JPH10144696A - Silicon wafer and its manufacture - Google Patents

Silicon wafer and its manufacture

Info

Publication number
JPH10144696A
JPH10144696A JP30861096A JP30861096A JPH10144696A JP H10144696 A JPH10144696 A JP H10144696A JP 30861096 A JP30861096 A JP 30861096A JP 30861096 A JP30861096 A JP 30861096A JP H10144696 A JPH10144696 A JP H10144696A
Authority
JP
Japan
Prior art keywords
layer
silicon wafer
bmd
oxygen
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP30861096A
Other languages
Japanese (ja)
Other versions
JP3886576B2 (en
Inventor
Lee Tsuon
リー ツォン
Atsushi Yoshikawa
淳 吉川
Hiroyuki Saito
広幸 斎藤
Tateo Hayashi
健郎 林
Ryuji Takeda
隆二 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Coorstek KK
Original Assignee
Toshiba Ceramics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Ceramics Co Ltd filed Critical Toshiba Ceramics Co Ltd
Priority to JP30861096A priority Critical patent/JP3886576B2/en
Publication of JPH10144696A publication Critical patent/JPH10144696A/en
Application granted granted Critical
Publication of JP3886576B2 publication Critical patent/JP3886576B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a silicon wafer and its manufacturing method to avoid bad influence of BMD on device characteristics by arranging a BMD concentrated layer away from a device active layer. SOLUTION: Heat treatment is performed on a CZ silicon wafer in a hydrogen atmosphere at 1000 deg.C or higher, then a part of or entire cooling treatment is performed in an argon gas atmosphere. In the silicon wafer manufactured by this method, having a denuded zone layer(DZ layer) on its front surface, a BMD high-concentrated region where oxygen products are concentrated is located at a position inner from an inner boundary of the denuded zone layer(DZ layer) by a predetermined distance.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、半導体デバイス
に用いるシリコンウエーハ及びその製造方法に関するも
のである。
The present invention relates to a silicon wafer used for a semiconductor device and a method for manufacturing the same.

【0002】[0002]

【従来の技術】シリコンウエーハの原料となるシリコン
単結晶は、チョクラルスキー(CZ)法によって製造す
ることができる。原料ポリシリコンを石英ガラス(Si
2 )質のルツボに入れ、これを加熱・溶融し、種結晶
を用いてシリコン単結晶を引き上げるのである。
2. Description of the Related Art A silicon single crystal as a raw material of a silicon wafer can be manufactured by the Czochralski (CZ) method. Using raw material polysilicon as quartz glass (Si
It is put into an O 2 ) crucible, heated and melted, and a silicon single crystal is pulled up using a seed crystal.

【0003】チョクラルスキー法で製造したシリコン単
結晶中には、通常、酸素が固溶している。固溶した酸素
は、単結晶引上げ後の冷却過程において、超微小酸素析
出物(エンプリオ)として析出する。
[0003] In a silicon single crystal manufactured by the Czochralski method, oxygen is usually dissolved in a solid solution. The dissolved oxygen precipitates as ultrafine oxygen precipitates (emprio) in the cooling process after the single crystal is pulled.

【0004】ウエーハ表層の酸素析出物は、IC、LS
I、ULSI等が稼働する際に障害となり、デバイスの
信頼性を損なう原因となる。すなわち、デバイス活性領
域では、基板上に形成された回路により電子が移動拡散
するため、酸素析出物があるとデバイス欠陥に成り易い
のである。
[0004] Oxygen precipitates on the wafer surface layer are IC, LS
It becomes an obstacle when I, ULSI, etc. operate, and causes a loss of device reliability. That is, in the device active region, electrons move and diffuse by a circuit formed on the substrate, so that the presence of oxygen precipitates easily causes device defects.

【0005】一方、ウエーハのバルク部にある酸素析出
物は、不純物をゲットする作用を有し、いわゆるイント
リンシックゲッタリング(IG)効果の担い手として有
用である。
On the other hand, the oxygen precipitate in the bulk portion of the wafer has a function of getting impurities, and is useful as a carrier of a so-called intrinsic gettering (IG) effect.

【0006】このため、従来は、シリコンウエーハを水
素雰囲気中で熱処理し、ウエーハ表層の酸素を外方拡散
して無欠陥層(DZ層)を形成することによって、ウエ
ーハ表層に酸素析出物(結晶欠陥)が生じるのを防止し
ていた。また、この熱処理によって、シリコンウエーハ
表面に形成される酸化膜の耐圧性を向上させていた。
For this reason, conventionally, a silicon wafer is heat-treated in a hydrogen atmosphere, and oxygen of the wafer surface layer is diffused outward to form a defect-free layer (DZ layer). Defects). Further, the heat treatment improves the pressure resistance of the oxide film formed on the surface of the silicon wafer.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、水素雰
囲気で熱処理して無欠陥層を形成すると、無欠陥領域の
直下にBMDが密集し、そこがBMD密度のピークにな
り易かった。
However, when a defect-free layer is formed by heat treatment in a hydrogen atmosphere, BMDs are concentrated just below the defect-free region, and the BMD density tends to become the peak of the BMD density.

【0008】このBMD密集領域は、デバイス活性層の
近くに位置するため、デバイス特性に悪影響が生じるこ
とがあった。その場合には、デバイスの歩留りが低下し
てしまった。
Since the BMD dense region is located near the device active layer, the device characteristics may be adversely affected. In that case, the yield of the device has decreased.

【0009】このような従来技術の問題点に鑑み、本発
明は、BMD密集層をデバイス活性層から遠ざけること
によって、BMDの悪影響がデバイス特性に及び難いシ
リコンウエーハ及びその製造方法を提供することを目的
としている。
In view of the above problems of the prior art, the present invention provides a silicon wafer and a method of manufacturing the same, in which the BMD is hardly affected by the device characteristics by keeping the BMD dense layer away from the device active layer. The purpose is.

【0010】[0010]

【課題を解決するための手段】本願第1発明は、CZシ
リコンウエーハに水素雰囲気で1000℃以上の熱処理
工程を行い、しかる後に降温工程の一部又は全部をアル
ゴンガス雰囲気で行うことを特徴とするシリコンウエー
ハの製造方法を要旨としている。
The first invention of the present application is characterized in that a heat treatment step of 1000 ° C. or more is performed on a CZ silicon wafer in a hydrogen atmosphere, and then a part or all of the temperature lowering step is performed in an argon gas atmosphere. The gist of the present invention is a method of manufacturing a silicon wafer.

【0011】本願第2発明は、前記方法で製造され、表
層に無欠陥層(DZ層)を有するシリコンウエーハにお
いて、酸素析出物(BMD)が集中しているBMD高密
度領域が、無欠陥層(DZ層)の内側境界より所定距離
だけ内側に位置することを特徴とするシリコンウエーハ
を要旨としている。
The second invention of the present application is directed to a silicon wafer manufactured by the above method and having a defect-free layer (DZ layer) on a surface layer, wherein a BMD high-density region in which oxygen precipitates (BMD) are concentrated is a defect-free layer. The gist of the present invention is a silicon wafer, which is located at a predetermined distance inside from an inner boundary of the (DZ layer).

【0012】[0012]

【実施例】本発明者達は、鋭意研究を重ね、シリコンウ
エーハ中のBMD密度に関し次のような考察・検討を行
い、本発明を完成するに至った。
EXAMPLES The present inventors have conducted intensive studies and made the following considerations and studies on the BMD density in a silicon wafer, thereby completing the present invention.

【0013】水素及びアルゴン雰囲気中、1200℃で
1時間の熱処理を行ったCZシリコンウエーハにおい
て、IRトモグラフ像を二値化処理し、BMD密度の分
布を求めた。図1は、BMD密度の深さ分布を示す図で
ある(比較例2及び比較例1参照)。
In a CZ silicon wafer that was heat-treated at 1200 ° C. for 1 hour in an atmosphere of hydrogen and argon, an IR tomographic image was binarized to obtain a distribution of BMD density. FIG. 1 is a diagram showing a BMD density depth distribution (see Comparative Examples 2 and 1).

【0014】その結果、アルゴン雰囲気中で高温処理を
行った場合には、表層の酸素が外方拡散し無欠陥領域
(DZ層)が形成される以外は、BMD密度分布はほぼ
均一になることが分った(図1の比較例1参照)。一
方、水素雰囲気中で熱処理した場合には、ウエーハ表面
から約100μmより深い領域ではアルゴン処理した場
合と同様にBMD密度は均一となるが、DZ層直下〜約
100μmの範囲にBMDの高密度領域(BMD密度の
ピーク部)が生じることが判明した(図1の比較例2参
照)。
As a result, when the high-temperature treatment is performed in an argon atmosphere, the BMD density distribution becomes almost uniform except that oxygen in the surface layer diffuses outward to form a defect-free region (DZ layer). (See Comparative Example 1 in FIG. 1). On the other hand, when the heat treatment is performed in a hydrogen atmosphere, the BMD density becomes uniform in a region deeper than about 100 μm from the wafer surface as in the case where the argon treatment is performed, but the BMD density range is from just below the DZ layer to about 100 μm. (Peak portion of BMD density) was found to occur (see Comparative Example 2 in FIG. 1).

【0015】特に、このBMDのピーク部におけるBM
D密度[BMD]peakは、バルク部(約100μm以
深)の[BMD]bulkの3倍程度になっていた。すなわ
ち、次の数1のようになる。
In particular, the BM at the peak of this BMD
The D density [BMD] peak was about three times that of [BMD] bulk in the bulk part (about 100 μm or less). That is, the following equation 1 is obtained.

【0016】[0016]

【数1】 このことは、IR吸収の測定結果で再確認できる。すな
わち、図2は、前記熱処理後のシリコンウエーハにおい
て、IR吸収測定によって酸素濃度を調べた結果を示し
ている。未熱処理ウエーハと比較すると、アルゴン処理
したウエーハの酸素減少量△[Oi Arは1.2×10
17cm-3であったが、水素処理したウエーハの△
[Oi H は1.6×1017cm-3になった。この2つ
の処理による酸素減少量の差はすべて前記ピーク部だけ
に発生すると仮定すると、ピーク部の酸素減少量とバル
ク部の酸素減少量の比は次の数2のようになる。
(Equation 1) This can be confirmed again from the measurement results of IR absorption. That is, FIG. 2 shows the result of examining the oxygen concentration of the silicon wafer after the heat treatment by IR absorption measurement. Compared to an unheated wafer, the oxygen reduction amount [ Oi ] Ar of the wafer treated with argon is 1.2 × 10
Although it was 17 cm -3 ,
[O i ] H became 1.6 × 10 17 cm −3 . Assuming that the difference between the oxygen reduction amounts due to the two processes is generated only in the peak portion, the ratio between the oxygen reduction amount in the peak portion and the oxygen reduction amount in the bulk portion is as shown in the following Expression 2.

【0017】[0017]

【数2】 この値が前記BMDの測定結果(数1)に一致するた
め、水素処理とアルゴン処理による酸素の析出挙動の差
は、DZ層直下での析出の仕方の差であると推測され
る。
(Equation 2) Since this value coincides with the BMD measurement result (Equation 1), it is estimated that the difference in the oxygen precipitation behavior between the hydrogen treatment and the argon treatment is the difference in the deposition method immediately below the DZ layer.

【0018】水素処理したウエーハの中のBMD密度が
より高くなるため、水素原子は酸素の析出に有利に働い
ている。従って、BMDピークの発生は、酸素が析出す
る温度領域での、シリコンウエーハ中の水素分布に関係
がある。BMDの分布の様子は、図1に示されているよ
うに、表面付近で濃度が高く、内部で濃度が低くなって
いる。
Since the BMD density in the hydrogen-treated wafer becomes higher, the hydrogen atoms have an advantageous effect on the precipitation of oxygen. Therefore, the occurrence of the BMD peak is related to the hydrogen distribution in the silicon wafer in the temperature range where oxygen is precipitated. As shown in FIG. 1, the distribution of BMD has a high concentration near the surface and a low concentration inside.

【0019】本発明者達は、BMD分布が前記のように
なる理由を、次のように考えた。
The present inventors have considered the reason why the BMD distribution becomes as described above as follows.

【0020】第1に考えられるのは、ウエーハの高温処
理時には水素の分布は均一であるが、降温過程では水素
分布は表面付近で高くなることである。この現象に関し
ては、300℃から500℃までの中温度領域では水素
がプラズマ化しており、シリコンウエーハを急速冷却す
ると、その表面付近に高濃度の水素(H2 )が分布する
との報告がある(J.I.Pankove and N.M.Jhonson,Hydrog
en in Semiconductors,Academic Press,San Diego,(199
1)pp273 )。しかしながら、本発明における水素処理の
温度は、この報告に比べて非常に高く、熱処理炉の熱容
量が大きく降温速度も遅いため、前記現象は成立し難い
と考えられる。
First, it is considered that the distribution of hydrogen is uniform during high-temperature treatment of the wafer, but the distribution of hydrogen increases near the surface in the course of cooling. Regarding this phenomenon, it has been reported that hydrogen is turned into plasma in a medium temperature range from 300 ° C. to 500 ° C., and when silicon wafers are rapidly cooled, a high concentration of hydrogen (H 2 ) is distributed near the surface thereof ( JIPankove and NMJhonson, Hydrog
en in Semiconductors, Academic Press, San Diego, (199
1) pp273). However, since the temperature of the hydrogen treatment in the present invention is much higher than this report, the heat capacity of the heat treatment furnace is large, and the temperature drop rate is low, it is considered that the above phenomenon is hardly realized.

【0021】そこで、本発明者達は、酸素原子が存在す
るため水素原子の濃度が低下するのではないかと考え
た。この考察は、水素原子の類似物 MuoniumのμSR実
験結果に基づくものである。酸素濃度の小さいFZ試料
の中に正常Mu(Td位置)、異常Mu(ボーンドの
中心位置)、diamagnetic μ[ただし形成確率ω(M
u):ω(Mu):ω(μ)〓60%:35%:7
%]の3つの信号が観察されたが、酸素濃度の高いCZ
試料の中には異常Muの信号だけが残された(B.D.Pa
tterson,Rev.Mod.Phys. 60 ,69(1988)) )。この結果に
よると、酸素原子の外方拡散によって形成した低濃度の
酸素領域、いわゆるDZ層中の水素濃度はバルク部より
高く、DZ層の直下では水素原子と酸素原子との相互作
用が強く、BMDの析出を促進させる。特に、水素原子
の濃度は各位置におけるMuonium の確率に対応するもの
とするとDZ層の直下(酸素濃度はFZ試料中の値に相
当する)に水素原子の濃度とバルクでの濃度との比は次
の数3のようになり、前記IRトモグラフとIR吸収の
結果にも一致する。
Therefore, the present inventors have considered that the concentration of hydrogen atoms may decrease due to the presence of oxygen atoms. This discussion is based on the results of the Muonium μSR experiment, a hydrogen atom analogue. Among the FZ samples having a low oxygen concentration, normal Mu (Td position), abnormal Mu * (centered position of boned), and magnetic μ + [probability ω (M
u): ω (Mu * ): ω (μ + ) 〓60%: 35%: 7
%] Were observed, but CZ with a high oxygen concentration was observed.
Only abnormal Mu * signals were left in the sample (BDPa
tterson, Rev. Mod. Phys. 60 , 69 (1988))). According to this result, the low-concentration oxygen region formed by outward diffusion of oxygen atoms, that is, the hydrogen concentration in the so-called DZ layer is higher than that in the bulk portion, and the interaction between hydrogen atoms and oxygen atoms is strong immediately below the DZ layer, Promotes BMD precipitation. In particular, assuming that the concentration of hydrogen atoms corresponds to the probability of Muonium at each position, the ratio between the concentration of hydrogen atoms and the concentration in bulk immediately below the DZ layer (the oxygen concentration corresponds to the value in the FZ sample) The following equation (3) is obtained, which is consistent with the results of the IR tomography and the IR absorption.

【0022】[0022]

【数3】 以上の考察から、BMDの分布を制御するためには、酸
素の析出温度範囲で水素濃度を変化させねばならないこ
とが判明した。ただし、ウエーハを水素雰囲気で処理す
る際の、ウエーハ中の水素濃度の分布は、酸素濃度の分
布により決定される。外方拡散によって形成された酸素
濃度の分布に従った水素濃度の分布は変えられない。従
って、酸素が析出する温度範囲で、シリコンウエーハを
アルゴン雰囲気で処理することが必要となるのである。
(Equation 3) From the above considerations, it has been found that in order to control the distribution of BMD, the hydrogen concentration must be changed within the oxygen deposition temperature range. However, when the wafer is treated in a hydrogen atmosphere, the distribution of the hydrogen concentration in the wafer is determined by the distribution of the oxygen concentration. The distribution of the hydrogen concentration according to the distribution of the oxygen concentration formed by the outward diffusion cannot be changed. Therefore, it is necessary to treat the silicon wafer in an argon atmosphere within a temperature range in which oxygen is precipitated.

【0023】従って、本発明では、CZシリコンウエー
ハに水素雰囲気で1000℃以上の熱処理工程を行い、
しかる後に降温工程の一部又は全部をアルゴンガス雰囲
気で行う構成になっている。すなわち、降温工程の開始
時又はその途中で雰囲気ガスをアルゴンガスに置換する
のである。雰囲気の置換は、酸素が析出する温度で行
う。すなわち、通常のCZシリコンウエーハの場合には
1200℃〜500℃で雰囲気置換を行う必要がある。
Therefore, in the present invention, a heat treatment step of 1000 ° C. or more is performed on the CZ silicon wafer in a hydrogen atmosphere,
Thereafter, part or all of the temperature lowering step is performed in an argon gas atmosphere. That is, the atmosphere gas is replaced with an argon gas at the start of or during the cooling step. The replacement of the atmosphere is performed at a temperature at which oxygen is precipitated. That is, in the case of a normal CZ silicon wafer, it is necessary to perform atmosphere replacement at 1200 ° C. to 500 ° C.

【0024】この様に降温雰囲気をアルゴンガスに置換
し、降温工程の一部又は全部をアルゴンガス雰囲気で行
うことによって、BMDの高濃度領域を、無欠陥層(D
Z層)の境界位置から内側方向に移動することができ
る。
As described above, the temperature-lowering atmosphere is replaced with argon gas, and a part or all of the temperature-lowering step is performed in an argon gas atmosphere.
It can move inward from the boundary position of the (Z layer).

【0025】BMD密度のピークは、DZ層の内側境界
から少なくとも60μm程度内側に配置することが望ま
しい。この様に、BMD密度のピークを内側に移動する
ことによって、BMD高密度領域をデバイス活性層から
遠ざけることができる。そして、デバイス欠陥が生じる
可能性を大幅に低減することができる。
It is desirable that the peak of the BMD density be located at least about 60 μm inward from the inner boundary of the DZ layer. As described above, by moving the BMD density peak inward, the BMD high-density region can be kept away from the device active layer. And the possibility that a device defect will occur can be reduced significantly.

【0026】以下、本発明の実施例1について述べる。Hereinafter, Embodiment 1 of the present invention will be described.

【0027】実施例1では、P型、電気抵抗15Ωc
m、IR吸収による酸素濃度1.54×1018cm、面
方位(100)、6インチCZミラーシリコンウエーハ
を用いた。このシリコンウエーハに対し、1200℃1
時間水素雰囲気で加熱した後、雰囲気をアルゴンガスに
置換して室温まで降温する熱処理を行った。
In the first embodiment, a P-type electric resistance of 15Ωc
A 6 inch CZ mirror silicon wafer was used, which had an oxygen concentration of 1.54 × 10 18 cm by IR absorption and a plane orientation of (100). 1200 ° C.1 for this silicon wafer
After heating in a hydrogen atmosphere for an hour, a heat treatment was performed in which the atmosphere was replaced with argon gas and the temperature was lowered to room temperature.

【0028】比較例2では、実施例1と同じシリコンウ
エーハを用い、1200℃1時間アルゴン雰囲気で加熱
した後、そのまま室温まで降温する熱処理を行った。比
較例3では、1200℃1時間水素雰囲気で加熱した
後、そのまま室温まで降温する熱処理を行った。
In Comparative Example 2, the same silicon wafer as in Example 1 was heated at 1200 ° C. for 1 hour in an argon atmosphere, and then heat-treated to lower the temperature to room temperature. In Comparative Example 3, heat treatment was performed at 1200 ° C. for 1 hour in a hydrogen atmosphere, and then the temperature was lowered to room temperature.

【0029】実施例1及び比較例1,2に関するIRト
モグラフとIR吸収の結果を、それぞれ図1と図2に示
す。
The results of IR tomography and IR absorption for Example 1 and Comparative Examples 1 and 2 are shown in FIGS. 1 and 2, respectively.

【0030】図1から分るように、実施例1では、比較
例2と比べてBMD密度が低減され、より内層でピーク
が生じた。すなわち、水素処理したウエーハをアルゴン
ガス雰囲気で降温することにより、水素処理・降温を行
ったウエーハのBMD密度を全体的に低減でき、BMD
密度のピークを、無欠陥領域(DZ層)の直下から内側
方向に移動できることが確認された。また、図2から分
るように、実施例1では、酸素濃度が比較例2(アルゴ
ン処理の場合)と同程度まで低減された。
As can be seen from FIG. 1, in Example 1, the BMD density was reduced as compared with Comparative Example 2, and a peak occurred in the inner layer. That is, by lowering the temperature of the hydrogen-treated wafer in an argon gas atmosphere, the BMD density of the wafer subjected to the hydrogen treatment and temperature reduction can be reduced as a whole.
It was confirmed that the density peak can be moved inward from immediately below the defect-free region (DZ layer). Further, as can be seen from FIG. 2, in Example 1, the oxygen concentration was reduced to about the same level as in Comparative Example 2 (in the case of argon treatment).

【0031】実施例1において、深さ0〜約60μmに
おけるBMD濃度は、アルゴン処理・降温を行ったウエ
ーハと同レベルまで低減された。また、実施例1のBM
D濃度ピーク値は、比較例2のピーク値の半分程度に低
減された。
In Example 1, the BMD concentration at a depth of 0 to about 60 μm was reduced to the same level as that of a wafer subjected to argon treatment and temperature reduction. Also, the BM of the first embodiment
The D concentration peak value was reduced to about half of the peak value of Comparative Example 2.

【0032】この様に、実施例1のシリコンウエーハ
は、BMD密度のピーク位置がデバイス活性層から離れ
ているため、比較例2のウエーハと比べてBMDに起因
するデバイス欠陥が生じ難い。また、実施例1のシリコ
ンウエーハは、比較例1のウエーハと比べて、大きなI
G効果が期待できる。
As described above, in the silicon wafer of Example 1, since the peak position of the BMD density is far from the device active layer, device defects caused by BMD hardly occur as compared with the wafer of Comparative Example 2. Further, the silicon wafer of Example 1 had a larger I compared to the wafer of Comparative Example 1.
G effect can be expected.

【0033】[0033]

【発明の効果】本発明によれば、BMD密集層をデバイ
ス活性層から遠ざけることによって、BMDの悪影響が
デバイス特性に及び難くすることができる。従って、本
発明のシリコンウエーハを用いれば、高品質の半導体デ
バイスを歩留まり良く製造することができる。
According to the present invention, the BMD dense layer is kept away from the device active layer, so that the adverse effect of the BMD can hardly reach the device characteristics. Therefore, by using the silicon wafer of the present invention, a high-quality semiconductor device can be manufactured with high yield.

【0034】なお、本発明は前述の実施例に限定されな
い。例えば、水素ガスをアルゴンガスに置換する温度を
1200℃−500℃の範囲で変えることにより、無欠
陥領域(DZ層)の直下のBMD密度や、BMD密度の
ピーク位置及びピーク幅を制御できる。例えば、900
℃でガス置換を行うと、BMD密度のピーク幅を120
0℃1hH2 の場合より小さく、ピーク位置を1200
℃1hH2 と1200℃1hH2 +Ar降温の間に来る
ようにできる。
The present invention is not limited to the above embodiment. For example, by changing the temperature at which the hydrogen gas is replaced with the argon gas in the range of 1200 ° C. to 500 ° C., the BMD density immediately below the defect-free region (DZ layer) and the peak position and peak width of the BMD density can be controlled. For example, 900
C., the BMD density peak width becomes 120
0 ° C., 1 hH 2 , smaller than 1200 ° C.
° C. 1HH 2 and can to come between 1200 ℃ 1hH 2 + Ar cooling.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例と比較例におけるBMD濃度の
変化の様子を示すグラフ。
FIG. 1 is a graph showing a change in BMD concentration in an example of the present invention and a comparative example.

【図2】本発明の実施例と比較例における酸素濃度を示
すグラフ。
FIG. 2 is a graph showing oxygen concentrations in Examples of the present invention and Comparative Examples.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 健郎 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 (72)発明者 竹田 隆二 神奈川県秦野市曽屋30番地 東芝セラミッ クス株式会社開発研究所内 ──────────────────────────────────────────────────続 き Continuing from the front page (72) Inventor Kenro Hayashi 30 Soya, Hadano-shi, Kanagawa Toshiba Ceramics Co., Ltd. Inside

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 CZシリコンウエーハに水素雰囲気で1
000℃以上の熱処理工程を行い、しかる後に降温工程
の一部又は全部をアルゴンガス雰囲気で行うことを特徴
とするシリコンウエーハの製造方法。
1. A method in which a CZ silicon wafer is subjected to hydrogen atmosphere in a hydrogen atmosphere.
A method for producing a silicon wafer, comprising: performing a heat treatment step at 000 ° C. or higher, and then performing a part or all of the temperature lowering step in an argon gas atmosphere.
【請求項2】 アルゴンガス雰囲気で行う降温工程の温
度が1200℃〜500℃の範囲に含まれることを特徴
とする請求項1に記載のシリコンウエーハの製造方法。
2. The method for producing a silicon wafer according to claim 1, wherein the temperature in the temperature lowering step performed in an argon gas atmosphere is in a range of 1200 ° C. to 500 ° C.
【請求項3】 請求項1に記載の方法で製造され、表層
に無欠陥層(DZ層)を有するシリコンウエーハにおい
て、酸素析出物(BMD)が集中しているBMD高密度
領域が、無欠陥層(DZ層)の内側境界より所定距離だ
け内側に位置することを特徴とするシリコンウエーハ。
3. A silicon wafer having a defect-free layer (DZ layer) on a surface layer manufactured by the method according to claim 1, wherein a BMD high-density region in which oxygen precipitates (BMD) are concentrated is defect-free. A silicon wafer which is located at a predetermined distance inside from an inner boundary of a layer (DZ layer).
JP30861096A 1996-11-06 1996-11-06 Silicon wafer Expired - Lifetime JP3886576B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30861096A JP3886576B2 (en) 1996-11-06 1996-11-06 Silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30861096A JP3886576B2 (en) 1996-11-06 1996-11-06 Silicon wafer

Publications (2)

Publication Number Publication Date
JPH10144696A true JPH10144696A (en) 1998-05-29
JP3886576B2 JP3886576B2 (en) 2007-02-28

Family

ID=17983123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30861096A Expired - Lifetime JP3886576B2 (en) 1996-11-06 1996-11-06 Silicon wafer

Country Status (1)

Country Link
JP (1) JP3886576B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110683A (en) * 2000-09-26 2002-04-12 Sumitomo Metal Ind Ltd Thermal processing method of silicon semiconductor substrate
WO2002035599A1 (en) * 2000-10-25 2002-05-02 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
WO2002052632A1 (en) * 2000-12-22 2002-07-04 Komatsu Denshi Kinzoku Kabushiki Kaisha Method of heat treatment of silicon wafer doped with boron
JP2005333090A (en) * 2004-05-21 2005-12-02 Sumco Corp P-type silicon wafer and method for heat-treatment thereof
CN109075076A (en) * 2016-04-27 2018-12-21 环球晶圆日本股份有限公司 silicon wafer

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002110683A (en) * 2000-09-26 2002-04-12 Sumitomo Metal Ind Ltd Thermal processing method of silicon semiconductor substrate
WO2002035599A1 (en) * 2000-10-25 2002-05-02 Shin-Etsu Handotai Co., Ltd. Production method for silicon wafer and silicon wafer
JP2002134515A (en) * 2000-10-25 2002-05-10 Shin Etsu Handotai Co Ltd Silicon wafer and its manufacturing method
US7078357B2 (en) 2000-10-25 2006-07-18 Shin-Etsu Handotai Co., Ltd. Method for manufacturing silicon wafer and silicon wafer
EP1347508A4 (en) * 2000-12-22 2005-09-14 Komatsu Denshi Kinzoku Kk Method of heat treatment of silicon wafer doped with boron
EP1347508A1 (en) * 2000-12-22 2003-09-24 Komatsu Denshi Kinzoku Kabushiki Kaisha Method of heat treatment of silicon wafer doped with boron
JP2002190478A (en) * 2000-12-22 2002-07-05 Komatsu Electronic Metals Co Ltd Method for heat-treating boron-doped silicon wafer
WO2002052632A1 (en) * 2000-12-22 2002-07-04 Komatsu Denshi Kinzoku Kabushiki Kaisha Method of heat treatment of silicon wafer doped with boron
US7754585B2 (en) 2000-12-22 2010-07-13 Sumco Techxiv Corporation Method of heat treatment of silicon wafer doped with boron
JP2005333090A (en) * 2004-05-21 2005-12-02 Sumco Corp P-type silicon wafer and method for heat-treatment thereof
US7939441B2 (en) 2004-05-21 2011-05-10 Sumco Corporation P-type silicon wafer and method for heat-treating the same
CN109075076A (en) * 2016-04-27 2018-12-21 环球晶圆日本股份有限公司 silicon wafer
CN109075076B (en) * 2016-04-27 2023-03-24 环球晶圆日本股份有限公司 Silicon wafer

Also Published As

Publication number Publication date
JP3886576B2 (en) 2007-02-28

Similar Documents

Publication Publication Date Title
US6958092B2 (en) Epitaxial silicon wafer with intrinsic gettering and a method for the preparation thereof
EP1758154B1 (en) Method for producing silicon wafer
KR100423752B1 (en) A Semiconductor Silicon Wafer and a Method for making thereof
JP6044660B2 (en) Silicon wafer manufacturing method
US6599815B1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
JP4154881B2 (en) Heat treatment method for silicon semiconductor substrate
US6273944B1 (en) Silicon wafer for hydrogen heat treatment and method for manufacturing the same
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
US6339016B1 (en) Method and apparatus for forming an epitaxial silicon wafer with a denuded zone
WO2010131412A1 (en) Silicon wafer and method for producing the same
WO2002049091A1 (en) Anneal wafer manufacturing method and anneal wafer
JP4055343B2 (en) Heat treatment method for silicon semiconductor substrate
JPH10144696A (en) Silicon wafer and its manufacture
US20050032337A1 (en) Method and apparatus for forming a silicon wafer with a denuded zone
US6579589B1 (en) Semiconductor wafer with crystal lattice defects, and process for producing this semiconductor wafer
JP3578397B2 (en) Semiconductor disk having crystal lattice defects and method of manufacturing the same
JP2009164155A (en) Method of manufacturing silicon wafer
JPH0324058B2 (en)
JPH08162461A (en) Method of heat treating semiconductor substrate
JP2002176058A (en) Method of manufacturing silicon semiconductor substrate
JP2003100759A (en) Method for manufacturing epitaxial silicon wafer
JPH05102167A (en) Heat treatment of silicon
JPH06321692A (en) Production of silicon wafer
JP2001102384A (en) Manufacturing method of epitaxial silicon wafer
JPH06166595A (en) Silicon wafer

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20031224

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050628

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091201

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101201

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111201

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121201

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131201

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term