provided to prevent the heat shield 12 from being affected by the surroundings.
加えて合成アンプル7はつり下げ棒14に接続し、この
つり下げ棒14は回転引き下げ機構15に接続し、合成
アンプル1を上下に移動可能にしている。In addition, the synthetic ampoule 7 is connected to a hanging rod 14, which is connected to a rotating and lowering mechanism 15, allowing the synthetic ampoule 1 to be moved up and down.
これを動作するには第6図に示す温度一時間特性曲線に
従えばよい。To operate this, follow the temperature-time characteristic curve shown in FIG.
第一段階:るつぼ6下端がToとなるように位置にアン
プル1を設定し、炉1を昇
温さセる。First step: The ampoule 1 is set at a position such that the lower end of the crucible 6 is at To, and the temperature of the furnace 1 is raised.
設定温度に到達した後、るつぼ6下部で結晶8成長が生
ずる
に必要な時間だけ、アンプル7を回
転させながら初期アンプル設定位置
に保っておく。After reaching the set temperature, the ampoule 7 is kept at the initial ampoule setting position while being rotated for the time necessary for crystal 8 to grow at the bottom of the crucible 6.
第二段階:るつぼ6下端での温度と温度勾配で決まる成
長速度で引下げを行う。Second stage: Reduction is performed at a growth rate determined by the temperature and temperature gradient at the lower end of the crucible 6.
引下げ時間は全結晶量で決まる量であ る。The pulling time is determined by the total amount of crystals. Ru.
引下げ完了後は一定降温速度で室温 までもどす。After cooling is completed, the temperature decreases to room temperature at a constant rate. I'll get back to it.
具体的にはInP結晶の場合、ln=200g。Specifically, in the case of InP crystal, ln=200g.
P=65 gを用いTo=950℃、そこでの温度勾配
を50℃c、/cmととり、4 rpmおよび10wn
/日の引下げにより、直径35聴、長さ70喘の単結晶
の取得が可能であった。Using P = 65 g, To = 950 ° C, the temperature gradient there was set to 50 ° C, / cm, 4 rpm and 10 wn.
/day, it was possible to obtain a single crystal with a diameter of 35 mm and a length of 70 mm.
なお、この結晶では粒界への不純物捕獲がないために、
第7図に示すようにるつぼ下端と上端部でのキャリア濃
度、移動度の均一性はいちじるしく向上した。In addition, in this crystal, since there is no capture of impurities at the grain boundaries,
As shown in FIG. 7, the carrier concentration and uniformity of mobility at the lower and upper ends of the crucible were significantly improved.
第1図中、曲線a、bは本発明により製造された結晶、
曲線c、dは従来のSSD装置による結晶の電気的特性
を示す。In FIG. 1, curves a and b indicate crystals produced according to the present invention;
Curves c and d show the electrical characteristics of a crystal produced by a conventional SSD device.
以上説明したように、温度勾配設定専用ヒータを設けか
つ合成アンプルを回転しながら引下げることにより、
(イ)温度勾配を大きくとれるために成長速度を高める
ことができる。As explained above, by providing a heater dedicated to setting the temperature gradient and pulling down the synthesis ampoule while rotating, (a) the temperature gradient can be increased, thereby increasing the growth rate.
(0)安定した温度勾配と合成アンプルの回転により、
固液界面温度分布の均一性が高かまり、単結晶成長が容
易となる。(0) Due to stable temperature gradient and rotation of synthesis ampoule,
The uniformity of the temperature distribution at the solid-liquid interface increases, making single crystal growth easier.
e→ 成長速度と等しい引下げ速度により、固液界面温
度を常に一定に保て、よって結晶組成均一性と単結晶成
長を促進できる。e→ With a pulling rate equal to the growth rate, the solid-liquid interface temperature can be kept constant, thereby promoting crystal composition uniformity and single crystal growth.
、に)と(に、種子結晶を用いることなく、容易に大形
単結晶取得が可能となる、
((ホ)アンプル内にクラファイトなどの汚染源となり
つる物質を持ちこむことがないので、高純度結晶の成長
が可能となる、と言う利点がある。(2) It is possible to easily obtain large single crystals without using seed crystals, and ((e) High purity is achieved because there is no possibility of introducing contaminants such as graphite into the ampoule. This has the advantage of allowing crystal growth.
以上述べたことから明らかなように、本発明は溶液成長
法による単結晶成長装置として汎く適用しつるものであ
り、InP の他にG aP s G aA s *G
aSb、InAs5InSbなどの単結晶育成も可能で
ある。As is clear from the above, the present invention can be widely applied as a single crystal growth apparatus using the solution growth method, and in addition to InP, GaP s G aA s *G
It is also possible to grow single crystals such as aSb and InAs5InSb.
第1図は従来のSSD装置の断面図、第2図はSSD装
置による結晶の断面図、第3図は引下げ装置を有する装
置による結晶の断面図、第4図は種子結晶利用する製造
装置の断面図、第5図は本発明による装置の一実施例の
断面図、第6図は本発明による装置を用いるときの温度
・時間特性曲線、第7図はSSD装置と本発明による装
置より合成された合成結晶の電気的特性の比較である。
1・・・高温炉、2・・・低温炉、3・・・均熱管、4
・・・半導体用原料、5・・・原料溶液、6・・・るつ
ぼ、1・・・合成アンプル、8・・・成長結晶、9・・
・種子結晶、10・・・クラファイト製シリンダ、11
・・・高周波コイル、12・・・温度勾配設定専用ヒー
タ、13・・・熱遮蔽板、14・・・つり下げ棒、15
・・・回転・引下げ機構。Fig. 1 is a cross-sectional view of a conventional SSD device, Fig. 2 is a cross-sectional view of a crystal produced by an SSD device, Fig. 3 is a cross-sectional view of a crystal produced by a device having a pull-down device, and Fig. 4 is a sectional view of a manufacturing device using seed crystals. 5 is a sectional view of an embodiment of the device according to the present invention, FIG. 6 is a temperature-time characteristic curve when using the device according to the present invention, and FIG. 7 is a composite of the SSD device and the device according to the present invention. This is a comparison of the electrical properties of the synthesized crystals. 1... High temperature furnace, 2... Low temperature furnace, 3... Soaking tube, 4
... Raw material for semiconductor, 5... Raw material solution, 6... Crucible, 1... Synthesis ampoule, 8... Growing crystal, 9...
・Seed crystal, 10... Craphite cylinder, 11
... High frequency coil, 12 ... Heater for temperature gradient setting, 13 ... Heat shielding plate, 14 ... Hanging rod, 15
...Rotation/pull down mechanism.
Claims (1)
の内側に、化合物半導体製造用原料及び原料溶液を収納
しえる合成アンプルを備えた化合物半導体成長装置にお
いて、前記高温部下端に温度勾配設定専用ヒータを設け
ること、および合成アンプルを回転しながら引下げる機
構を有することを特徴とする化合物半導体結晶成長装置
。1. In a compound semiconductor growth apparatus equipped with a synthesis ampoule capable of storing raw materials and raw material solutions for compound semiconductor production inside a vertical two-heating furnace having a high temperature section above and a low temperature section below, A compound semiconductor crystal growth apparatus characterized by having a heater dedicated to setting a gradient, and a mechanism for pulling down a synthesis ampoule while rotating it.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP971182A JPS5938199B2 (en) | 1982-01-25 | 1982-01-25 | Compound semiconductor crystal growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP971182A JPS5938199B2 (en) | 1982-01-25 | 1982-01-25 | Compound semiconductor crystal growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58130189A JPS58130189A (en) | 1983-08-03 |
JPS5938199B2 true JPS5938199B2 (en) | 1984-09-14 |
Family
ID=11727830
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP971182A Expired JPS5938199B2 (en) | 1982-01-25 | 1982-01-25 | Compound semiconductor crystal growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5938199B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60215597A (en) * | 1984-04-11 | 1985-10-28 | Nippon Telegr & Teleph Corp <Ntt> | Crucible for producing crystal |
JP2732573B2 (en) * | 1987-08-03 | 1998-03-30 | 勝美 望月 | Manufacturing method of compound semiconductor single crystal |
US5116456A (en) * | 1988-04-18 | 1992-05-26 | Solon Technologies, Inc. | Apparatus and method for growth of large single crystals in plate/slab form |
-
1982
- 1982-01-25 JP JP971182A patent/JPS5938199B2/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
JPS58130189A (en) | 1983-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US2683676A (en) | Production of germanium rods having longitudinal crystal boundaries | |
US3173765A (en) | Method of making crystalline silicon semiconductor material | |
JP2003277197A (en) | CdTe SINGLE CRYSTAL, CdTe POLYCRYSTAL AND METHOD FOR PRODUCING THE SINGLE CRYSTAL | |
US2743200A (en) | Method of forming junctions in silicon | |
US3353914A (en) | Method of seed-pulling beta silicon carbide crystals from a melt containing silver and the product thereof | |
US4303465A (en) | Method of growing monocrystals of corundum from a melt | |
US3025191A (en) | Crystal-growing apparatus and methods | |
US5840116A (en) | Method of growing crystals | |
JPS5938199B2 (en) | Compound semiconductor crystal growth equipment | |
US3055741A (en) | Method for producing silicon | |
JPH0244798B2 (en) | ||
JP2562579B2 (en) | Single crystal manufacturing method | |
JPH0246560B2 (en) | ||
JPH11268998A (en) | Gallium arsenic single crystal ingot, its production, and gallium arsenic single crystal wafer using the same | |
JPH05330995A (en) | Production of silicon carbide single crystal and apparatus therefor | |
GB1365724A (en) | Methods of manufacturing single crystals of semiconductor mater ial | |
JPH026382A (en) | Apparatus for pulling up single crystal | |
JPH03193694A (en) | Crystal growing device | |
JPH04164889A (en) | Production of single crystal | |
JPS6033297A (en) | Pulling device for single crystal semiconductor | |
JPS6117489A (en) | Production of silicon single crystal | |
JPH0798715B2 (en) | Method for producing silicon single crystal | |
JPS61127697A (en) | Production of silicon single crystal | |
JP2726887B2 (en) | Method for manufacturing compound semiconductor single crystal | |
JPS63260891A (en) | Production of silicon single crystal |