JPS637025B2 - - Google Patents

Info

Publication number
JPS637025B2
JPS637025B2 JP15011778A JP15011778A JPS637025B2 JP S637025 B2 JPS637025 B2 JP S637025B2 JP 15011778 A JP15011778 A JP 15011778A JP 15011778 A JP15011778 A JP 15011778A JP S637025 B2 JPS637025 B2 JP S637025B2
Authority
JP
Japan
Prior art keywords
heat treatment
wafers
wafer
oxygen
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15011778A
Other languages
Japanese (ja)
Other versions
JPS5577170A (en
Inventor
Seigo Kishino
Katsu Kanamori
Naoji Yoshihiro
Yoshiaki Matsushita
Yojiro Kondo
Kazunori Tanitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP15011778A priority Critical patent/JPS5577170A/en
Publication of JPS5577170A publication Critical patent/JPS5577170A/en
Publication of JPS637025B2 publication Critical patent/JPS637025B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (1) 発明の利用分野 本発明は、半導体集積回路等の製造に用いられ
るシリコン単結晶ウエーハの製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION (1) Field of Application of the Invention The present invention relates to a method for manufacturing silicon single crystal wafers used for manufacturing semiconductor integrated circuits and the like.

(2) 従来技術 従来、集積回路(Integrated Circuit:ICと略
す)、大型集積回路(Large Scale Integration:
LSIと略す)素子の材料としては、主に引き上げ
法(CZ法)で育成した残留酸素の含有量がほゞ
5×1017atoms・cm-3以上のシリコン単結晶ウエ
ーハが使われていた。含有酸素量が少ない(普通
ほゞ1×1017atoms・cm-3以下)フローテイン
グ・ゾーン法(FZ法)で育成したシリコン単結
晶のウエーハは、LSI素子材料としてはあまり使
われていない。その理由は、FZシリコン・ウエ
ーハは、含有酸素量が少ないために1000℃以上の
熱処理に対して材質が弱く、転位などの格子欠陥
が生じる結果、LSIの製造歩留を向上させること
が難しいためである。ところが、CZ結晶ウエー
ハでも、含有酸素量が多いために、1000℃以上の
熱処理によつて特性に悪影響を及ぼす微小欠陥が
発生し易く、LSIの製造歩留を向上させることは
容易ではない。
(2) Conventional technology Conventionally, integrated circuits (abbreviated as IC) and large scale integration (Large Scale Integration)
(abbreviated as LSI) devices were mainly silicon single-crystal wafers grown by the pulling method (CZ method) with a residual oxygen content of approximately 5×10 17 atoms·cm -3 or more. Single-crystal silicon wafers grown using the floating zone method (FZ method), which contain a small amount of oxygen (usually less than 1×10 17 atoms cm -3 ), are not widely used as LSI device materials. The reason for this is that FZ silicon wafers are weak against heat treatment at temperatures above 1000℃ due to their low oxygen content, and as a result of the formation of lattice defects such as dislocations, it is difficult to improve LSI manufacturing yields. It is. However, even in CZ crystal wafers, since they contain a large amount of oxygen, heat treatment at temperatures of 1000°C or higher tends to generate micro defects that adversely affect the characteristics, making it difficult to improve LSI manufacturing yields.

したがつて、LSI素子材料のウエーハとして
は、含有酸素の濃度が高く(ほゞ3×
1017atoms・cm-3以上)、高温熱処理によつても微
小欠陥が発生し難いシリコン・ウエーハが望まし
い。すなわち、格子間酸素が析出し難いウエーハ
がLSI素子材料として望ましいのである。しか
し、現状では高温熱処理によつて転位の導入が少
なく、かつ、微小欠陥が発生し難いシリコン・ウ
エーハは容易に得られない。つまり、現状のウエ
ーハを用いたのでは、CZウエーハを用いてもFZ
ウエーハを用いても、高集積度のLSIの製造歩留
を上げることは容易ではない。
Therefore, wafers of LSI element material have a high concentration of oxygen (approximately 3×
10 17 atoms·cm -3 or higher), and silicon wafers that are less likely to generate micro defects even when subjected to high-temperature heat treatment are desirable. In other words, a wafer in which interstitial oxygen is difficult to precipitate is desirable as an LSI element material. However, at present, it is not easy to obtain silicon wafers that introduce fewer dislocations and are less likely to generate micro defects through high-temperature heat treatment. In other words, if the current wafers are used, even if CZ wafers are used, FZ
Even if wafers are used, it is not easy to increase the manufacturing yield of highly integrated LSIs.

(3) 発明の目的 本発明の目的は、上記した従来技術の問題点を
改善し、有効に高集積度のLSI素子などの製造歩
留を向上させ得るシリコン単結晶ウエーハの製造
方法を提供することにある。
(3) Purpose of the Invention The purpose of the present invention is to provide a method for manufacturing silicon single crystal wafers that can improve the problems of the prior art described above and effectively improve the manufacturing yield of highly integrated LSI devices. There is a particular thing.

(4) 発明の総括説明 上記の目的を達成させるために、本発明におい
ては、シリコン・ウエーハを1300℃以上の高温で
短時間熱処理し、その後それを急冷する。これに
より、シリコン単結晶内の格子間酸素を準安定な
状態に凍結すると共に、微小欠陥の核の成長を抑
制することになり、高温熱処理によつても格子間
酸素の析出を起こさせないようにすることができ
る。すなわち、結晶内に格子欠陥を発生させ難く
させると共に、熱処理による転位の発生なども抑
制させるものである。
(4) General description of the invention In order to achieve the above object, in the present invention, a silicon wafer is heat treated at a high temperature of 1300° C. or higher for a short period of time, and then rapidly cooled. This freezes the interstitial oxygen in the silicon single crystal to a metastable state and suppresses the growth of micro-defect nuclei, thereby preventing the precipitation of interstitial oxygen even during high-temperature heat treatment. can do. That is, it makes it difficult to generate lattice defects in the crystal, and also suppresses the generation of dislocations due to heat treatment.

CZシリコン・ウエーハがFZシリコン・ウエー
ハに比べて高温熱処理によつて微小欠陥などが発
生し易いのは、CZ結晶ウエーハの方がその結晶
の育成条件に基づいて、FZ結晶ウエーハよりも
含有酸素濃度が高いためと、微小欠陥の核が多数
存在しているために、微小欠陥の核に格子間酸素
が集まつて酸素が析出すると共に、多数の微小欠
陥を誘発するためである。
The reason why CZ silicon wafers are more prone to micro defects due to high-temperature heat treatment than FZ silicon wafers is that CZ crystal wafers have a higher oxygen content than FZ crystal wafers based on the crystal growth conditions. This is because interstitial oxygen gathers at the microdefect nuclei, precipitates oxygen, and induces a large number of microdefects.

一方、FZシリコン・ウエーハは、含有酸素濃
度が低いために、転位発生ならびにこれに基づく
転位の移動を抑制することが期待できない。その
結果、高温熱処理によつてウエーハにスリツプが
生じ易いばかりでなく、ウエーハにそりを生じる
ようになる。
On the other hand, since the FZ silicon wafer contains low oxygen concentration, it cannot be expected to suppress the generation of dislocations and the movement of dislocations based on this. As a result, not only is the wafer likely to slip due to high-temperature heat treatment, but the wafer may also be warped.

そこで、本発明においては、含有酸素濃度は従
来のCZシリコン・ウエーハ並に保ち、かつ、こ
の結晶内の格子間酸素が熱処理によつても析出し
ないようにするものである。そのためには、育成
させた結晶を1300℃以上の高温で短時間熱処理を
施すことにより、シリコン・ウエーハに上記の性
質を保たせるものである。
Therefore, in the present invention, the oxygen concentration is maintained at the same level as in conventional CZ silicon wafers, and the interstitial oxygen within the crystal is not precipitated even during heat treatment. To achieve this, the grown crystals are heat-treated at a high temperature of 1300°C or higher for a short period of time to maintain the above properties in the silicon wafer.

(5) 実施例 以下、本発明を実施例を参照して詳細に説明す
る。
(5) Examples Hereinafter, the present invention will be explained in detail with reference to examples.

現状のシリコン単結晶ウエーハ内の格子間酸素
は、第1図に示すように乾燥酸素雰囲気800℃近
傍の熱処理を施すと、もつとも顕著に減少する。
なお、窒素雰囲気でも同様な結果が得られる。ま
た、800℃近傍の熱処理によつて格子間酸素の減
少の著しいウエーハは1000℃以上の高温熱処理に
よつて微小欠陥が発生し易いことが判明した。し
たがつて、800℃近傍の熱処理を行うことにより、
ウエーハ内の格子間酸素が析出しやすいかどう
か、また、1000℃以上の高温熱処理によつて微小
欠陥が発生しやすいかどうかを判定することがで
きる。以下の実施例では、この800℃近傍の熱処
理を判定法として用いて、本発明を説明する。
As shown in FIG. 1, the interstitial oxygen in current silicon single crystal wafers is significantly reduced when heat treatment is performed at around 800° C. in a dry oxygen atmosphere.
Note that similar results can be obtained in a nitrogen atmosphere. It has also been found that wafers with a significant decrease in interstitial oxygen due to heat treatment at temperatures around 800°C are more likely to generate micro defects when subjected to high-temperature heat treatment at 1000°C or higher. Therefore, by performing heat treatment at around 800℃,
It is possible to determine whether interstitial oxygen within a wafer is likely to precipitate, and whether micro defects are likely to occur due to high-temperature heat treatment at 1000°C or higher. In the following examples, the present invention will be explained using this heat treatment at around 800°C as a determination method.

(100)CZシリコン単結晶ウエーハ(3イン
チ、450μm厚さ)を、1300℃において16分間、
乾燥酸素雰囲気で熱処理し、速度を変化させて熱
処理炉から引出した。これらのウエーハの格子間
酸素の濃度を赤外吸収法で測定したところ、その
濃度は全てほゞ1×1018atoms・cm-3であつた。
これらのウエーハに乾燥酸素雰囲気、800℃にお
いて、64時間熱処理を施した後、同じくこれらの
ウエーハの格子間酸素の濃度を赤外吸収法で測定
した。この800℃熱処理による格子間酸素の減少
量は第2図に示すように、1300℃熱処理における
ウエーハの引出し速度に依存して変化した。引出
し速度が0.16cm/sec以上のときには、800℃64時
間の熱処理を施しても格子間酸素の減少は検出で
きなかつた。又、上記1300℃熱処理を施した後、
乾燥酸素雰囲気、1050℃において64時間の熱処理
を施した後、X線強度を測定したところ、X線強
度も第3図に示すように、1300℃熱処理における
ウエーハの引出し速度に依存して変化した。引出
し速度が0.16cm/sec以上のときには、この熱処
理を施してもX線強度はas−grownウエーハのそ
れとほとんど同じであつた。すなわち、引出し速
度が0.16cm/sec以上のときには、1050℃長時間
の熱処理を施しても、ウエーハ内に微小欠陥はほ
とんど発生しなかつた。なお、1300℃熱処理にお
けるウエーハの引出し速度が、0.16cm/secから
0.64cm/secまでの時は、ウエーハにはほとんど
転位は発生せず、スリツプも発生しなかつた。
(100) CZ silicon single crystal wafer (3 inches, 450μm thickness) at 1300℃ for 16 minutes.
It was heat treated in a dry oxygen atmosphere and pulled out of the heat treatment furnace at varying speeds. When the interstitial oxygen concentration of these wafers was measured by infrared absorption method, the concentration was approximately 1×10 18 atoms·cm −3 in all cases.
After heat-treating these wafers at 800°C in a dry oxygen atmosphere for 64 hours, the interstitial oxygen concentration of these wafers was also measured using an infrared absorption method. As shown in FIG. 2, the amount of interstitial oxygen reduced by this 800°C heat treatment varied depending on the wafer withdrawal speed during the 1300°C heat treatment. When the drawing speed was 0.16 cm/sec or higher, no decrease in interstitial oxygen could be detected even after heat treatment at 800°C for 64 hours. In addition, after the above 1300℃ heat treatment,
After heat treatment for 64 hours at 1050℃ in a dry oxygen atmosphere, the X-ray intensity was measured, and as shown in Figure 3, the X-ray intensity also changed depending on the wafer withdrawal speed during the 1300℃ heat treatment. . When the drawing speed was 0.16 cm/sec or more, the X-ray intensity was almost the same as that of as-grown wafers even after this heat treatment. That is, when the drawing speed was 0.16 cm/sec or higher, almost no microdefects were generated in the wafer even if heat treatment was performed at 1050° C. for a long time. In addition, the wafer withdrawal speed during 1300℃ heat treatment is from 0.16cm/sec to
When the speed was up to 0.64 cm/sec, almost no dislocations occurred on the wafer, and no slips occurred.

上記の実験結果を下に、as−grownウエーハを
乾燥酸素雰囲気1300℃において16分熱処理し、
0.32cm/secの引出し速度でウエーハを処理し、
バイポーラLSIプロセスに投入したところ、ウエ
ーハの表面近傍に積層欠陥が発生しないばかり
か、ウエーハの内部にも微小欠陥はほとんど発生
しなかつた。また、ウエーハにはスリツプも生じ
ることなく、したがつて熱処理によるウエーハの
そりはほとんど検出できなかつた。この結果、
LSIの特性が向上したばかりでなく、その製造歩
留も従来に比べて著しく向上した。1300℃の前熱
処理雰囲気をHCLガスを含む乾燥酸素雰囲気で
行つても同様な効果が得られた。
Based on the above experimental results, the as-grown wafer was heat treated in a dry oxygen atmosphere at 1300℃ for 16 minutes.
Wafers are processed at a withdrawal speed of 0.32cm/sec,
When used in a bipolar LSI process, not only no stacking faults occurred near the surface of the wafer, but also almost no microdefects occurred inside the wafer. Further, no slip occurred on the wafer, and therefore, warping of the wafer due to heat treatment could hardly be detected. As a result,
Not only have the characteristics of LSI improved, but the manufacturing yield has also improved significantly compared to conventional methods. Similar effects were obtained even when the preheat treatment at 1300°C was performed in a dry oxygen atmosphere containing HCL gas.

本発明により、次のような効果が期待できる。
本発明によるシリコン・ウエーハは、熱処理によ
つて格子欠陥が発生し難いと共に、ウエーハのそ
りの原因になる転位の発生も起こり難くなるの
で、半導体素子材料に使つた場合その特性が向上
するばかりでなく、その製造歩留が著しく向上す
る。
The following effects can be expected from the present invention.
The silicon wafer according to the present invention is less likely to generate lattice defects during heat treatment, and is also less likely to generate dislocations that cause wafer warpage, so its properties will only improve when used as a semiconductor device material. Therefore, the manufacturing yield is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は乾燥酸素雰囲気64時間の等時間熱処理
後の各温度における格子間酸素濃度を示す図、第
2図は乾燥酸素雰囲気1300℃、16分の引出し速度
を変えた熱処理を施した後、乾燥酸素雰囲気800
℃、64時間の熱処理を施したウエーハの格子間酸
素の減少量を示す図、第3図は乾燥酸素雰囲気
1300℃、16分の引出し速度を変えた熱処理を施し
た後、乾燥酸素雰囲気1050℃、64時間の熱処理を
施したウエーハのX線強度を示す図である。
Figure 1 shows the interstitial oxygen concentration at various temperatures after heat treatment for 64 hours in a dry oxygen atmosphere, and Figure 2 shows the interstitial oxygen concentration at various temperatures after heat treatment in a dry oxygen atmosphere for 16 minutes at 1300°C. Dry oxygen atmosphere 800
℃, Figure 3 shows the amount of interstitial oxygen reduction in wafers heat-treated for 64 hours. Figure 3 is in a dry oxygen atmosphere.
FIG. 3 is a diagram showing the X-ray intensity of wafers that were heat-treated at 1300° C. for 16 minutes at different drawing speeds and then heat-treated at 1050° C. for 64 hours in a dry oxygen atmosphere.

Claims (1)

【特許請求の範囲】[Claims] 1 CZ法によつて育成された格子間酸素の含有
量がほぼ3×1017/cm3以上のシリコン単結晶ウエ
ーハを熱処理炉中において1300℃以上の温度で熱
処理した後、0.16cm/秒から0.64cm/秒までの引
出し速度で上記熱処理炉から引出す工程を含むこ
とを特徴とするシリコン単結晶ウエーハの製造方
法。
1 After heat treating a silicon single crystal wafer grown by the CZ method and having an interstitial oxygen content of approximately 3×10 17 /cm 3 or more in a heat treatment furnace at a temperature of 1300°C or higher, A method for producing a silicon single crystal wafer, comprising the step of drawing it out from the heat treatment furnace at a drawing speed of up to 0.64 cm/sec.
JP15011778A 1978-12-06 1978-12-06 Silicon mono-crystal wafer Granted JPS5577170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15011778A JPS5577170A (en) 1978-12-06 1978-12-06 Silicon mono-crystal wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15011778A JPS5577170A (en) 1978-12-06 1978-12-06 Silicon mono-crystal wafer

Publications (2)

Publication Number Publication Date
JPS5577170A JPS5577170A (en) 1980-06-10
JPS637025B2 true JPS637025B2 (en) 1988-02-15

Family

ID=15489851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15011778A Granted JPS5577170A (en) 1978-12-06 1978-12-06 Silicon mono-crystal wafer

Country Status (1)

Country Link
JP (1) JPS5577170A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2097695B (en) * 1981-03-24 1984-08-22 Mitsubishi Monsanto Chem Method for producing a single crystal
JPS5856344A (en) * 1981-09-29 1983-04-04 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS5577170A (en) 1980-06-10

Similar Documents

Publication Publication Date Title
KR100957729B1 (en) Process for preparing an ideal oxygen precipitating silicon wafer
JPH05102162A (en) Manufacture of semiconductor wafer
JPS6255697B2 (en)
JP2010004054A (en) Thermally-annealed wafer with improved internal gettering property
JPS583375B2 (en) Manufacturing method of silicon single crystal wafer
JPH0475655B2 (en)
JP2003031582A (en) Manufacturing method for silicon wafer and silicon wafer
JP3381816B2 (en) Semiconductor substrate manufacturing method
WO2003003441A1 (en) Production method for anneal wafer and anneal wafer
JPH11314997A (en) Production of semiconductor silicon single crystal wafer
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
JPH05291097A (en) Silicon substrate and manufacture thereof
JPS637025B2 (en)
JP3811582B2 (en) Heat treatment method for silicon substrate and method for producing epitaxial wafer using the substrate
JPH0561240B2 (en)
JPH04298042A (en) Method of heat-treating semiconductor
JPH039078B2 (en)
JPH05102167A (en) Heat treatment of silicon
JPH0377330A (en) Processing of silicon single-crystal wafer
JPH11297704A (en) Evaluation method for oxygen deposit density
JPH04175300A (en) Heat treatment of silicon single crystal
JPS6097619A (en) Manufacture of semiconductor
EP0162830A1 (en) Improved semiconductor substrates
Sawada et al. Bending gettering of Si crystalline defects
JPS6115335A (en) Gettering method for silicon wafer