JPH0367994B2 - - Google Patents

Info

Publication number
JPH0367994B2
JPH0367994B2 JP60042294A JP4229485A JPH0367994B2 JP H0367994 B2 JPH0367994 B2 JP H0367994B2 JP 60042294 A JP60042294 A JP 60042294A JP 4229485 A JP4229485 A JP 4229485A JP H0367994 B2 JPH0367994 B2 JP H0367994B2
Authority
JP
Japan
Prior art keywords
single crystal
pulling
temperature
crystal ingot
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60042294A
Other languages
Japanese (ja)
Other versions
JPS61201692A (en
Inventor
Yasushi Shimanuki
Hisashi Furuya
Isamu Suzuki
Koji Murai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP4229485A priority Critical patent/JPS61201692A/en
Publication of JPS61201692A publication Critical patent/JPS61201692A/en
Publication of JPH0367994B2 publication Critical patent/JPH0367994B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 この発明は、欠陥発生の著しく少ないシリコン
(Si)単結晶インゴツトの引上げ育成方法に関す
るものである。 〔従来の技術〕 一般に、Si単結晶インゴツトは、第1図に概略
説明図で示されるように、引上げ装置1内の下部
に回転軸2により支持された石英ルツボ3内に保
持され、かつ保温体4と前記ルツボ3の間に設け
たヒータ5によつて加熱されたSi融液6に、引上
げ軸7の先端に取り付けた種結晶8を漬け、この
引上げ軸7を回転させながら、例えば1mm/分の
速度で引上げてSi単結晶インゴツト9を育成する
ことによつて製造されている。このため、引上げ
育成直後のSi単結晶インゴツトは、その長さが例
えば30cmの場合、下端部の約1400℃から漸次上端
部の約800℃までの降下温度分布をもち、かつ引
上げ速度が、上記の通り約1mm/分であれば、そ
の製造時間は約300分(約5時間)を要するもの
である。 〔発明が解決しようとする問題点〕 しかし、引上げ育成されたSi単結晶インゴツト
は、過飽和の不純物酸素を含有するため、これに
は酸素析出物形成のもととなる多数の核が存在
し、このため半導体デバイス工程において、前記
Si単結晶インゴツトから製造したウエハに、種々
の高温処理が施されると、前記ウエハには、前記
核を中心にして酸素析出物が形成されるようにな
り、この酸素析出物の形成は転位や積層欠陥など
の欠陥発生の原因となり、しかもこれらの欠陥
は、半導体デバイスの絶縁妙圧不良や、キヤリア
のライフタイム減少などの重大な特性劣化を招く
ものである。 〔問題点を解決するための手段〕 そこで、本発明者等は、上記のような観点か
ら、半導体デバイス工程で欠陥発生の少ないウエ
ハを得べく、特に前記ウエハの原料となるSi単結
晶インゴツトについて研究を行なつた結果、 引上げ装置内のルツボに保持されたSi融液から
Si単結晶インゴツトを引上げ育成するに際して、 引上げ育成されつつあるSi単結晶インゴツト
に、これの降下温度分布のうちの1100℃から900
℃への温度下降(以下、制御下降温度範囲とい
う)を3時間以上かけてゆつくり行なう温度制御
を施すと(ちなみに、従来引上げ育成方法では、
1100℃から900℃への温度降下に約2時間を要し
ている)、Si単結晶インゴツトにおける後工程で
の酸素析出物発生のもととなる核が減少するよう
になり、この結果Si単結晶ウエハが、半導体デバ
イス工程で種々の高温処理にさらされても、前記
核の存在が抑制された状態にあるので、この核を
もとに形成される酸素析出物の発生が低くなり、
したがつて欠陥発生の著しく少ないものとなると
いう知見を得たのである。 この発明は、上記知見にもとづいてなされたも
ので、制御下降温度範囲を1100〜900℃とし、か
つこの制御下降温度範囲における保持時間を3時
間以上としたのは、種々の実験結果から経験的に
定めたものであり、したがつて、1100℃から900
℃への温度下降が3時間未満でなされても、また
保持時間を3時間以上としても前記制御下降温度
範囲が高い側あるいは低い側にずれても、Si単結
晶インゴツトにおける酸素析出発生のもととなる
核の十分な減少をはかることができず、半導体デ
バイス工程での欠陥発生の抑制効果が得られな
い。 〔実施例〕 つぎに、この発明の方法を実施例により具体的
に説明する。 第1図に示されるSi単結晶製造装置を用いて、
直径:130mmφ×長さ:500mmのSi単結晶インゴツ
トを引上げ速度:1mm/分の条件で引上げ育成す
るに際して、第2図に同じく概略説明図で示され
るように、引上げ育成されつつあるSi単結晶イン
ゴツト9の温度:1200℃の位置より上方の帯域、
すなわち下端が石英ルツボ3の上端から100mm上
方に位置する個所に、温度制御装置として多段可
変ヒータ10を設け、この多段可変ヒータ10に
よつて引上げ育成されつつあるSi単結晶インゴツ
ト9に対して、それぞれ第1表に示される条件で
温度制御を行ない(この結果としてSi単結晶イン
ゴツト9は、その全長に亘つて所定の温度制御が
均等に施されたことになる)、前記Si単結晶イン
ゴツト9の下端部が前記温度制御を受けた後で、
これを引上げて冷却するとにより本発明法1〜3
および比較法1〜3をそれぞれ実施した。 なお、引上げ育成されつつあるSi単結晶インゴ
ツトに、何らの温度制御処理を施さない場合、引
上げ育成終了直後のSi単結晶インゴツトは、その
長さにそつて、下端部:約1400℃、中央部:約
900℃、上端部:約600℃の温度分布をもつもので
あつた。 ついで、本発明法1〜3および比較法1〜3に
よつて得られたSi単結晶インゴツトの上端部、中
央部、および下端部から試料を採取し、これに半
導体デバイス工程における種々の高温処理を想定
して、温度:900℃に100時間保持の条件で加熱処
理を施し、処理後の酸素析出物の密度を
[Industrial Field of Application] The present invention relates to a method for pulling and growing silicon (Si) single crystal ingots with significantly fewer defects. [Prior Art] Generally, a Si single crystal ingot is held in a quartz crucible 3 supported by a rotating shaft 2 at the lower part of a pulling device 1, and is kept in a heat-insulating state. A seed crystal 8 attached to the tip of a pulling shaft 7 is immersed in Si melt 6 heated by a heater 5 provided between the body 4 and the crucible 3, and while rotating the pulling shaft 7, It is manufactured by growing a Si single crystal ingot 9 by pulling at a speed of 1/min. Therefore, if the length of a Si single crystal ingot immediately after pulling and growing is, for example, 30 cm, the temperature distribution will drop from about 1400°C at the bottom end to about 800°C at the top end, and the pulling speed will be If the speed is approximately 1 mm/min, the manufacturing time will be approximately 300 minutes (approximately 5 hours). [Problems to be solved by the invention] However, since the Si single crystal ingot that has been pulled and grown contains supersaturated impurity oxygen, there are many nuclei that form the source of oxygen precipitates. Therefore, in the semiconductor device process, the
When wafers manufactured from Si single crystal ingots are subjected to various high-temperature treatments, oxygen precipitates are formed on the wafers around the cores, and the formation of these oxygen precipitates is caused by dislocations. This causes defects such as stacking faults and stacking faults, and these defects lead to serious property deterioration such as poor insulation of semiconductor devices and shortened carrier lifetime. [Means for Solving the Problems] Therefore, from the above-mentioned viewpoint, the present inventors have developed a method for obtaining wafers with fewer defects in the semiconductor device process, especially regarding Si single crystal ingots that are the raw material for the wafers. As a result of research, we found that from the Si melt held in the crucible in the pulling device,
When pulling and growing a Si single-crystal ingot, the Si single-crystal ingot being pulled and grown is exposed to temperatures ranging from 1100℃ to 900℃ within the temperature drop distribution.
℃ (hereinafter referred to as the controlled lowering temperature range) over a period of 3 hours or more (by the way, in the conventional pulling growth method,
(It takes about 2 hours to lower the temperature from 1100℃ to 900℃), the number of nuclei that cause oxygen precipitates in the subsequent process in Si single crystal ingots is reduced, and as a result, Si single crystal ingots are reduced. Even when the crystal wafer is exposed to various high-temperature treatments in the semiconductor device process, the presence of the nuclei is suppressed, so the generation of oxygen precipitates formed based on the nuclei is reduced.
Therefore, it has been found that the occurrence of defects is significantly reduced. This invention was made based on the above-mentioned findings, and the reason for setting the controlled decreasing temperature range to 1100 to 900°C and setting the holding time in this controlled decreasing temperature range to 3 hours or more was based on empirical results based on various experimental results. Therefore, from 1100℃ to 900℃
℃ in less than 3 hours, or even if the holding time is 3 hours or more, even if the controlled temperature drop range deviates to the higher or lower side, oxygen precipitation may occur in the Si single crystal ingot. Therefore, it is not possible to sufficiently reduce the number of nuclei that cause defects, and the effect of suppressing the occurrence of defects in the semiconductor device process cannot be obtained. [Example] Next, the method of the present invention will be specifically explained with reference to Examples. Using the Si single crystal manufacturing equipment shown in Figure 1,
When pulling and growing a Si single crystal ingot with diameter: 130 mmφ x length: 500 mm at a pulling speed of 1 mm/min, the Si single crystal being pulled and grown as shown in the same schematic diagram in Figure 2. Temperature of ingot 9: zone above the 1200℃ position,
That is, a multi-stage variable heater 10 is provided as a temperature control device at a location where the lower end is located 100 mm above the upper end of the quartz crucible 3, and with respect to the Si single crystal ingot 9 being pulled and grown by the multi-stage variable heater 10, Temperature control was performed under the conditions shown in Table 1 (as a result, the Si single crystal ingot 9 was uniformly subjected to predetermined temperature control over its entire length), and the Si single crystal ingot 9 After the lower end of the is subjected to said temperature control,
By pulling this up and cooling it, methods 1 to 3 of the present invention
and Comparative Methods 1 to 3 were carried out, respectively. If no temperature control treatment is applied to the Si single crystal ingot that is being pulled and grown, the temperature of the Si single crystal ingot immediately after the end of pulling and growing will be approximately 1400°C along its length; :about
The temperature distribution was 900°C, and the upper end: approximately 600°C. Next, samples were taken from the upper end, center, and lower end of the Si single crystal ingots obtained by methods 1 to 3 of the present invention and comparative methods 1 to 3, and subjected to various high-temperature treatments in the semiconductor device process. Assuming that

〔発明の効果〕〔Effect of the invention〕

第1表に示される結果から、本発明法1〜3に
よつて製造されたSi単結晶インゴツトにおいて
は、半導体デバイス工程での酸素析出物発生のも
ととなる核が著しく減少した状態になつているの
で、当然の結果として半導体デバイス工程での酸
素析出物の発生が著しく抑制されるようになり、
これに伴つて欠陥の発生も低減するようになるの
に対して、比較法1〜3に見られるように、温度
制御条件がこの発明の範囲から外れると、酸素析
出物発生のもととなる核の減少が不十分となり、
高温処理での酸素析出物の発生を抑制することが
できず、Si単結晶ウエハにおける欠陥発生を十分
に抑制することができないことが明らかである。 上述のように、この発明の方法によれば、半導
体デバイス工程での酸素析出物発生のもととなる
核のきわめて少ないSi単結晶インゴツトを製造す
ることができ、したがつてこの結果得られたSi単
結晶インゴツトから製造されたSi単結晶ウエハ
は、欠陥発生の著しく低いものとなるなど工業上
有用な効果がもたらされるものである。
From the results shown in Table 1, in the Si single crystal ingots produced by methods 1 to 3 of the present invention, the number of nuclei, which are the source of oxygen precipitates during the semiconductor device process, is significantly reduced. As a result, the generation of oxygen precipitates in the semiconductor device process has been significantly suppressed.
While this reduces the occurrence of defects, as seen in Comparative Methods 1 to 3, when the temperature control conditions deviate from the scope of the present invention, oxygen precipitates may occur. Nucleus reduction becomes insufficient,
It is clear that the generation of oxygen precipitates during high-temperature treatment cannot be suppressed, and that the generation of defects in Si single crystal wafers cannot be sufficiently suppressed. As described above, according to the method of the present invention, it is possible to produce a Si single crystal ingot with extremely few nuclei, which are the source of oxygen precipitates in the semiconductor device process. Si single-crystal wafers manufactured from Si single-crystal ingots have industrially useful effects such as extremely low occurrence of defects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はSi単結晶インゴツトの従来引上げ育成
方法を示す概略説明図、第2図はこの発明の引上
げ育成方法の実施態様を示す概略説明図である。 1……引上げ装置、2……回転軸、3……石英
ルツボ、4……保温体、5……ヒータ、6……Si
融液、7……引上げ軸、8……種結晶、9……Si
結晶インゴツト、10……多段可変ヒータ。
FIG. 1 is a schematic diagram showing a conventional pulling growth method for a Si single crystal ingot, and FIG. 2 is a schematic diagram showing an embodiment of the pulling growth method of the present invention. 1... Pulling device, 2... Rotating shaft, 3... Quartz crucible, 4... Heat insulator, 5... Heater, 6... Si
Melt, 7... Pulling axis, 8... Seed crystal, 9... Si
Crystal ingot, 10...Multi-stage variable heater.

Claims (1)

【特許請求の範囲】 1 引上げ装置内のルツボに保持されたシリコン
融液からシリコン単結晶インゴツトを引上げ育成
する方法において、 引上げ育成されつつあるシリコン単結晶インゴ
ツトに、これの降下温度分布のうちの1100℃から
900℃への温度下降を3時間以上かけてゆつくり
行なう温度制御を施すことにより半導体デバイス
工程での酸素析出物発生のもととなる核の減少を
はかることを特徴とする欠陥発生の少ないシリコ
ン単結晶インゴツトの引上げ育成方法。
[Scope of Claims] 1. In a method of pulling and growing a silicon single crystal ingot from a silicon melt held in a crucible in a pulling device, the silicon single crystal ingot being pulled and grown is given a drop in its temperature distribution. From 1100℃
Silicon with low defect generation, which is characterized by reducing the number of nuclei that cause oxygen precipitates in the semiconductor device process by controlling the temperature by gradually lowering the temperature to 900°C over three hours or more. A method for pulling and growing single crystal ingots.
JP4229485A 1985-03-04 1985-03-04 Method for pulling and growing silicon single crystal with less generation of defect Granted JPS61201692A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4229485A JPS61201692A (en) 1985-03-04 1985-03-04 Method for pulling and growing silicon single crystal with less generation of defect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4229485A JPS61201692A (en) 1985-03-04 1985-03-04 Method for pulling and growing silicon single crystal with less generation of defect

Publications (2)

Publication Number Publication Date
JPS61201692A JPS61201692A (en) 1986-09-06
JPH0367994B2 true JPH0367994B2 (en) 1991-10-24

Family

ID=12632020

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4229485A Granted JPS61201692A (en) 1985-03-04 1985-03-04 Method for pulling and growing silicon single crystal with less generation of defect

Country Status (1)

Country Link
JP (1) JPS61201692A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02263792A (en) * 1989-03-31 1990-10-26 Shin Etsu Handotai Co Ltd Heat treatment of silicon
JPH0729878B2 (en) * 1990-06-07 1995-04-05 三菱マテリアル株式会社 Silicon wafer
KR20010053081A (en) 1998-06-26 2001-06-25 헨넬리 헬렌 에프 Electrical resistance heater for crystal growing apparatus and its method of use
KR20010053179A (en) * 1998-06-26 2001-06-25 헨넬리 헬렌 에프 Crystal puller for growing low defect density, self-interstitial dominated silicon
US6285011B1 (en) 1999-10-12 2001-09-04 Memc Electronic Materials, Inc. Electrical resistance heater for crystal growing apparatus
US6663709B2 (en) 2001-06-26 2003-12-16 Memc Electronic Materials, Inc. Crystal puller and method for growing monocrystalline silicon ingots

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104799A (en) * 1980-01-22 1981-08-20 Nec Corp Production of si single crystal and device therefor
JPS57160996A (en) * 1981-03-31 1982-10-04 Toshiba Corp Method and apparatus for growing si single crystal
JPS57183393A (en) * 1981-05-01 1982-11-11 Oki Electric Ind Co Ltd Apparatus for growing single crystal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56104799A (en) * 1980-01-22 1981-08-20 Nec Corp Production of si single crystal and device therefor
JPS57160996A (en) * 1981-03-31 1982-10-04 Toshiba Corp Method and apparatus for growing si single crystal
JPS57183393A (en) * 1981-05-01 1982-11-11 Oki Electric Ind Co Ltd Apparatus for growing single crystal

Also Published As

Publication number Publication date
JPS61201692A (en) 1986-09-06

Similar Documents

Publication Publication Date Title
JPS6046998A (en) Pulling up of single crystal and its device
JP3552278B2 (en) Method for producing silicon single crystal
JPH0367994B2 (en)
CN110730831A (en) Method for producing silicon single crystal, method for producing epitaxial silicon wafer, silicon single crystal, and epitaxial silicon wafer
JP4151474B2 (en) Method for producing single crystal and single crystal
KR20050120707A (en) Process for producing single crystal
US20020009862A1 (en) Method of treating a semiconductor wafer thermally and semiconductor wafer fabricated by the same
US6153009A (en) Method for producing a silicon single crystal and the silicon single crystal produced thereby
JP7310339B2 (en) Method for growing lithium niobate single crystal
JPS6344720B2 (en)
JP2004175620A (en) Manufacturing method of single crystal
US20240018689A1 (en) Crystal Puller for Pulling Monocrystalline Silicon Ingots
JPH01313384A (en) Method for growing silicon single crystal
CN106906514A (en) The manufacture method of monocrystalline silicon
TWI628316B (en) Methods for forming monocrystalline silicon ingot and wafer
JP2739554B2 (en) Method for producing lithium tetraborate crystal
JPH01160894A (en) Apparatus for pulling up single crystal
JPS63233096A (en) Method for pulling up and growing silicon single crystal having high ig effect
JPH03193698A (en) Silicon single crystal and its production
JPH05102167A (en) Heat treatment of silicon
JPH0798715B2 (en) Method for producing silicon single crystal
JPS63112488A (en) Growth method for single crystal silicon
JP2781857B2 (en) Single crystal manufacturing method
JPH10194890A (en) Manufacture of silicon single crystal
JPH08333189A (en) Apparatus for pulling up crystal