JPH0798715B2 - Method for producing silicon single crystal - Google Patents

Method for producing silicon single crystal

Info

Publication number
JPH0798715B2
JPH0798715B2 JP1013641A JP1364189A JPH0798715B2 JP H0798715 B2 JPH0798715 B2 JP H0798715B2 JP 1013641 A JP1013641 A JP 1013641A JP 1364189 A JP1364189 A JP 1364189A JP H0798715 B2 JPH0798715 B2 JP H0798715B2
Authority
JP
Japan
Prior art keywords
single crystal
raw material
silicon
silicon single
melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1013641A
Other languages
Japanese (ja)
Other versions
JPH02196082A (en
Inventor
高行 久保
浩文 蔵保
俊幸 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1013641A priority Critical patent/JPH0798715B2/en
Publication of JPH02196082A publication Critical patent/JPH02196082A/en
Publication of JPH0798715B2 publication Critical patent/JPH0798715B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、例えば、半導体材料等に使用されるシリコ
ン単結晶の製造方法に関する。
TECHNICAL FIELD The present invention relates to a method for producing a silicon single crystal used in, for example, a semiconductor material.

(従来の技術) 単結晶の成長法には幾つかの方法があるが、その一つに
引き上げ法(チョクラルスキー法ともいう)がある。こ
の方法は第1図に示すように、引き上げ装置1内に配置
された坩堝2(内側が石英で外側がカーボンからできて
いる、以下、るつぼと記す)内に原料Mを装入してヒー
タ3で溶解した後、種結晶4を取り付けたワイヤー5に
より溶融液6を引きあげ、凝固成長させて単結晶7を製
造するものである。
(Prior Art) There are several methods for growing a single crystal, and one of them is a pulling method (also called Czochralski method). In this method, as shown in FIG. 1, a raw material M is charged into a crucible 2 (made of quartz inside and made of carbon outside, hereinafter referred to as a crucible) arranged in a pulling device 1 to load a heater. After melting in 3, the melt 6 is pulled up by the wire 5 to which the seed crystal 4 is attached, and solidified and grown to produce the single crystal 7.

上記引き上げ法で半導体用単結晶を成長させる場合、そ
の電気抵抗や電気伝導型を調整するため、溶融液の引き
上げ前に不純物(例えば、P、Bなど)を添加すること
がある。ところが、一般に単結晶成長の際、溶融液中の
不純物濃度Ceと単結晶の不純物濃度Csとの比、すなわ
ち、実効偏析係数Ke(=Cs/Ce)が1より小さいので、
単結晶が成長するにつれて溶融中の不純物濃度が高くな
ってゆく。その結果、単結晶中の不純物濃度が変化して
偏析を生じ、均等な電気抵抗をもつ単結晶が得られない
と言う問題がある。
When a single crystal for semiconductor is grown by the above-mentioned pulling method, an impurity (for example, P, B, etc.) may be added before pulling up the melt in order to adjust its electric resistance and electric conductivity type. However, in general, during single crystal growth, the ratio of the impurity concentration Ce in the melt to the impurity concentration Cs of the single crystal, that is, the effective segregation coefficient Ke (= Cs / Ce) is smaller than 1,
The impurity concentration during melting increases as the single crystal grows. As a result, there is a problem that the impurity concentration in the single crystal changes and segregation occurs, and a single crystal having a uniform electric resistance cannot be obtained.

このような偏析を防止し、均質な単結晶を成長させる方
法として溶融層法がある。
The melt layer method is a method for preventing such segregation and growing a uniform single crystal.

この方法には、第2図に示すように、溶融液6を種結
晶4を吊り下げたワイヤー5を引き上げ、単結晶7を成
長させる間に溶融液6を減量した分だけ下部固体層Ms
溶解して溶融液6の体積を常に一定に保ち、単結晶7の
引き上げに合わせて不純物をシュート8から連続的に添
加し、溶融液層中の不純物濃度を均一にする方法(特公
昭34−8242号公報、特公昭62−880号公報)、あるいは
意図的に溶融液層の体積を変化させることにより、結
晶引き上げ中に不純物を添加することなく溶融液中の不
純物濃度を一定に保つ方法(特開昭61−205691号公
報)、などがある。
In this method, as shown in FIG. 2, the lower solid layer M s is reduced by the amount of the melt 6 reduced while the wire 5 with the melt 6 suspended from the seed crystal 4 is pulled up and the single crystal 7 is grown. Is melted to keep the volume of the melt 6 constant, and impurities are continuously added from the chute 8 as the single crystal 7 is pulled up to make the impurity concentration in the melt layer uniform (Japanese Patent Publication No. -8242, JP-B-62-880), or by intentionally changing the volume of the melt layer to keep the impurity concentration in the melt constant without adding impurities during crystal pulling. (Japanese Patent Laid-Open No. 61-205691).

上記溶融層法により、不純物の偏析は改善され、シリコ
ン単結晶の電気抵抗が大きく変化するという問題は解決
された。
The melt layer method solved the problem that the segregation of impurities was improved and the electric resistance of the silicon single crystal was significantly changed.

しかし、溶融層法においては、単結晶化を妨げる下記の
ような問題が発生している。
However, the melt layer method has the following problems that prevent single crystallization.

(a)溶融液表面に浮上した異物が引き上げ中の結晶体
に取込まれ、品質の低下や多結晶化が起こる。
(A) Foreign matter floating on the surface of the molten liquid is taken into the crystal body being pulled up, resulting in deterioration of quality and polycrystallization.

(b)溶融液中から発生するガスにより液面が振動し、
多結晶体が生じて正常な引き上げができない。
(B) The liquid surface vibrates due to the gas generated from the melt,
Polycrystals are formed and normal pulling cannot be performed.

(c)前記発生ガスが、るつぼの上部やシードチャック
などに再結晶し、これが溶融液に落ち込んで溶解され単
結晶に混入する。
(C) The generated gas is recrystallized in the upper part of the crucible, the seed chuck, etc., and this is dropped into the melt and melted to be mixed in the single crystal.

本発明者らは、前記異物とガスの発生を防止しなければ
均質な単結晶は成長できないと考え、それらの正体とそ
の原因物質の究明を行った。
The present inventors considered that a homogeneous single crystal could not be grown unless the generation of the above-mentioned foreign matter and gas was prevented, and investigated their identities and their causative substances.

その結果、溶融液表面に浮上する異物はシリコンの酸化
物であり、溶融液中から発生するガスもシリコン酸化物
によるものであることが判明した。そして浮遊異物の原
因物質はシリコン原料の表面を覆っている酸化膜であ
り、発生ガスは下部固体層のシリコン原料の酸化膜であ
ることが明らかになった。
As a result, it was found that the foreign matter floating on the surface of the melt was silicon oxide, and the gas generated from the melt was also silicon oxide. Then, it was revealed that the causative substance of the floating foreign matter was the oxide film covering the surface of the silicon raw material, and the generated gas was the oxide film of the silicon raw material of the lower solid layer.

そこで本発明者らは、前記シリコン原料表面を覆う酸化
膜の除去方法について更に研究を重ねた結果、原料シリ
コンを適正な温度で熱処理すれば、酸化膜(酸素)を比
較的簡単に除去できるとの知見を得、この発明を完成す
るに到った。
Therefore, as a result of further research on the method of removing the oxide film covering the surface of the silicon raw material, the present inventors have found that if the raw material silicon is heat-treated at an appropriate temperature, the oxide film (oxygen) can be relatively easily removed. The present invention has been completed and the present invention has been completed.

すなわち、本発明の要旨は「溶融層法によるシリコン単
結晶の製造方法であって、表面酸化膜を除去したシリコ
ン固体原料を使用することを特徴とするシリコン単結晶
の製造方法」及び「溶融層法によるシリコン単結晶の製
造方法があって、引き上げ装置に原料を装入し、装置内
を減圧、又は不活性ガス雰囲気、若しくは還元性雰囲気
にした後、原料を1,000〜1,400℃の温度に保持して熱処
理する工程を含むことを特徴とするシリコン単結晶の製
造方法」にある。
That is, the gist of the present invention is "a method for producing a silicon single crystal by a molten layer method, which is characterized by using a silicon solid material from which a surface oxide film is removed" and "a molten layer." There is a method for manufacturing a silicon single crystal by the method, after charging the raw material into the pulling device and reducing the pressure inside the device or making it an inert gas atmosphere or a reducing atmosphere, the raw material is kept at a temperature of 1,000 to 1,400 ° C. And a heat treatment step are performed.

(作用) 本発明のシリコン単結晶の製造方法は、表面酸化膜を除
去したシリコン固体原料を使用することに特徴がある。
酸化膜を除けば、それに起因して起こる異物やガスが発
生しないから、均質なシリコン単結晶を安定して成長さ
せることができる。
(Operation) The method for producing a silicon single crystal of the present invention is characterized by using a silicon solid material from which a surface oxide film is removed.
Except for the oxide film, no foreign matter or gas is generated due to the oxide film, so that a homogeneous silicon single crystal can be stably grown.

原料表面酸化膜の除去は、シリコン固体原料を減圧下、
又は不活性ガス雰囲気のもと、若しくは還元雰囲気下
で、1,000〜1,400℃の温度に1〜3時間保持する熱処理
により行うことができる。
The surface oxide film of the raw material is removed by depressurizing the silicon solid raw material,
Alternatively, it can be performed by heat treatment in which the temperature is maintained at 1,000 to 1,400 ° C. for 1 to 3 hours under an inert gas atmosphere or in a reducing atmosphere.

上記熱処理において、加熱温度は1,000℃〜1,400℃にす
る。その理由は1,000℃より低いと長時間の熱処理が必
要であり、かつ酸化膜除去効果が小さいからである。一
方、1,400℃を越えるとSiの融点が1414℃であるために
溶融を起こしやすくなり、溶融層内に酸化物が取り込ま
れるからである。また加熱時間を1〜3時間保つことが
望ましい。それは1hr未満では酸化物除去が不完全であ
り、3hrより長く保持すると電力使用量が増大するから
である。又減圧する場合の圧力は1〜20torrが好まし
く、不活性ガスはArガスやHeガスなどが用いられる。
In the above heat treatment, the heating temperature is 1,000 ° C to 1,400 ° C. The reason is that if the temperature is lower than 1,000 ° C., heat treatment for a long time is required and the oxide film removing effect is small. On the other hand, when the temperature exceeds 1,400 ° C., the melting point of Si is 1414 ° C., so that melting is likely to occur and the oxide is taken into the molten layer. Further, it is desirable to keep the heating time for 1 to 3 hours. This is because oxide removal is incomplete in less than 1 hr, and power consumption increases if retained for longer than 3 hr. The pressure for reducing the pressure is preferably 1 to 20 torr, and Ar gas or He gas is used as the inert gas.

このような熱処理をシリコン固体原料に施すと、下記
(1)〜(3)式の反応が生じる。
When such a heat treatment is applied to the silicon solid raw material, the reactions of the following formulas (1) to (3) occur.

SiO2→Si+O2↑ …(1) 2SiO2→2SiO+O2↑ …(2) 2SiO→2Si+O2↑ …(3) これらの反応によりシリコン固体原料表面の酸化膜(Si
O2)が除去される。そして上記反応は1,000℃以上の高
温のもとで速やかに起こり、また減圧下の方が円滑に進
行する。
SiO 2 → Si + O 2 ↑ ... (1) 2SiO 2 → 2SiO + O 2 ↑ ... (2) 2SiO → 2Si + O 2 ↑ ... (3) oxide film of the silicon solid material surface by these reactions (Si
O 2 ) is removed. Then, the above reaction occurs rapidly at a high temperature of 1,000 ° C. or higher, and progresses more smoothly under reduced pressure.

ところで、本発明の最も好ましい実施態様は、上記の熱
処理を引き上げ装置内で行うことである。そうすれば熱
処理後の原料を、そのまま溶解して単結晶を成長させる
ことができる。しかし熱処理に長時間を要する場合は、
引き上げ装置の稼働率向上の点から、別に設けた熱処理
炉で(真空熱処理炉、不活性ガス雰囲気炉など)で処理
するのがよい。この場合には、熱処理した原料の再酸化
を防止するため、Ar等の不活性ガスを封入した容器に保
存するなどの処置を講ずる必要がある。
By the way, the most preferable embodiment of the present invention is to perform the above heat treatment in a pulling apparatus. Then, the raw material after the heat treatment can be melted as it is to grow a single crystal. However, if the heat treatment requires a long time,
From the viewpoint of improving the operation rate of the pulling device, it is preferable to perform the treatment in a separately provided heat treatment furnace (vacuum heat treatment furnace, inert gas atmosphere furnace, etc.). In this case, in order to prevent re-oxidation of the heat-treated raw material, it is necessary to take measures such as storing in a container filled with an inert gas such as Ar.

(実施例1) この実施例は、温度を変えてシリコン固体原料に熱処理
を施し、原料中酸素の除去程度を調べたものである。原
料の熱処理は第2図に示す引き上げ装置1を使用して行
った。原料Msをるつぼ2内に装入した後、装置内を10to
rrまで減圧してAr雰囲気にし、原料Msを950℃、1,000
℃、1,200℃、1,400℃に昇温した。
(Example 1) In this example, a silicon solid raw material was heat-treated at different temperatures to examine the degree of removal of oxygen in the raw material. The heat treatment of the raw material was performed using the pulling apparatus 1 shown in FIG. After charging the raw material M s into the crucible 2, 10 to
Reduce the pressure to rr to create an Ar atmosphere, and set the raw material Ms to 950 ° C and 1,000
The temperature was raised to 1,200 ° C, 1,400 ° C.

この結果を第3図に示す。なお図中 は原料温度を950℃にした場合、△は1,000℃、○は1,20
0℃、●は1,400℃に昇温した場合である。
The results are shown in FIG. In the figure When the raw material temperature is 950 ℃, △ is 1,000 ℃, ○ is 1,20
0 ℃, ● is the case when the temperature is raised to 1,400 ℃.

第3図から明らかなように、本発明で規定する温度範囲
から外れた950℃の場合には、熱処理の前後で酸素濃度
の差は小さく効果は少ない。処理温度が1,000℃以上に
なるとその効果が現れはじめ、1,400℃になると僅か1
時間の処理で12ppmから2ppmまで低下するに到った。
As is clear from FIG. 3, when the temperature is out of the temperature range specified by the present invention at 950 ° C., the difference in oxygen concentration before and after the heat treatment is small and the effect is small. The effect begins to appear when the processing temperature exceeds 1,000 ° C, and only 1 at 1,400 ° C.
It has decreased from 12ppm to 2ppm with the processing of time.

(実施例2) この実施例は、熱処理が原料と、熱処理しない原料を用
いて直径50mmのシリコン単結晶を作り、その単結晶長さ
を調べたものである。
(Example 2) In this example, a silicon single crystal having a diameter of 50 mm was produced using a raw material that was heat treated and a raw material that was not heat treated, and the length of the single crystal was investigated.

原料の溶解と溶融液の引き上げは、第2図に示す引き上
げ装置1により行った。熱処理原料は、10torrに減圧し
た後Ar雰囲気中にした中で1,300℃に昇熱して1時間保
持したものを用いた。
The melting of the raw materials and the pulling up of the molten liquid were performed by the pulling device 1 shown in FIG. The heat treatment raw material used was one that was depressurized to 10 torr, then heated to 1,300 ° C. in an Ar atmosphere and held for 1 hour.

この結果を第4図に示す。図において◇は熱処理をしな
い原料を用いた場合であり、◆は熱処理をした原料を使
用した場合である。この図からわかるように、熱処理し
ない原料の場合には、単結晶長さが短く、しかもその長
さは大きくばらついている。これは原料の酸化膜(酸
素)により生じた浮遊異物やガスによる溶融液面の振動
などに起因していると考えられる。一方、熱処理した原
料の場合には、原料の酸化膜が事前に除去され、異物な
どの発生がないため、単結晶の長さが長く、そのばらつ
きも非常に小さい。
The results are shown in FIG. In the figure, ⋄ is the case of using a raw material that has not been heat treated, and ◆ is the case of using a raw material that has been heat treated. As can be seen from this figure, in the case of the raw material which is not heat-treated, the length of the single crystal is short and the length is largely varied. It is considered that this is due to vibration of the molten liquid surface due to floating foreign matter or gas generated by the raw material oxide film (oxygen). On the other hand, in the case of the heat-treated raw material, the oxide film of the raw material is removed in advance and no foreign matter or the like is generated, so that the length of the single crystal is long and its variation is very small.

(発明の効果) 以上説明したように、本発明の方法は酸素含有量を低く
したシリコン固体原料を用いるので、溶融してもシリコ
ン酸化物の異物やガスが発生しない。したがって、品質
の良好なシリコン単結晶を歩留よく製造できる。また原
料中の酸素は熱処理炉で簡単に除去できるので、それほ
どコストが嵩むようなこともない。
(Effects of the Invention) As described above, since the method of the present invention uses the silicon solid raw material having a low oxygen content, no foreign matter or gas of silicon oxide is generated even when melted. Therefore, a high quality silicon single crystal can be manufactured with high yield. Oxygen in the raw material can be easily removed in the heat treatment furnace, so that the cost does not increase so much.

【図面の簡単な説明】[Brief description of drawings]

第1図は、引き上げ法による単結晶の成長を説明する
図、 第2図は、溶融層法による単結晶の成長を説明する図、 第3図は、シリコン固体原料の熱処理時間と原料中の酸
素濃度との関係を示す図、 第4図は、熱処理をした原料と熱処理しない原料の場合
における単結晶の長さを比較した図 1は引き上げ装置、2はるつぼ、3はヒータ、4は種結
晶、5はワイヤー、6は溶融液、7は単結晶、8はシュ
ート。
FIG. 1 is a diagram for explaining the growth of a single crystal by the pulling method, FIG. 2 is a diagram for explaining the growth of a single crystal by the melt layer method, and FIG. 3 is a heat treatment time of a silicon solid raw material and FIG. 4 is a diagram showing the relationship with the oxygen concentration. FIG. 4 is a comparison of the lengths of the single crystals in the case of the heat-treated raw material and the non-heat-treated raw material. Crystal, 5 is wire, 6 is melt, 7 is single crystal, and 8 is chute.

フロントページの続き (56)参考文献 特開 昭59−92993(JP,A) 特公 昭58−49518(JP,B2) 特公 昭62−880(JP,B2)Continuation of the front page (56) References JP 59-92993 (JP, A) JP 58-49518 (JP, B2) JP 62-880 (JP, B2)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】溶融層法によるシリコン単結晶の製造方法
であって、表面酸化膜を除去したシリコン固体原料を使
用することを特徴とするシリコン単結晶の製造方法。
1. A method for producing a silicon single crystal by a melt layer method, which comprises using a silicon solid material from which a surface oxide film has been removed.
【請求項2】溶融層法によるシリコン単結晶の製造方法
であって、引き上げ装置に原料を装入し、装置内を減
圧、又は不活性ガス雰囲気、若しくは還元性雰囲気にし
た後、原料を1,000〜1,400℃の温度に保持して熱処理す
る工程を含むことを特徴とするシリコン単結晶の製造方
法。
2. A method for producing a silicon single crystal by a melt layer method, which comprises charging a raw material into a pulling apparatus, reducing the pressure in the apparatus or making it an inert gas atmosphere or a reducing atmosphere, and then changing the raw material to 1,000. A method for producing a silicon single crystal, which comprises a step of heat-treating while maintaining a temperature of up to 1,400 ° C.
JP1013641A 1989-01-23 1989-01-23 Method for producing silicon single crystal Expired - Lifetime JPH0798715B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1013641A JPH0798715B2 (en) 1989-01-23 1989-01-23 Method for producing silicon single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1013641A JPH0798715B2 (en) 1989-01-23 1989-01-23 Method for producing silicon single crystal

Publications (2)

Publication Number Publication Date
JPH02196082A JPH02196082A (en) 1990-08-02
JPH0798715B2 true JPH0798715B2 (en) 1995-10-25

Family

ID=11838862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1013641A Expired - Lifetime JPH0798715B2 (en) 1989-01-23 1989-01-23 Method for producing silicon single crystal

Country Status (1)

Country Link
JP (1) JPH0798715B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2356268B1 (en) * 2008-11-05 2013-07-31 MEMC Singapore Pte. Ltd. Methods for preparing a melt of silicon powder for silicon crystal growth
DE102018201783A1 (en) 2018-02-06 2019-08-08 Siltronic Ag Method and apparatus for pulling a single crystal, single crystal and semiconductor wafer
DE102018210286A1 (en) 2018-06-25 2020-01-02 Siltronic Ag Method and device for pulling a single crystal and semiconductor wafer made of silicon

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849518A (en) * 1981-09-19 1983-03-23 Honda Motor Co Ltd Exhauster for motor cycle
JPS5992993A (en) * 1982-11-17 1984-05-29 Toshiba Corp Production of single crystal
JPH0743419B2 (en) * 1985-06-27 1995-05-15 防衛庁技術研究本部長 Radio wave / optical system composite seeker

Also Published As

Publication number Publication date
JPH02196082A (en) 1990-08-02

Similar Documents

Publication Publication Date Title
US4040895A (en) Control of oxygen in silicon crystals
JP3201305B2 (en) Method for producing group III-V compound semiconductor crystal
EP0635588B1 (en) Improved method for growing silicon crystal
EP1257697B1 (en) Process for producing a silicon melt
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
EP1614774A1 (en) Process for producing single crystal
JPH0798715B2 (en) Method for producing silicon single crystal
EP0675214A1 (en) Method of growing crystals
JPH0244798B2 (en)
JP4273793B2 (en) Single crystal manufacturing method
JPH0367994B2 (en)
RU2108418C1 (en) Method for growing single crystals of lanthanum-gallium silicate
JP3132956B2 (en) Method for producing oxide single crystal
JP2004099390A (en) Method of manufacturing compound semiconductor single crystal and compound semiconductor single crystal
JP4200690B2 (en) GaAs wafer manufacturing method
JPH03184345A (en) Silicon wafer and manufacture thereof
JPS6344720B2 (en)
JP2000007499A (en) Method for growing langasite single crystal
JPH0411513B2 (en)
JP3584497B2 (en) Crystal growth method
JPH10182287A (en) Production of silicon single crystal and quartz crucible therefor
JPH0782084A (en) Single crystal growing method and single crystal growing apparatus
JP2022146328A (en) MANUFACTURING METHOD OF FeGa ALLOY SINGLE CRYSTAL
JPS60180989A (en) Manufacture of compound single crystal
JPH10101472A (en) Graphite crucible for pulling up semiconductor monocrystal