JPH05102167A - Heat treatment of silicon - Google Patents

Heat treatment of silicon

Info

Publication number
JPH05102167A
JPH05102167A JP28918191A JP28918191A JPH05102167A JP H05102167 A JPH05102167 A JP H05102167A JP 28918191 A JP28918191 A JP 28918191A JP 28918191 A JP28918191 A JP 28918191A JP H05102167 A JPH05102167 A JP H05102167A
Authority
JP
Japan
Prior art keywords
heat treatment
silicon
oxygen
amount
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28918191A
Other languages
Japanese (ja)
Inventor
Eiichi Iino
栄一 飯野
Izumi Fusegawa
泉 布施川
Tatsuaki Hirohata
達明 廣畑
Hirotoshi Yamagishi
浩利 山岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP28918191A priority Critical patent/JPH05102167A/en
Publication of JPH05102167A publication Critical patent/JPH05102167A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide the heat treatment method, of silicon, wherein an oxygen precipitation distribution in a crystal growth direction can be improved, especially an oxygen precipitation amount at a crystal bottom part is not lowered and a prescribed oxygen precipitation amount can be obtained uniformly in the crystal growth direction. CONSTITUTION:Single-crystal silicon which has been manufactured by the Czochralski method is heat-treated at a low temperature of 400 to 550 deg.C; in addition, it is heat-treated additionally at 650 to 750 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チョクラルスキー法
(CZ法)で製造した単結晶シリコンにおいて結晶の成
長方向に均一に、目的の酸素析出量を得ることができる
ようにしたシリコンの熱処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the heat treatment of silicon in which the desired amount of oxygen precipitation can be obtained uniformly in the crystal growth direction in single crystal silicon produced by the Czochralski method (CZ method). Regarding the method.

【0002】[0002]

【従来の技術】チョクラルスキー法で製造した単結晶シ
リコン中には過飽和な酸素が含まれている。この過飽和
酸素はLSI製造工程の熱処理中に析出し、酸化物析出
物を発生させる。これら析出物は素子形成領域から離れ
た領域に導入された場合には、ゲッタリング中心として
働き、素子製造工程中に導入される可能性のある種々の
不純物を取り込み、素子形成領域を正常に保つことが可
能である。一方、この析出物が素子形成領域に導入され
ると接合リーク等、特性劣化を引き起こし、素子にとっ
て有害な役割を果たす。従って、歩留まりよくLSIを
製造するには酸素の析出量を制御することが重要であ
る。
2. Description of the Related Art Single crystal silicon produced by the Czochralski method contains supersaturated oxygen. This supersaturated oxygen precipitates during the heat treatment in the LSI manufacturing process, generating oxide precipitates. When these precipitates are introduced into a region away from the device forming region, they act as gettering centers, take in various impurities that may be introduced during the device manufacturing process, and keep the device forming region normal. It is possible. On the other hand, when this precipitate is introduced into the element formation region, it causes characteristic deterioration such as junction leakage and plays a harmful role for the element. Therefore, it is important to control the precipitation amount of oxygen in order to manufacture an LSI with high yield.

【0003】CZ単結晶シリコン中に含まれる酸素の析
出特性は、結晶中の初期酸素濃度と結晶育成中の熱履歴
に強く依存し、同一CZ単結晶シリコン中でも種結晶側
と底部では熱履歴が異なる。このため、酸素の析出特性
も種側と底部では異なる。すなわち、単結晶シリコンの
種側の酸素析出量は多く、底部の酸素析出量は少なくな
り、結晶の成長方向に不均一な析出分布となっているも
のである。
The precipitation characteristics of oxygen contained in CZ single crystal silicon strongly depend on the initial oxygen concentration in the crystal and the thermal history during the crystal growth. different. Therefore, the precipitation characteristics of oxygen are different between the seed side and the bottom. That is, the amount of oxygen precipitation on the seed side of the single crystal silicon is large, and the amount of oxygen precipitation on the bottom is small, resulting in an uneven distribution of precipitation in the crystal growth direction.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記の点を
解決しようとするもので、その目的は、特に高温プロセ
スにおいて、結晶成長方向の酸素析出分布を改善するこ
とができ、特に結晶底部の酸素析出量が低下せず、かつ
所定の酸素析出量を結晶成長方向に均一に得ることがで
きるようにしたシリコンの熱処理方法を提供することに
ある。
DISCLOSURE OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and an object thereof is to improve the oxygen precipitation distribution in the crystal growth direction, especially in the high temperature process. An object of the present invention is to provide a method for heat treating silicon in which the amount of precipitated oxygen is not reduced and a predetermined amount of precipitated oxygen can be uniformly obtained in the crystal growth direction.

【0005】上記目的を達成するために、本発明のシリ
コンの熱処理方法においては、チョクラルスキー法で製
造した単結晶シリコンを400〜550℃の低温で熱処
理し、加えて更に650〜750℃で熱処理するもので
ある。熱処理温度が上記した範囲外では、酸素析出量が
十分でない。
To achieve the above object, in the method for heat treating silicon of the present invention, single crystal silicon produced by the Czochralski method is heat treated at a low temperature of 400 to 550 ° C., and further at 650 to 750 ° C. It is a heat treatment. If the heat treatment temperature is out of the above range, the amount of oxygen precipitation is not sufficient.

【0006】単結晶シリコンはシリコンウェーハであっ
てもよいし、シリコンインゴットであってもよい。さら
に、本発明を効果的にするには、引き上げられた単結晶
を一度炉内から出してインゴットまたはウェーハで高
温、約1200℃以上融点以下の温度好ましくは120
0〜1350℃の温度で熱処理し、該シリコン単結晶を
初期化し、次いで上記400〜550℃の熱処理と、6
50〜750℃の熱処理を順次行なうのが好ましい。
The single crystal silicon may be a silicon wafer or a silicon ingot. Further, in order to make the present invention effective, the pulled single crystal is once taken out of the furnace and is heated at a high temperature in an ingot or a wafer, a temperature of about 1200 ° C. or higher and a melting point or lower, preferably 120 ° C. or higher.
Heat treatment at a temperature of 0 to 1350 ° C. to initialize the silicon single crystal, and then heat treatment at 400 to 550 ° C.
It is preferable to sequentially perform heat treatment at 50 to 750 ° C.

【0007】単結晶をウェーハ状態とすると、熱処理を
受けるに際し、結晶欠陥の発生、あるいは破壊を生ずる
ことがなく、このためインゴットよりも効果的に本発明
の実施ができる。しかし、インゴットのままで行なう
と、作業が能率化する利点がある。
When a single crystal is made into a wafer, no crystal defects or destruction occurs when it is subjected to heat treatment, and therefore the present invention can be carried out more effectively than an ingot. However, if the ingot is used as it is, there is an advantage that the work becomes efficient.

【0008】上記の高温、低温熱処理に続いて、650
〜750℃の熱処理、更に、800〜900℃の中温熱
処理を挿入した後に1100℃以上の析出熱処理が後述
の実施例のように行なわれることによって、半導体集積
回路の形成をより高性能に、そしてその良品収量を高め
ることが可能となる。
Following the above high temperature and low temperature heat treatment, 650
˜750 ° C., further 800 ° C. to 900 ° C. intermediate temperature heat treatment, and then precipitation heat treatment at 1100 ° C. or higher are performed as in the examples described later, so that formation of a semiconductor integrated circuit can be performed with higher performance. Then, it becomes possible to increase the yield of non-defective products.

【0009】チョクラルスキー法においては、シリコン
融液から単結晶シリコンを結晶成長させるため、シリコ
ンの融点である1420℃から室温に向けて連続的に冷
却される。このために、単結晶シリコンの頭部と底部で
は受ける熱履歴が異なる。そこで、必要に応じてこの結
晶育成中の熱履歴を高温熱処理を行なうことによって初
期化し、酸素析出に有効な極く低温部の熱処理を行なっ
て、結晶の成長方向の不均一な析出分布を改善させる、
あるいは、高温初期化を行なわずとも結晶育成中に底部
に向けて足りない熱履歴を一定の低温熱処理で補うこと
により結晶の成長方向の不均一な析出分布を改善させる
ものである。
In the Czochralski method, since single crystal silicon is grown from a silicon melt, it is continuously cooled from 1420 ° C., which is the melting point of silicon, toward room temperature. For this reason, the thermal history received at the head and the bottom of the single crystal silicon is different. Therefore, if necessary, this thermal history during crystal growth is initialized by performing high temperature heat treatment, and heat treatment at extremely low temperature that is effective for oxygen precipitation is performed to improve the uneven distribution of precipitation in the crystal growth direction. Let
Alternatively, even if high-temperature initialization is not performed, the insufficient heat history toward the bottom during crystal growth is supplemented by a constant low-temperature heat treatment to improve the non-uniform precipitation distribution in the crystal growth direction.

【0010】本発明の熱処理における各工程は次のよう
な意義を有する。 1200〜1350℃での熱処理 この工程の熱処理は結晶育成中の熱履歴を初期化する
熱処理であり、必要に応じて導入される。析出量の自由
な制御を目的とせず、結晶の成長方向の析出量の均一化
のみを図る場合はこの高温熱処理は省略される。 400〜550℃での熱処理 650〜750℃での熱処理 工程、は、酸素析出核を単結晶シリコン中に均一に
導入する熱処理であり、本発明の要点である。 800〜900℃での熱処理 工程は、次の工程の熱処理において酸素の析出を起こ
させるために必要な熱処理である。 1100〜1200℃での熱処理 工程の熱処理で酸素の析出を起こさせる。
Each step in the heat treatment of the present invention has the following significance. Heat treatment at 1200 to 1350 ° C. The heat treatment in this step is a heat treatment for initializing the thermal history during crystal growth, and is introduced as necessary. This high-temperature heat treatment is omitted when the amount of precipitation is not controlled freely and only the amount of precipitation in the crystal growth direction is made uniform. The heat treatment at 400 to 550 [deg.] C. The heat treatment at 650 to 750 [deg.] C. is a heat treatment for uniformly introducing oxygen precipitation nuclei into the single crystal silicon, and is an essential point of the present invention. The heat treatment step at 800 to 900 ° C. is a heat treatment necessary for causing the precipitation of oxygen in the heat treatment of the next step. Heat treatment at 1100 to 1200 ° C. Oxygen precipitation occurs in the heat treatment of the process.

【0011】本発明の標準的な適用例を示すと下記の通
りである。 熱処理温度:1280℃ 熱処理時間:60分 熱処理雰囲気:dry O2 熱処理温度:400〜550℃ 熱処理時間:120分 熱処理雰囲気:dry O2 熱処理温度:650〜750℃ 熱処理時間:60〜120分 熱処理雰囲気:dry O2 熱処理温度:800〜900℃ 熱処理時間:4時間 熱処理雰囲気:N2 、dry O2 熱処理温度:1150℃ 熱処理時間:16時間 熱処理雰囲気:dry O2
A standard application example of the present invention is as follows. Heat treatment temperature: 1280 ° C. Heat treatment time: 60 minutes Heat treatment atmosphere: dry O 2 heat treatment temperature: 400 to 550 ° C. Heat treatment time: 120 minutes Heat treatment atmosphere: dry O 2 heat treatment temperature: 650 to 750 ° C. Heat treatment time: 60 to 120 minutes Heat treatment atmosphere : Dry O 2 heat treatment temperature: 800 to 900 ° C. heat treatment time: 4 hours heat treatment atmosphere: N 2 , dry O 2 heat treatment temperature: 1150 ° C. heat treatment time: 16 hours heat treatment atmosphere: dry O 2

【0012】[0012]

【作用】 CZ法で製造した単結晶シリコンを400〜
550℃の低温で熱処理し、加えて更に650℃〜75
0℃で熱処理することにより酸素析出核を単結晶シリコ
ン中に均一に導入することができる。また、上記の熱処
理に先立ち必要に応じて、1200〜1350℃の高温
熱処理を行なうことにより、結晶育成中の熱履歴が初期
化される。更に、400〜500℃と650〜750℃
の熱処理の後に、800〜900℃と1100〜120
0℃を組み合わせた熱処理を行なうことにより、酸素の
析出が行なわれる。以上のような本発明の熱処理によ
り、CZ法による単結晶引き上げの際の熱履歴の相違に
基づく酸素析出量の分布の不均一性を均一化することが
できる。
The single crystal silicon produced by the CZ method is
Heat treatment at a low temperature of 550 ° C, and additionally 650 ° C to 75
By heat treatment at 0 ° C., oxygen precipitation nuclei can be uniformly introduced into the single crystal silicon. If necessary, a high temperature heat treatment at 1200 to 1350 ° C. is performed prior to the above heat treatment to initialize the thermal history during crystal growth. Furthermore, 400-500 ℃ and 650-750 ℃
After the heat treatment of 800 ~ 900 ℃ and 1100 ~ 120
Precipitation of oxygen is performed by performing heat treatment in which 0 ° C. is combined. By the heat treatment of the present invention as described above, it is possible to make the non-uniformity of the distribution of the oxygen precipitation amount due to the difference in the thermal history when pulling the single crystal by the CZ method uniform.

【0013】[0013]

【実施例】以下に実施例を挙げて本発明を説明するが、
本発明がこれらの記載によって制限されるものでないこ
とはいうまでもない。 実施例1 <結晶成長方向の酸素析出分布の改善(1)
> 使用したサンプルは次の通りである。 導電型:N型(Pドープ) 結晶径:150mmφ 電気抵抗率:10(Ω・cm) 格子間酸素濃度:14〜16(×1017 atoms/
cm3 ) 炭素濃度:<2.4(×1015atoms/cm3 ) 熱処理を施すサンプル厚さ:2.0(mm)
The present invention will be described below with reference to examples.
It goes without saying that the present invention is not limited by these descriptions. Example 1 <Improvement of oxygen precipitation distribution in crystal growth direction (1)
> The samples used are as follows. Conductivity type: N type (P-doped) Crystal diameter: 150 mmφ Electric resistivity: 10 (Ω · cm) Interstitial oxygen concentration: 14 to 16 (× 10 17 atoms /
cm 3 ) Carbon concentration: <2.4 (× 10 15 atoms / cm 3 ) Heat-treated sample thickness: 2.0 (mm)

【0014】このサンプルについて、次の熱処理を行な
った。 熱処理温度:1280℃ 熱処理時間:60分 熱処理雰囲気:dry O2 熱処理温度:450℃ 熱処理時間:2時間 熱処理雰囲気:dry O2 熱処理温度:650℃ 熱処理時間:2時間 熱処理雰囲気:dry O2 熱処理温度:850℃ 熱処理時間:4時間 熱処理雰囲気:dry O2 熱処理温度:1150℃ 熱処理時間:16時間 熱処理雰囲気:dry O2
The following heat treatment was performed on this sample. Heat treatment temperature: 1280 ° C. Heat treatment time: 60 minutes Heat treatment atmosphere: dry O 2 Heat treatment temperature: 450 ° C. Heat treatment time: 2 hours Heat treatment atmosphere: dry O 2 heat treatment temperature: 650 ° C. Heat treatment time: 2 hours Heat treatment atmosphere: dry O 2 heat treatment temperature : 850 ° C Heat treatment time: 4 hours Heat treatment atmosphere: dry O 2 Heat treatment temperature: 1150 ° C Heat treatment time: 16 hours Heat treatment atmosphere: dry O 2

【0015】比較として、工程、工程の
みの熱処理を行なった。この場合の酸素析出量を測定
し、図1に示した。酸素濃度の測定は赤外線吸収法によ
って行ない、酸素析出量は次の式によって算出した。 (酸素析出量)=(熱処理前の酸素濃度)−(熱処理後
の酸素濃度) 工程〜の熱処理を行なった場合の酸素析出量は6〜
7(×1017atoms/cm3 )と狭い範囲に収り、
結晶底部に向かっての酸素析出量の低下はなかった。そ
れに対し、工程、工程のみの熱処理のみ
の熱処理の場合には、酸素析出量は、0.5(×1017
atoms/cm3 )以下であった。
For comparison, heat treatment was performed for the steps and only the steps. The oxygen precipitation amount in this case was measured and shown in FIG. The oxygen concentration was measured by the infrared absorption method, and the oxygen precipitation amount was calculated by the following formula. (Oxygen Precipitation Amount) = (Oxygen Concentration Before Heat Treatment) − (Oxygen Concentration After Heat Treatment)
Within a narrow range of 7 (× 10 17 atoms / cm 3 ),
There was no decrease in the amount of oxygen precipitation toward the crystal bottom. On the other hand, in the case of the heat treatment of only the steps and the heat treatment of only the steps, the oxygen precipitation amount is 0.5 (× 10 17
It was less than or equal to atoms / cm 3 ).

【0016】実施例2 <結晶成長方向の酸素析出分布
の改善(2)> 実施例1と同様のサンプルを用いて、工程、工
程、工程の熱処理を行なった。この場合の酸
素析出量を測定し、結果を図2に示した。工程〜の
熱処理を行なった場合の酸素析出量は、6〜7(×10
17atoms/cm3 )と狭い範囲に収っており、特に
結晶底部の酸素析出量が低下しないことがわかった。そ
れに対して、工程のみの場合には酸素析出量は3
〜7(×1017atoms/cm3 )となり、結晶底部
に向かって減少することがわかった。工程のみの場
合には酸素析出量は0.4〜7(×1017atoms/
cm3 )であり、結晶底部ではほとんど析出が起こらな
かった。
Example 2 <Improvement of oxygen precipitation distribution in crystal growth direction (2)> Using the same sample as in Example 1, steps, steps, and heat treatment of steps were performed. The oxygen precipitation amount in this case was measured, and the result is shown in FIG. The amount of oxygen precipitation when the heat treatment of the steps 1 to 6 is 6 to 7 (× 10
It was found to be within a narrow range of 17 atoms / cm 3 ), and it was found that the amount of oxygen precipitation at the crystal bottom did not decrease in particular. On the other hand, in the case of only the process, the amount of oxygen precipitation is 3
It was found to be about 7 (× 10 17 atoms / cm 3 ) and decrease toward the crystal bottom. In the case of only the process, the amount of oxygen precipitation is 0.4 to 7 (× 10 17 atoms /
cm 3 ), and almost no precipitation occurred at the bottom of the crystal.

【0017】実施例3 <酸素析出量の制御> 工程の熱処理において、の熱処理時間を1
時間と2時間の2種類行なうことで酸素析出量の制御を
試みた結果を図3に示した。工程の時間が2時間の場
合には6〜7(×1017atoms/cm3 )であった
酸素析出量が、工程の時間が1時間の場合には3〜4
(×1017atoms/cm3 )であった。これによ
り、工程の熱処理に時間により酸素析出量が制御でき
ることがわかった。
Example 3 <Control of oxygen precipitation amount> In the heat treatment of the step,
FIG. 3 shows the result of trying to control the amount of oxygen precipitation by performing two kinds of time and 2 hours. The amount of oxygen deposited was 6 to 7 (× 10 17 atoms / cm 3 ) when the process time was 2 hours, and 3 to 4 when the process time was 1 hour.
It was (× 10 17 atoms / cm 3 ). From this, it was found that the amount of oxygen precipitation can be controlled by the heat treatment time of the process.

【0018】[0018]

【発明の効果】以上のように、本発明によれば、結晶成
長方向の酸素析出分布を改善することができ、特に結晶
底部の酸素析出量が低下せず、かつ所定の酸素析出量を
結晶成長方向に均一に得ることができる。
As described above, according to the present invention, it is possible to improve the oxygen precipitation distribution in the crystal growth direction, in particular, the oxygen precipitation amount at the bottom of the crystal does not decrease, and a predetermined oxygen precipitation amount is obtained. It can be obtained uniformly in the growth direction.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1は実施例1における酸素析出量の変動を示
すグラフである。
FIG. 1 is a graph showing changes in the amount of oxygen precipitation in Example 1.

【図2】図2は実施例2における酸素析出量の変動を示
すグラフである。
FIG. 2 is a graph showing changes in the amount of oxygen precipitation in Example 2.

【図3】図3は実施例3における酸素析出量の変動を示
すグラフである。
FIG. 3 is a graph showing changes in the amount of oxygen precipitation in Example 3.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山岸 浩利 群馬県安中市磯部2丁目13番1号 信越半 導体株式会社半導体磯部研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hirotoshi Yamagishi 2-13-1 Isobe, Annaka-shi, Gunma Shin-Etsu Semiconductor Co., Ltd.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 チョクラルスキー法で製造した単結晶シ
リコンを400〜500℃の低温で熱処理し、加えて更
に650〜750℃で熱処理することを特徴とするシリ
コンの熱処理方法。
1. A heat treatment method for silicon, characterized in that single crystal silicon produced by the Czochralski method is heat-treated at a low temperature of 400 to 500 ° C. and further heat-treated at 650 to 750 ° C.
【請求項2】 単結晶シリコンがシリコンウェーハであ
ることを特徴とする請求項1記載のシリコンの熱処理方
法。
2. The heat treatment method for silicon according to claim 1, wherein the single crystal silicon is a silicon wafer.
【請求項3】 単結晶シリコンがシリコンインゴットで
あることを特徴とする請求項1記載のシリコンの熱処理
方法。
3. The method for heat treating silicon according to claim 1, wherein the single crystal silicon is a silicon ingot.
【請求項4】 チョクラルスキー法で製造した単結晶シ
リコンを、先に1200〜1350℃で高温熱処理し、
次いで上記低温熱処理することを特徴とする請求項1〜
3のいずれか1項記載のシリコンの熱処理方法。
4. The single crystal silicon produced by the Czochralski method is first heat-treated at a high temperature of 1200 to 1350 ° C.,
Next, the low temperature heat treatment is performed.
4. The heat treatment method for silicon according to any one of 3 above.
【請求項5】 チョクラルスキー法で製造した単結晶シ
リコンを、先に1200〜1350℃で高温熱処理し、
次いで400〜550℃で低温熱処理し、更に650〜
750℃で熱処理し、これに続いて800〜900℃と
1100〜1200℃を組み合わせた酸素析出熱処理を
行なうことを特徴とするシリコンの析出酸素量制御熱処
理方法。
5. Single crystal silicon produced by the Czochralski method is first subjected to high temperature heat treatment at 1200 to 1350 ° C.,
Next, low temperature heat treatment is performed at 400 to 550 ° C., and further 650 to
A heat treatment method for controlling the amount of precipitated oxygen in silicon, which comprises performing heat treatment at 750 ° C., and subsequently performing oxygen precipitation heat treatment in which 800 to 900 ° C. and 1100 to 1200 ° C. are combined.
【請求項6】 チョクラルスキー法で製造した単結晶シ
リコンを、400〜550℃で低温熱処理し、更に65
0〜750℃で熱処理し、これに続いて800〜900
℃と1100〜1200℃を組み合わせた酸素析出熱処
理を行なうことを特徴とするシリコンの析出酸素量制御
熱処理方法。
6. The single crystal silicon produced by the Czochralski method is heat-treated at a low temperature at 400 to 550 ° C., and further 65
Heat treatment at 0-750 ° C, followed by 800-900
A method of heat treatment for controlling the amount of precipitated oxygen in silicon, which comprises performing an oxygen precipitation heat treatment in which the temperature is combined with the temperature of 1100 to 1200 ° C.
JP28918191A 1991-10-07 1991-10-07 Heat treatment of silicon Pending JPH05102167A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28918191A JPH05102167A (en) 1991-10-07 1991-10-07 Heat treatment of silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28918191A JPH05102167A (en) 1991-10-07 1991-10-07 Heat treatment of silicon

Publications (1)

Publication Number Publication Date
JPH05102167A true JPH05102167A (en) 1993-04-23

Family

ID=17739823

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28918191A Pending JPH05102167A (en) 1991-10-07 1991-10-07 Heat treatment of silicon

Country Status (1)

Country Link
JP (1) JPH05102167A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025717A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
US8246744B2 (en) 2004-01-27 2012-08-21 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for predicting precipitation behavior of oxygen in silicon single crystal, method for determining production parameter of silicon single crystal, and storage medium for storing program for predicting precipitation behavior of oxygen in silicon single crystal

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140132A (en) * 1982-02-16 1983-08-19 Toshiba Corp Manufacture of cz high resistance wafer
JPS58171826A (en) * 1982-03-26 1983-10-08 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of regulating density and distribution of oxygen precipitate particle
JPS60247935A (en) * 1984-05-23 1985-12-07 Toshiba Ceramics Co Ltd Manufacture of semiconductor wafer
JPH02263792A (en) * 1989-03-31 1990-10-26 Shin Etsu Handotai Co Ltd Heat treatment of silicon

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58140132A (en) * 1982-02-16 1983-08-19 Toshiba Corp Manufacture of cz high resistance wafer
JPS58171826A (en) * 1982-03-26 1983-10-08 インタ−ナショナル ビジネス マシ−ンズ コ−ポレ−ション Method of regulating density and distribution of oxygen precipitate particle
JPS60247935A (en) * 1984-05-23 1985-12-07 Toshiba Ceramics Co Ltd Manufacture of semiconductor wafer
JPH02263792A (en) * 1989-03-31 1990-10-26 Shin Etsu Handotai Co Ltd Heat treatment of silicon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002025717A1 (en) * 2000-09-20 2002-03-28 Shin-Etsu Handotai Co.,Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
JP2002100631A (en) * 2000-09-20 2002-04-05 Shin Etsu Handotai Co Ltd Silicon wafer, silicon epitaxial wafer and method for manufacturing these
US6858094B2 (en) 2000-09-20 2005-02-22 Shin-Etsu Handotai Co., Ltd. Silicon wafer and silicon epitaxial wafer and production methods therefor
JP2003286094A (en) * 2002-03-27 2003-10-07 Sumitomo Mitsubishi Silicon Corp Method of manufacturing semiconductor silicon substrate
US8246744B2 (en) 2004-01-27 2012-08-21 Komatsu Denshi Kinzoku Kabushiki Kaisha Method for predicting precipitation behavior of oxygen in silicon single crystal, method for determining production parameter of silicon single crystal, and storage medium for storing program for predicting precipitation behavior of oxygen in silicon single crystal

Similar Documents

Publication Publication Date Title
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
JP2874834B2 (en) Intrinsic gettering method for silicon wafer
JPH02263792A (en) Heat treatment of silicon
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP2002043318A (en) Method for manufacturing silicon single crystal wafer
US6277715B1 (en) Production method for silicon epitaxial wafer
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
US6339016B1 (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
JPH05102167A (en) Heat treatment of silicon
JPH0523494B2 (en)
US20050032337A1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JPH08208374A (en) Silicon single crystal and its production
JP3811582B2 (en) Heat treatment method for silicon substrate and method for producing epitaxial wafer using the substrate
JPH0119265B2 (en)
JPH0367994B2 (en)
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JPH10144696A (en) Silicon wafer and its manufacture
JPS6344720B2 (en)
JPH04175300A (en) Heat treatment of silicon single crystal
JPS63198335A (en) Manufacture of silicon substrate
JP2004056132A (en) Method for fabricating semiconductor wafer
JPS637025B2 (en)
JPS6115335A (en) Gettering method for silicon wafer
JPH09260393A (en) Manufacture of silicon wafer for semiconductor device
JP2003100759A (en) Method for manufacturing epitaxial silicon wafer