JP2009164155A - Method of manufacturing silicon wafer - Google Patents

Method of manufacturing silicon wafer Download PDF

Info

Publication number
JP2009164155A
JP2009164155A JP2007339041A JP2007339041A JP2009164155A JP 2009164155 A JP2009164155 A JP 2009164155A JP 2007339041 A JP2007339041 A JP 2007339041A JP 2007339041 A JP2007339041 A JP 2007339041A JP 2009164155 A JP2009164155 A JP 2009164155A
Authority
JP
Japan
Prior art keywords
temperature
atoms
heat treatment
less
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2007339041A
Other languages
Japanese (ja)
Inventor
Katsuhiko Nakai
克彦 中居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siltronic AG
Original Assignee
Siltronic AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siltronic AG filed Critical Siltronic AG
Priority to JP2007339041A priority Critical patent/JP2009164155A/en
Publication of JP2009164155A publication Critical patent/JP2009164155A/en
Ceased legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a silicon wafer in which slip dislocation and curving in a device manufacturing process can be both prevented. <P>SOLUTION: Before a silicon single-crystal substrate is subjected to a usual annealing process (high-temperature heat treatment step D), heat treatments (A, B and C) are carried out at temperatures lower than usual to adjust a change amount ΔCs (atoms/cm<SP>3</SP>) of a substitution type carbon concentration (atoms/cm<SP>3</SP>) before the after the heat treatments in the range of ≥1.0×10<SP>15</SP>atoms/cm<SP>3</SP>and ≤1.0×10<SP>17</SP>atoms/cm<SP>3</SP>. Also, a change amount ΔOi (atoms/cm<SP>3</SP>) of an interstitial oxygen concentration (atoms/cm<SP>3</SP>) is adjusted in the range of ≥1.0×10<SP>17</SP>atoms/cm<SP>3</SP>and ≤6.0×10<SP>17</SP>atoms/cm<SP>3</SP>. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、半導体ウエハ製造技術分野において、特に、デバイス製造プロセスにおいてスリップ転位及び反りの発生を共に抑制することができるシリコンウエハ及びその製造技術に関する。   The present invention relates to a semiconductor wafer manufacturing technology field, and more particularly to a silicon wafer that can suppress both occurrence of slip dislocation and warpage in a device manufacturing process, and a manufacturing technology thereof.

半導体デバイスなどの基板として用いられるシリコンウエハは、シリコン単結晶インゴットをスライスして、熱処理や鏡面加工等を行うことにより製造される。こうしたシリコン単結晶インゴットの製造方法としては、たとえば、チョクラルスキ法(以下、「CZ法」とする。)が挙げられる。CZ法は、大口径の単結晶インゴットを得やすいことや、欠陥の制御が比較的容易であるなどの理由により、シリコン単結晶インゴットの製造の大部分を占める。   A silicon wafer used as a substrate of a semiconductor device or the like is manufactured by slicing a silicon single crystal ingot and performing heat treatment, mirror processing, or the like. Examples of a method for producing such a silicon single crystal ingot include the Czochralski method (hereinafter referred to as “CZ method”). The CZ method occupies most of the production of a silicon single crystal ingot because it is easy to obtain a large-diameter single crystal ingot and the defect control is relatively easy.

CZ法によって引き上げられたシリコン単結晶(以下、「CZ−Si」とする)は、grown−in欠陥と呼ばれる結晶欠陥が存在する。またCZ−Siは、酸素を格子間に過飽和に取り込んでいるが、こうした過飽和酸素は、その後の熱処理(アニール)で、Bulk Micro Defect(以下、「BMD」とする。)と称される微小欠陥(酸素析出核)を誘起する原因となる。   A silicon single crystal pulled by the CZ method (hereinafter referred to as “CZ-Si”) has a crystal defect called a grown-in defect. CZ-Si incorporates oxygen into the supersaturation between lattices. Such supersaturated oxygen is a micro defect called “Bulk Micro Defect” (hereinafter referred to as “BMD”) in the subsequent heat treatment (annealing). Causes (oxygen precipitation nuclei).

シリコンウエハに半導体デバイスを形成するには、半導体デバイス形成領域に結晶欠陥がないことが求められる。回路を形成する面に結晶欠陥が存在すると、その欠陥部分から回路破壊等を引き起こす原因となるためである。一方でシリコンウエハ内部には適度なBMDが存在することが求められる。このようなBMDは半導体デバイス動作不良の原因となる金属不純物などをゲッタリングする作用があるためである。   In order to form a semiconductor device on a silicon wafer, it is required that the semiconductor device formation region has no crystal defects. This is because if a crystal defect exists on the surface on which the circuit is formed, the defective portion causes a circuit breakdown or the like. On the other hand, appropriate BMD is required to be present inside the silicon wafer. This is because such a BMD has an action of gettering a metal impurity or the like that causes a semiconductor device malfunction.

上記要求を満たすため、シリコンウエハを高温アニールすることによって、シリコンウエハの内部にBMDを誘起してIntrinsic Gettering層(以下、「IG層」とする。)を形成するとともに、シリコンウエハの表面に存在するgrown−in欠陥を消滅させ、結晶欠陥の限りなく少ないDenuded Zone(以下、「DZ層」とする。)層を形成する手法が用いられる。   In order to satisfy the above requirements, the silicon wafer is annealed at a high temperature to induce BMD inside the silicon wafer to form an intrinsic gettering layer (hereinafter referred to as “IG layer”) and to exist on the surface of the silicon wafer. A technique is used in which grown-in defects to be eliminated are eliminated and a denuded zone (hereinafter referred to as “DZ layer”) layer having as few crystal defects as possible is formed.

具体例として、窒素添加したサブストレートを高温アニールすることで、表面のgrown−in欠陥を低減するとともに、窒素を核としたBMDを内部に形成させる方法(特許文献1)が提案されている。   As a specific example, there has been proposed a method (Patent Document 1) in which a nitrogen-added substrate is annealed at a high temperature to reduce the surface grown-in defects and to form a BMD having nitrogen as a nucleus inside.

ところが、前記の高温アニール過程によりシリコンウエハ表裏面に形成したDZ層は、熱処理中の酸素の外方拡散により酸素濃度が極端に低下している。その結果、ウエハ表裏面の転位欠陥伸展の抑制力が著しく低下するため、アニール工程で導入された表裏面の微小傷から、転位欠陥(以下、「スリップ」とする。)がバルク中に伸展しやすく、こうしたスリップ転位の伸展によってシリコンウエハの強度が低下するという問題があった。たとえば、熱処理ポボート等によって支持した状態でアニールをおこなうと、ウエハの裏面周辺の支持されている部分からスリップ転位が伸展することがしばしばある。また、シリコンウエハエッジ部からスリップ転位が伸展することもある。   However, the oxygen concentration of the DZ layer formed on the front and back surfaces of the silicon wafer by the high temperature annealing process is extremely reduced due to the outward diffusion of oxygen during the heat treatment. As a result, the ability to suppress dislocation defect extension on the front and back surfaces of the wafer is remarkably reduced, so that dislocation defects (hereinafter referred to as “slip”) extend into the bulk from the minute scratches on the front and back surfaces introduced in the annealing process. There is a problem that the strength of the silicon wafer is lowered due to the extension of the slip dislocation. For example, when annealing is performed in a state where it is supported by a heat treatment pobot or the like, slip dislocations often extend from a supported portion around the back surface of the wafer. Also, slip dislocations may extend from the silicon wafer edge.

シリコンウエハの強度が低下すると、製造工程中にウエハが損傷したり、破壊されたりするといった事態が生じる懸念がある。しかしながら、DZ層は半導体デバイス形成には不可欠であり、DZ層を有しつつ強度特性に優れたシリコンウエハが求められていた。   When the strength of the silicon wafer decreases, there is a concern that the wafer may be damaged or destroyed during the manufacturing process. However, the DZ layer is indispensable for semiconductor device formation, and a silicon wafer having a DZ layer and having excellent strength characteristics has been demanded.

下記特許文献1に記載の従来技術ではシリコンウエハの強度低下に関する配慮がなされておらず、このような方法で作ったシリコンウエハはスリップ転位の伸展を避けることができなかった。
一方で、このようなスリップ転位の発生を防止するために、高密度にBMDを発生させる方法も提案されている。
In the prior art described in Patent Document 1 below, no consideration is given to the strength reduction of the silicon wafer, and the silicon wafer made by such a method cannot avoid the extension of slip dislocation.
On the other hand, in order to prevent the occurrence of such slip dislocation, a method of generating BMD at a high density has also been proposed.

具体的には、シリコン単結晶インゴットから切り出したサブストレートを、窒素ガスまたは不活性ガスあるいはアンモニアガスと不活性ガスとの混合ガスの雰囲気下で、温度500〜1200℃、時間1〜600分の範囲内で急速昇降温熱処理することにより、20nm以下のサイズのBMDを1×1010atoms/cm以上形成するシリコンウエハ製造方法が提案されている(特許文献2)。また、酸素濃度が1.2×1018〜1.4×1018atoms/cm、炭素濃度が0.5×1016〜2×1017atoms/cmのシリコンウエハを、非酸化性雰囲気中で、温度1100〜1250℃、時間1〜5時間、1100〜1250℃の温度範囲の昇温レート0.1〜1℃/minの条件で熱処理することにより、150nm以下のサイズのBMDを5×10atoms/cm以上形成するシリコンウエハ製造方法も提案されている(特許文献3)。また、熱処理を数工程繰り返すことにより、高濃度(1×1010 atoms/cm〜1×1012 atoms/cm)のBMDを発生させたシリコンウエハも提案されている(特許文献4)。
特開平10−98047号公報 特開2006−40980号公報 特開2006−269896号公報 特開平08−213403号公報
Specifically, a substrate cut out from a silicon single crystal ingot is heated at a temperature of 500 to 1200 ° C. for 1 to 600 minutes in an atmosphere of nitrogen gas, an inert gas, or a mixed gas of ammonia gas and inert gas. There has been proposed a silicon wafer manufacturing method in which a BMD having a size of 20 nm or less is formed at 1 × 10 10 atoms / cm 3 or more by performing rapid heating / cooling heat treatment within the range (Patent Document 2). Further, a silicon wafer having an oxygen concentration of 1.2 × 10 18 to 1.4 × 10 18 atoms / cm 3 and a carbon concentration of 0.5 × 10 16 to 2 × 10 17 atoms / cm 3 is formed in a non-oxidizing atmosphere. Among them, BMD having a size of 150 nm or less is reduced to 5 by heat treatment under conditions of a temperature rise rate of 0.1 to 1 ° C./min in a temperature range of 1100 to 1250 ° C., a time of 1 to 5 hours, and a temperature range of 1100 to 1250 ° C. A silicon wafer manufacturing method in which × 10 9 atoms / cm 3 or more is formed has also been proposed (Patent Document 3). In addition, a silicon wafer in which BMD having a high concentration (1 × 10 10 atoms / cm 3 to 1 × 10 12 atoms / cm 3 ) is generated by repeating several heat treatments has been proposed (Patent Document 4).
JP-A-10-98047 JP 2006-40980 A JP 2006-269896 A Japanese Patent Laid-Open No. 08-213403

しかし、近年シリコンウエハが大径化し、かつ半導体デバイスパターンの集積度が大きくなるにつれて、スリップ転位の発生に加えて、ウエハに発生する反りが問題となってきた。   However, in recent years, as silicon wafers have increased in diameter and the degree of integration of semiconductor device patterns has increased, warpage generated in the wafer has become a problem in addition to the occurrence of slip dislocations.

熱処理によって導入されるスリップと反りの典型的な例の模式図を図1に示す。熱処理炉には大きく分けてバッチ式熱処理炉とRTA(Rapid Thermal Annealer)の二種類が存在する。スリップは、図1に示すようにシリコンウエハ裏面とシリコンウエハ保持部の接点、あるいはシリコンウエハエッジ部から導入される。導入されたスリップは110方向に伸び、場合によってはシリコンウエハ損傷や破壊を引き起こす。反りは、熱処理時の熱歪みによりシリコンウエハが変形する現象である。反ったシリコンウエハを上から見ると、例えば図1に示すようにウエハ中心部が谷型に窪んでエッジ部より低くなる。通常、所望の特性を付与するための熱処理が行われる前のシリコンウエハの反りは10μm以下に抑えられている。しかし、熱処理が加わると、シリコンウエハの山と谷の高さの差は数十μmに達する場合もある。反りが大きくなると、ウエハ表面に半導体デバイスパターンを正確に露光できなくなり、半導体デバイス歩留まり低下の原因となる。熱歪みのかかり方はバッチ式熱処理炉とRTAで異なるため、ウエハに発生する反り、およびスリップの発生の仕方が異なる。一般的に、RTAはスリップが発生しやすく、バッチ式熱処理炉は反りが発生しやすい。   A schematic diagram of a typical example of slip and warpage introduced by heat treatment is shown in FIG. There are roughly two types of heat treatment furnaces: a batch heat treatment furnace and an RTA (Rapid Thermal Annealer). As shown in FIG. 1, the slip is introduced from the contact point between the back surface of the silicon wafer and the silicon wafer holding portion or the silicon wafer edge portion. The introduced slip extends in the 110 direction, and in some cases, causes damage or destruction of the silicon wafer. Warpage is a phenomenon in which a silicon wafer is deformed by thermal distortion during heat treatment. When the warped silicon wafer is viewed from above, for example, as shown in FIG. 1, the center portion of the wafer is recessed in a valley shape and becomes lower than the edge portion. Usually, warpage of a silicon wafer before heat treatment for imparting desired characteristics is suppressed to 10 μm or less. However, when heat treatment is applied, the difference in height between the peaks and valleys of the silicon wafer may reach several tens of μm. When the warpage becomes large, the semiconductor device pattern cannot be accurately exposed on the wafer surface, which causes a decrease in the yield of semiconductor devices. Since the method of applying thermal strain differs between the batch type heat treatment furnace and the RTA, the method of generating warpage and slip is different. In general, RTA tends to cause slip, and batch type heat treatment furnace tends to warp.

反りの問題はウエハ径が200mm以上になると顕著であり、BMD濃度を上記のように単に高濃度に規定するのみでは回避不可能であった。   The problem of warpage is remarkable when the wafer diameter is 200 mm or more, and cannot be avoided by simply defining the BMD concentration at a high concentration as described above.

そこで本発明が解決しようとする課題は、適切な広さのDZ層を有し、かつデバイス製造プロセスにおけるスリップ転位及び反りの発生を共に抑制することができるシリコンウエハの製造方法を提供することにある。   Therefore, the problem to be solved by the present invention is to provide a silicon wafer manufacturing method that has a DZ layer of an appropriate width and can suppress both occurrence of slip dislocation and warpage in the device manufacturing process. is there.

本出願に係る発明には以下の次の(1)〜(5)の発明が含まれる。
(1)シリコン単結晶サブストレート(以下、単に「サブストレート」と記す。)に熱処理を施す工程を含み、
熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)を1.0×1015atoms/cm以上1.0×1017atoms/cm以下の範囲で調整し、かつ格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)を1.0×1017atoms/cm以上6.0×1017atoms/cm以下の範囲で調整する、シリコンウエハの製造方法であって、
格子間酸素濃度Oiが7.5×1017atoms/cm以上9.5×1017atoms/cm以下
かつ置換型炭素濃度Csが2.0×1015atoms/cm以上2.0×1017atoms/cm以下
のサブストレートを用い、
前記熱処理を施す工程が、
A:保持温度T1を650℃以上800℃以下、保持時間Hを10分以上4時間以下にして熱処理する低温熱処理工程、
B:低温熱処理工程(A)に引き続き、最高温度T2をT1+50℃以上1000℃以下にして、最高温度T2までの昇温速度Rを0.1℃/分以上2℃/分以下にして昇温する昇温工程、
C:昇温工程(B)の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する降温・取出工程、及び
D:降温・取出工程(C)の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する高温熱処理工程
を含むことを特徴とする、シリコンウエハの製造方法。
The inventions according to the present application include the following inventions (1) to (5).
(1) including a step of performing heat treatment on a silicon single crystal substrate (hereinafter simply referred to as “substrate”),
The change amount ΔCs (atoms / cm 3 ) of the substitutional carbon concentration (atoms / cm 3 ) before and after the heat treatment is 1.0 × 10 15 atoms / cm 3 or more and 1.0 × 10 17 atoms / cm 3 or less. was adjusted in the range, and the interstitial oxygen concentration (atoms / cm 3) of the variation ΔOi (atoms / cm 3) to 1.0 × 10 17 atoms / cm 3 or more 6.0 × 10 17 atoms / cm 3 or less of A silicon wafer manufacturing method that adjusts in a range,
The interstitial oxygen concentration Oi is 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less, and the substitutional carbon concentration Cs is 2.0 × 10 15 atoms / cm 3 or more and 2.0 ×. Using a substrate of 10 17 atoms / cm 3 or less,
The step of performing the heat treatment includes
A: a low-temperature heat treatment step for heat treatment with a holding temperature T1 of 650 ° C. to 800 ° C. and a holding time H of 10 minutes to 4 hours,
B: Following the low temperature heat treatment step (A), the maximum temperature T2 is set to T1 + 50 ° C. to 1000 ° C., and the temperature rising rate R up to the maximum temperature T2 is set to 0.1 ° C./min to 2 ° C./min. A temperature raising step,
C: After the temperature raising step (B), the take-out temperature T3 when taking out the substrate is set to 600 ° C. or more and 800 ° C. or less, and when T3 is lower than T2, the temperature is 1 ° C./min or more and 10 ° C./min or less. Lowering the temperature of the furnace at the temperature lowering rate, taking out the substrate from the furnace at the take-off temperature T3 and cooling it to room temperature, and D: After the temperature lowering / outtake process (C), the furnace temperature is 600 ° C or higher The wafer is inserted into the furnace at a temperature of 800 ° C. or lower, the temperature range from the temperature at the time of wafer insertion to less than 1100 ° C. is raised at a temperature increase rate of 5 ° C./min to 10 ° C./min, and The temperature range from 1100 ° C. to 1250 ° C. is to raise the temperature of the furnace at a rate of temperature rise of 1 ° C./min to 2 ° C./min, and to maintain the furnace temperature at a constant temperature of 1000 ° C. to 1250 ° C. Including high temperature heat treatment process A method for producing a silicon wafer.

(2) サブストレートに熱処理を施す工程を含むシリコンウエハの製造方法であって、
熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)と格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が
ΔCs(atoms/cm)が1.0×1015atoms/cm以上、
かつΔOi(atoms/cm)が1.0×1017atoms/cm以上、
かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすことを特徴とする、シリコンウエハの製造方法。
(2) A silicon wafer manufacturing method including a step of heat-treating a substrate,
The range of variation ΔOi variation ΔCs (atoms / cm 3) interstitial oxygen concentration of substitutional carbon concentration after heat treatment before heat treatment (atoms / cm 3) (atoms / cm 3) (atoms / cm 3) ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3 or more,
And ΔOi (atoms / cm 3 ) is 1.0 × 10 17 atoms / cm 3 or more,
And the manufacturing method of the silicon wafer characterized by satisfy | filling the relationship of (DELTA) Cs> = 2.0 * 10 < 13 > * exp ((DELTA) Oi * 1.5 * 10 < -17 >).

(3) 格子間酸素濃度Oiが
7.5×1017atoms/cm以上9.5×1017atoms/cm以下
かつ置換型炭素濃度Csが2.0×1015atoms/cm以上2.0×1016atoms/cm未満
のサブストレートを用い、
前記熱処理を施す工程が、
A:保持温度T1を650℃以上750℃以下、保持時間Hを10分以上4時間以下にして熱処理する低温熱処理工程、
B:低温熱処理工程(A)に引き続き、最高温度T2をT1+50℃以上850℃以下にして、最高温度T2までの昇温速度Rを0.5℃/分以上2℃/分以下にして昇温する昇温工程、
C:昇温工程(B)の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する降温・取出工程、及び
D:降温・取出工程(C)の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する高温熱処理工程
を含むことを特徴とする、(2)の製造方法。
(3) Interstitial oxygen concentration Oi is 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less and substitutional carbon concentration Cs is 2.0 × 10 15 atoms / cm 3 or more 2 Using a substrate of less than 0.0 × 10 16 atoms / cm 3 ,
The step of performing the heat treatment includes
A: a low temperature heat treatment step in which heat treatment is performed at a holding temperature T1 of 650 ° C. to 750 ° C. and a holding time H of 10 minutes to 4 hours,
B: Following the low-temperature heat treatment step (A), the maximum temperature T2 is set to T1 + 50 ° C. or more and 850 ° C. or less, and the temperature increase rate R to the maximum temperature T2 is set to 0.5 ° C./min or more and 2 ° C./min or less. A temperature raising step,
C: After the temperature raising step (B), the take-out temperature T3 when taking out the substrate is set to 600 ° C. or more and 800 ° C. or less, and when T3 is lower than T2, it is 1 ° C./min or more and 10 ° C./min or less. Lowering the temperature of the furnace at the temperature lowering rate, taking out the substrate from the furnace at the take-off temperature T3 and cooling it to room temperature, and D: After the temperature lowering / outtake process (C), the furnace temperature is 600 ° C or higher The wafer is inserted into the furnace at a temperature of 800 ° C. or less, and the temperature range from the temperature at the time of wafer insertion to less than 1100 ° C. is raised at a temperature increase rate of 5 ° C./min or more and 10 ° C./min or less, and The temperature range from 1100 ° C. to 1250 ° C. is to raise the temperature of the furnace at a rate of temperature rise of 1 ° C./min to 2 ° C./min, and to maintain the furnace temperature at a constant temperature of 1000 ° C. to 1250 ° C. Including high temperature heat treatment process The manufacturing method of (2) characterized by the above-mentioned.

(4) サブストレートに熱処理を施す工程を含むシリコンウエハの製造方法であって、
熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)と格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が
ΔCs(atoms/cm)が1.0×1016atoms/cm以上、
かつΔOi(atoms/cm)が1.0×1017atoms/cm以上、
かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすことを特徴とする、シリコンウエハの製造方法。
(4) A method for producing a silicon wafer, including a step of heat-treating a substrate,
The range of variation ΔOi variation ΔCs (atoms / cm 3) interstitial oxygen concentration of substitutional carbon concentration after heat treatment before heat treatment (atoms / cm 3) (atoms / cm 3) (atoms / cm 3) ΔCs (atoms / cm 3 ) is 1.0 × 10 16 atoms / cm 3 or more,
And ΔOi (atoms / cm 3) is 1.0 × 10 17 atoms / cm 3 or more,
And the manufacturing method of the silicon wafer characterized by satisfy | filling the relationship of (DELTA) Cs> = 2.0 * 10 < 13 > * exp ((DELTA) Oi * 1.5 * 10 < -17 >).

(5) 格子間酸素濃度Oiが
7.5×1017atoms/cm以上9.5×1017atoms/cm以下
かつ置換型炭素濃度Csが2.0×1016atoms/cm以上2.0×1017atoms/cm以下
のサブストレートを用い、
前記熱処理を施す工程が、
A:保持温度T1を700℃以上800℃以下、保持時間Hを10分以上4時間以下にして熱処理する低温熱処理工程、
B:低温熱処理工程(A)に引き続き、最高温度T2をT1+50℃以上900℃以下にして、最高温度T2までの昇温速度Rを0.5℃/分以上2℃/分以下にして昇温する昇温工程、
C:昇温工程(B)の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する降温・取出工程、及び
D:降温・取出工程(C)の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する高温熱処理工程
を含むことを特徴とする、(4)の製造方法。
(5) Interstitial oxygen concentration Oi is 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less, and substitutional carbon concentration Cs is 2.0 × 10 16 atoms / cm 3 or more 2 Using a substrate of 0.0 × 10 17 atoms / cm 3 or less,
The step of performing the heat treatment includes
A: a low temperature heat treatment step in which heat treatment is performed with a holding temperature T1 of 700 ° C. to 800 ° C. and a holding time H of 10 minutes to 4 hours,
B: Following the low temperature heat treatment step (A), the maximum temperature T2 is increased from T1 + 50 ° C. to 900 ° C., and the temperature increase rate R up to the maximum temperature T2 is increased from 0.5 ° C./min to 2 ° C./min. A temperature raising step,
C: After the temperature raising step (B), the take-out temperature T3 when taking out the substrate is set to 600 ° C. or more and 800 ° C. or less, and when T3 is lower than T2, it is 1 ° C./min or more and 10 ° C./min or less. Lowering the temperature of the furnace at the temperature lowering rate, taking out the substrate from the furnace at the take-off temperature T3 and cooling it to room temperature, and D: After the temperature lowering / outtake process (C), the furnace temperature is 600 ° C or higher The wafer is inserted into the furnace at a temperature of 800 ° C. or less, and the temperature range from the temperature at the time of wafer insertion to less than 1100 ° C. is raised at a temperature increase rate of 5 ° C./min or more and 10 ° C./min or less, and The temperature range from 1100 ° C. to 1250 ° C. is to raise the temperature of the furnace at a rate of temperature rise of 1 ° C./min to 2 ° C./min, and to maintain the furnace temperature at a constant temperature of 1000 ° C. to 1250 ° C. Including high temperature heat treatment process The manufacturing method of (4) characterized by the above-mentioned.

本発明の製造方法によれば、サブストレートの格子間酸素濃度、置換型炭素濃度、及びが熱処理条件を制御することにより、デバイス製造プロセスにおけるスリップ転位及び反りの発生を共に抑制することができるシリコンウエハを製造することができる。   According to the manufacturing method of the present invention, by controlling the interstitial oxygen concentration of the substrate, the substitutional carbon concentration, and the heat treatment conditions, it is possible to suppress both generation of slip dislocation and warpage in the device manufacturing process. Wafers can be manufactured.

以下、本発明を実施の形態に即して詳細に説明する。
[第1形態例]
図2は本発明の製造方法における一連の熱処理工程を示す流れ図である。図3は本発明の製造方法における熱処理温度の経時的な変化の仕方を曲線(時間−温度曲線)で示した図である。
第1形態例では、サブストレートに通常のアニール処理(高温熱処理工程(D))を施す前に、通常よりも低温で熱処理((A)〜(C))を施すことにより、熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)を1.0×1015atoms/cm以上1.0×1017atoms/cm以下の範囲で調整し、かつ格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)を1.0×1017atoms/cm以上6.0×1017atoms/cm以下の範囲で調整することを特徴としている。
Hereinafter, the present invention will be described in detail according to embodiments.
[First embodiment]
FIG. 2 is a flowchart showing a series of heat treatment steps in the production method of the present invention. FIG. 3 is a diagram showing a curve (time-temperature curve) of how the heat treatment temperature changes with time in the production method of the present invention.
In the first embodiment, before the normal annealing treatment (high-temperature heat treatment step (D)) is performed on the substrate, the heat treatment ((A) to (C)) is performed at a temperature lower than usual, thereby performing the heat treatment and the heat treatment. The amount of change ΔCs (atoms / cm 3 ) in the subsequent substitutional carbon concentration (atoms / cm 3 ) is adjusted in the range of 1.0 × 10 15 atoms / cm 3 to 1.0 × 10 17 atoms / cm 3. And the change amount ΔOi (atoms / cm 3 ) of the interstitial oxygen concentration (atoms / cm 3 ) is adjusted in the range of 1.0 × 10 17 atoms / cm 3 or more and 6.0 × 10 17 atoms / cm 3 or less. It is characterized by that.

これは、本発明者等による以下に説明する知見に基づく。すなわち、ΔOiを1.0×1017atoms/cm以上にすることで、一般的デバイス製造プロセスにおいて、極めてスリップの発生を小さく(典型的には15mm以下)抑えられたことである。また、これにより、デバイス製造プロセスにおいてウエハ支持部からスリップが発生した場合でも、シリコンウエハ表面に突き抜けることを防止でき、ウエハエッジ部にスリップが発生した場合においても、半導体デバイス作成領域にまでスリップが到達することを防止でき、デバイスへの悪影響を防止できたことである。これは、ΔOiが1.0×1017atoms/cm以上であるようなアニールウエハの内部には、高密度で十分な大きさのBMDが形成されており、それらがスリップの進展を妨げるものと思われる。 This is based on the knowledge described below by the present inventors. That is, when ΔOi is set to 1.0 × 10 17 atoms / cm 3 or more, the occurrence of slip can be extremely suppressed (typically 15 mm or less) in a general device manufacturing process. This also prevents the silicon wafer surface from penetrating even if a slip occurs from the wafer support part in the device manufacturing process. Even if a slip occurs on the wafer edge part, the slip reaches the semiconductor device creation region. It was possible to prevent the adverse effects on the device. This is because BMD having a high density and a sufficient size is formed inside the annealed wafer whose ΔOi is 1.0 × 10 17 atoms / cm 3 or more, which prevents the progress of slip. I think that the.

また、ΔCsを1.0×1015atoms/cm以上にすることで、一般的なデバイス製造プロセスにおける反り増加量=(プロセス後の反り量−プロセス前の反り量)を小さく(典型的には50μm以下)抑えることができたことである。これは、アニールウエハ内部のBMDに炭素が取り込まれ、その結果BMDからの転位の発生が抑制されたためと考えられる。 Further, by setting ΔCs to 1.0 × 10 15 atoms / cm 3 or more, a warp increase amount in a general device manufacturing process = (warp amount after process−warp amount before process) is reduced (typically Is 50 μm or less). This is presumably because carbon was taken into the BMD inside the annealed wafer, and as a result, generation of dislocations from the BMD was suppressed.

ΔOiを1.0×1017atoms/cm以上、かつΔCsを1.0×1015atoms/cm以上にするためには、BMDの個数は多い方が好ましく、典型的には5×1011/cm以上あることが望ましい。BMDが5×1011/cm未満である場合は、後述する熱処理条件でも、ΔOiが1.0×1017atoms/cm未満、あるいはΔCsが1.0×1015atoms/cm未満になる場合があり、ΔOiとΔCsを容易に制御することができない。
なお、ΔOiの上限、およびΔCsの上限は、後述するようにサブストレートの格子間酸素濃度、あるいは置換型炭素濃度の上限で規定される。
In order to set ΔOi to 1.0 × 10 17 atoms / cm 3 or more and ΔCs to 1.0 × 10 15 atoms / cm 3 or more, it is preferable that the number of BMDs is large, typically 5 × 10. It is desirable that there are 11 / cm 3 or more. When BMD is less than 5 × 10 11 / cm 3 , ΔOi is less than 1.0 × 10 17 atoms / cm 3 or ΔCs is less than 1.0 × 10 15 atoms / cm 3 even under the heat treatment conditions described later. In some cases, ΔOi and ΔCs cannot be easily controlled.
Note that the upper limit of ΔOi and the upper limit of ΔCs are defined by the upper limit of the interstitial oxygen concentration of the substrate or the substitutional carbon concentration, as will be described later.

サブストレートには、格子間酸素濃度Oiが7.5×1017atoms/cm以上9.5×1017atoms/cm以下で、且つ、置換型炭素濃度Csが2.0×1015atoms/cm以上2.0×1017atoms/cm以下のものを使用する。 The substrate has an interstitial oxygen concentration Oi of 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less, and a substitutional carbon concentration Cs of 2.0 × 10 15 atoms. / Cm 3 or more and 2.0 × 10 17 atoms / cm 3 or less are used.

ここで、格子間酸素濃度が7.5×1017atoms/cm未満の場合は、ΔOiを1.0×1017atoms/cm以上にすることはできず、置換型炭素濃度が2.0×1015atoms/cm未満の場合は、ΔCsを1.0×1015atoms/cm以上にすることはできない。格子間酸素濃度を9.5×1017atoms/cm超にした結晶を安定的に生産することは困難であり、また置換型炭素濃度が2.0×1017atoms/cm超になった場合、多結晶化が起こりやすくなるので好ましくない。サブストレートの格子間酸素濃度が9.5×1017atoms/cm以下の場合は、ΔOiは6.0×1017atoms/cmを超えることはなく、またサブストレートの置換型炭素濃度が、2.0×1017atoms/cm以下の場合、ΔCsは1.0×1017atoms/cmを超えることはない。 Here, when the interstitial oxygen concentration is less than 7.5 × 10 17 atoms / cm 3 , ΔOi cannot be 1.0 × 10 17 atoms / cm 3 or more, and the substitutional carbon concentration is 2. When it is less than 0 × 10 15 atoms / cm 3 , ΔCs cannot be 1.0 × 10 15 atoms / cm 3 or more. It is difficult to stably produce crystals having an interstitial oxygen concentration exceeding 9.5 × 10 17 atoms / cm 3 , and the substitutional carbon concentration is exceeding 2.0 × 10 17 atoms / cm 3. In this case, polycrystallization tends to occur, which is not preferable. When the interstitial oxygen concentration of the substrate is 9.5 × 10 17 atoms / cm 3 or less, ΔOi does not exceed 6.0 × 10 17 atoms / cm 3, and the substitutional carbon concentration of the substrate is , 2.0 × 10 17 atoms / cm 3 or less, ΔCs does not exceed 1.0 × 10 17 atoms / cm 3 .

このサブストレートに、低温熱処理工程(A)、昇温工程(B)、降温・取出工程(C)、及び高温熱処理工程(D)からなる一連の熱処理を実施する。以下順に説明する。   A series of heat treatments including a low temperature heat treatment step (A), a temperature rise step (B), a temperature drop / removal step (C), and a high temperature heat treatment step (D) are performed on the substrate. This will be described in order below.

低温熱処理工程(A):未熱処理のサブストレートに対して、保持温度T1を650℃以上800℃以下、保持時間Hを10分以上4時間以下にして熱処理を行う。この低温熱処理工程(A)により、アニールウエハ内部に高密度なBMD(典型的には5×1011/cm以上)が形成され、ΔOiを1.0×1017atoms/cm以上、かつΔCsを1.0×1015atoms/cm以上にすることが可能となる。ここで、保持温度T1が650℃未満、あるいは800℃超の場合、あるいは保持時間Hが10分未満の場合は、BMD密度が5×1011/cm未満となるため、ΔOiを1.0×1017atoms/cm以上、かつΔCsを1.0×1015atoms/cm以上にすることができなくなる。保持時間H1に上限は特にないが、4時間超になると製造工程が長くなり、生産性が低下するため好ましくない。 Low-temperature heat treatment step (A): Heat treatment is performed on the unheated substrate at a holding temperature T1 of 650 ° C. to 800 ° C. and a holding time H of 10 minutes to 4 hours. By this low-temperature heat treatment step (A), high-density BMD (typically 5 × 10 11 / cm 3 or more) is formed inside the annealed wafer, ΔOi is 1.0 × 10 17 atoms / cm 3 or more, and ΔCs can be set to 1.0 × 10 15 atoms / cm 3 or more. Here, when the holding temperature T1 is less than 650 ° C. or more than 800 ° C., or when the holding time H is less than 10 minutes, the BMD density is less than 5 × 10 11 / cm 3 , so ΔOi is 1.0. × 10 17 atoms / cm 3 or more and ΔCs cannot be made 1.0 × 10 15 atoms / cm 3 or more. There is no particular upper limit on the holding time H1, but if it exceeds 4 hours, the production process becomes longer and the productivity is lowered, which is not preferable.

昇温工程(B):低温熱処理(A)の後、最高温度T2をT1+50℃以上1000℃以下にして、最高温度T2までの昇温速度Rを0.1℃/分以上2℃/分以下にして昇温する。この昇温工程(B)により、低温熱処理で発生したBMDを大きくして、高温熱処理工程(D)でも消滅しないサイズにする。同時に、アニール後のΔOiとΔCsをこの工程で調整する。最高温度T2がT1+50℃未満の場合、および昇温速度Rが2℃/分超の場合は、BMDが十分成長しないので、高温熱処理工程(D)でBMDが消滅してしまう。その結果、BMD密度が5×1011/cm未満になってしまう。最高温度T2が高くなるほど、ΔOiとΔCsは大きくなるが、最高温度T2が1000℃を超えると、それ以上ΔOiとΔCsは増えなくなる。昇温速度Rが小さくなるほど、ΔOiとΔCsは大きくなるが、昇温速度が0.1℃/分未満になると安定した昇温レートが確保できなくなるので好ましくない。 Temperature rising step (B): After the low temperature heat treatment (A), the maximum temperature T2 is set to T1 + 50 ° C. or more and 1000 ° C. or less, and the temperature rising rate R to the maximum temperature T2 is 0.1 ° C./min or more and 2 ° C./min or less. And raise the temperature. By this temperature raising step (B), the BMD generated by the low temperature heat treatment is enlarged so that it does not disappear even in the high temperature heat treatment step (D). At the same time, ΔOi and ΔCs after annealing are adjusted in this step. When the maximum temperature T2 is less than T1 + 50 ° C. and when the temperature rising rate R is more than 2 ° C./min, the BMD does not grow sufficiently, so the BMD disappears in the high temperature heat treatment step (D). As a result, the BMD density is less than 5 × 10 11 / cm 3 . As the maximum temperature T2 increases, ΔOi and ΔCs increase, but when the maximum temperature T2 exceeds 1000 ° C., ΔOi and ΔCs no longer increase. As the heating rate R decreases, ΔOi and ΔCs increase. However, if the heating rate is less than 0.1 ° C./min, a stable temperature rising rate cannot be secured, which is not preferable.

降温・取出工程(C):昇温工程(B)の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する。サブストレートを炉外に取り出すときの炉の温度は、600℃未満にすると炉のヒーターの寿命低下を招くため好ましくなく、800℃超にすると炉の部材が劣化するため好ましくない。降温速度は、一般的な炉で実現できる1℃/分以上10℃/分以下が好ましい。   Temperature drop / takeout step (C): After the temperature rise step (B), the takeout temperature T3 when taking out the substrate is set to 600 ° C. or higher and 800 ° C. or lower. The temperature of the furnace is lowered at a temperature lowering rate of 10 ° C./min or less, and the substrate is taken out from the furnace at the take-out temperature T3 and cooled to room temperature. When the temperature of the furnace when the substrate is taken out from the furnace is less than 600 ° C., it is not preferable because the life of the heater of the furnace is shortened, and when it exceeds 800 ° C., the members of the furnace are deteriorated. The temperature lowering rate is preferably 1 ° C./min or more and 10 ° C./min or less which can be realized in a general furnace.

上記の熱処理工程(A)〜(C)を実施することにより、サブストレート内にBMDが5×1011/cm以上形成され、かつ、ΔOi、およびΔCsを所定の範囲内に収めることが可能となる。 By performing the heat treatment steps (A) to (C), it is possible to form a BMD of 5 × 10 11 / cm 3 or more in the substrate and keep ΔOi and ΔCs within a predetermined range. It becomes.

高温熱処理工程(D):降温・取出工程(C)の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する。この温度範囲に保持する時間は、特に制限はないが、通常のアニール処理に要する時間(例えば、10分以上2時間以下)の範囲であればよい。   High-temperature heat treatment step (D): After the temperature lowering / removal step (C), the temperature of the furnace is set to 600 ° C. or higher and 800 ° C. or lower, and the wafer is inserted into the furnace. The temperature of the furnace is increased at a temperature increase rate of 5 ° C./min to 10 ° C./min, and the temperature range of 1100 ° C. to 1250 ° C. is 1 ° C./min to 2 ° C./min. The temperature of the furnace is raised and the temperature of the furnace is kept at a constant temperature at a temperature of 1000 ° C. or higher and 1250 ° C. or lower. The time for holding in this temperature range is not particularly limited, but may be in the range of the time required for normal annealing (for example, 10 minutes to 2 hours).

この高温熱処理工程(D)により、格子間酸素を外方拡散させ、シリコンウエハ表面に適切な広さのDZ層(典型的には5μm以上)を形成する。この工程において、ウエハを挿入するときの炉の温度は、(C)と同じ理由から、600℃未満と800℃超は好ましくない。1100℃未満までの昇温速度は、一般的な炉で実現できる5℃/分以上10℃/分以下が好ましく、1100℃以上の昇温速度は1℃/分以上2℃/分が好ましい。保持温度が1000℃未満であると格子間酸素の外方拡散に長時間要すこととなり生産性低下の観点から好ましくなく、保持温度が1250℃を超えると、アニール炉の部材劣化が激しくなり好ましくない。高温熱処理を行った後の降温速度、引出温度には特に制限はない。
このようにして製造されたシリコンウエハによれば、デバイス製造プロセスにおけるスリップ転位及び反りの発生を共に抑制することができる。
By this high-temperature heat treatment step (D), interstitial oxygen is diffused outward to form a DZ layer (typically 5 μm or more) having an appropriate width on the silicon wafer surface. In this step, the furnace temperature when the wafer is inserted is not preferably less than 600 ° C. or more than 800 ° C. for the same reason as (C). The heating rate up to less than 1100 ° C. is preferably 5 ° C./min or more and 10 ° C./min or less which can be realized in a general furnace, and the heating rate of 1100 ° C. or more is preferably 1 ° C./min or more and 2 ° C./min. If the holding temperature is less than 1000 ° C., it will take a long time for the outward diffusion of interstitial oxygen, which is not preferable from the viewpoint of productivity reduction. If the holding temperature exceeds 1250 ° C., the deterioration of the member of the annealing furnace becomes severe. Absent. There are no particular restrictions on the temperature drop rate and the extraction temperature after the high temperature heat treatment.
According to the silicon wafer manufactured in this manner, both slip dislocation and warpage in the device manufacturing process can be suppressed.

[第2形態例]
本発明の製造方法の第2形態例では、サブストレートに対し、熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)と格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が
ΔCs(atoms/cm)が1.0×1015atoms/cm以上、
かつΔOi(atoms/cm)が1.0×1017atoms/cm以上、
かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすように熱処理を行う。
[Second embodiment]
In the second embodiment of the manufacturing method of the present invention, the change amount ΔCs (atoms / cm 3 ) of the substitutional carbon concentration (atoms / cm 3 ) before and after the heat treatment and the interstitial oxygen concentration (atoms) with respect to the substrate. / Cm 3 ) of change ΔOi (atoms / cm 3 ) is ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3 or more,
And ΔOi (atoms / cm 3 ) is 1.0 × 10 17 atoms / cm 3 or more,
In addition, heat treatment is performed so as to satisfy the relationship of ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 ).

これは、本発明者等による以下に説明する知見に基づく。すなわち、ΔCs(atoms/cm)を1.0×1015atoms/cm以上、かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすようにすることで、一般的なデバイス製造プロセスにおける反り増加量=(プロセス後の反り量−プロセス前の反り量)をより小さく(典型的には10μm以下)抑えることができたことである。これは、上記関係を満たすことで、アニールウエハ内部のBMDに取り込まれた炭素による転位の抑制効果がより大きくなるためと考えられる。 This is based on the knowledge described below by the present inventors. That is, ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3 or more, and ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 ) is satisfied. By doing so, the amount of warpage increase in a general device manufacturing process = (the amount of warpage after the process−the amount of warpage before the process) can be further reduced (typically 10 μm or less). This is considered to be because the dislocation suppression effect by the carbon incorporated into the BMD inside the annealed wafer becomes larger by satisfying the above relationship.

その具体的な熱処理の方法として、第1形態例の熱処理(図2、図3参照)と同様の方法を挙げることができる。ただし、サブストレートには、置換型炭素濃度Csが2.0×1015atoms/cm以上2.0×1016atoms/cm未満のものを使用し、低温熱処理工程(A)における保持温度T1は、650℃以上750℃以下とし、そして、昇温工程(B)における最高温度T2は、T1+50℃以上850℃以下とし、そして昇温速度Rは0.5℃/分以上2℃/分以下とする。 As a specific heat treatment method, the same method as the heat treatment of the first embodiment (see FIGS. 2 and 3) can be exemplified. However, a substrate having a substitutional carbon concentration Cs of 2.0 × 10 15 atoms / cm 3 or more and less than 2.0 × 10 16 atoms / cm 3 is used, and the holding temperature in the low-temperature heat treatment step (A) is used. T1 is 650 ° C. or more and 750 ° C. or less, and the maximum temperature T2 in the temperature raising step (B) is T1 + 50 ° C. or more and 850 ° C. or less, and the temperature raising rate R is 0.5 ° C./min or more and 2 ° C./min. The following.

ここで、サブストレートの置換型炭素濃度Csを2.0×1016atoms/cm未満とするのは、Csが2.0×1016atoms/cm以上になると、析出の挙動が変わるため、ΔCs(atoms/cm)を1.0×1015atoms/cm以上、かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすような熱処理条件が異なるためである。また、保持温度T1を650℃以上750℃以下にするのは、上記置換炭素濃度範囲のサブストレートを使用して、BMD密度を5×1011/cm以上にするためである。また、最高温度T2を850℃以下、かつ昇温速度Rを0.5℃/分以上にするのは、上記置換炭素濃度範囲のサブストレートを使用して、ΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすようにするためである。
この熱処理により、ΔCs、ΔOiが上記の値の範囲で且つ上記の関係を満たすウエハを製造することができる。
このようにして製造されたシリコンウエハによれば、デバイス製造プロセスにおけるスリップ転位及び反りの発生を共に抑制することができる。
Here, for the substitutional carbon concentration Cs of the substrate 2.0 × 10 16 atoms / cm less than 3, the Cs becomes 2.0 × 10 16 atoms / cm 3 or more, since the behavior of precipitation changes , ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3 or more, and ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 ) This is because the conditions are different. Further, to the holding temperature T1 below 750 ° C. 650 ° C. or higher, using the substrate of the substitutional carbon concentration range is to the BMD density 5 × 10 11 / cm 3 or more. The maximum temperature T2 is set to 850 ° C. or lower and the temperature rising rate R is set to 0.5 ° C./min or higher by using a substrate having the above substitutional carbon concentration range, ΔCs ≧ 2.0 × 10 13 × This is to satisfy the relationship exp (ΔOi × 1.5 × 10 −17 ).
By this heat treatment, it is possible to manufacture a wafer in which ΔCs and ΔOi are within the above values and satisfy the above relationship.
According to the silicon wafer manufactured in this manner, both slip dislocation and warpage in the device manufacturing process can be suppressed.

[第3形態例]
本発明の製造方法の第3形態例では、サブストレートに対し、熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)と格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が
ΔCs(atoms/cm)が1.0×1016atoms/cm以上、
かつΔOi(atoms/cm)が1.0×1017atoms/cm以上、
かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17
の関係を満たすように熱処理を行う。
[Third embodiment]
In the third embodiment of the manufacturing method of the present invention, the change amount ΔCs (atoms / cm 3 ) and the interstitial oxygen concentration (atoms) of the substitutional carbon concentration (atoms / cm 3 ) before and after the heat treatment are applied to the substrate. / Cm 3 ) of change ΔOi (atoms / cm 3 ) is ΔCs (atoms / cm 3 ) is 1.0 × 10 16 atoms / cm 3 or more,
And ΔOi (atoms / cm 3 ) is 1.0 × 10 17 atoms / cm 3 or more,
And ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 )
Heat treatment is performed so as to satisfy this relationship.

これは、本発明者等による以下に説明する知見に基づく。すなわち、ΔCs(atoms/cm)を1.0×1016atoms/cm以上、かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすようにすることで、一般的なデバイス製造プロセスにおける反り増加量=(プロセス後の反り量−プロセス前の反り量)を極めて小さく(典型的には5μm以下)抑えることができたことである。これは、上記関係を満たすことで、アニールウエハ内部のBMDに取り込まれた炭素による転位の抑制効果が極めて大きくなるためと考えられる。 This is based on the knowledge described below by the present inventors. That is, ΔCs (atoms / cm 3 ) is 1.0 × 10 16 atoms / cm 3 or more, and ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 ) is satisfied. Thus, the amount of warpage increase in a general device manufacturing process = (the amount of warpage after the process−the amount of warpage before the process) can be suppressed to be extremely small (typically 5 μm or less). This is considered to be because the effect of suppressing dislocation due to the carbon incorporated in the BMD inside the annealed wafer becomes extremely large by satisfying the above relationship.

その具体的な熱処理の方法として、第1形態例の熱処理(図2、図3参照)と同様の方法を挙げることができる。ただし、サブストレートには、置換型炭素濃度Csが2.0×1016atoms/cm以上2.0×1017atoms/cm以下のものを使用し、低温熱処理工程(A)における保持温度T1は、700℃以上800℃以下とし、そして、昇温工程(B)における最高温度T2は、T1+50℃以上900℃以下とし、そして昇温速度Rは0.5℃/分以上2℃/分以下とする。 As a specific heat treatment method, the same method as the heat treatment of the first embodiment (see FIGS. 2 and 3) can be exemplified. However, the substrate has a substitutional carbon concentration Cs of 2.0 × 10 16 atoms / cm 3 or more and 2.0 × 10 17 atoms / cm 3 or less, and the holding temperature in the low-temperature heat treatment step (A). T1 is 700 ° C. or more and 800 ° C. or less, and the maximum temperature T2 in the temperature raising step (B) is T1 + 50 ° C. or more and 900 ° C. or less, and the temperature raising rate R is 0.5 ° C./min or more and 2 ° C./min. The following.

ここで、サブストレートの置換型炭素濃度Csを2.0×1016atoms/cm以上とするのは、ΔCsを1.0×1016atoms/cm以上にするためである。また、保持温度T1を700℃以上800℃以下にするのは、上記置換炭素濃度範囲のサブストレートを使用して、BMD密度を5×1011/cm以上にするためである。また、最高温度T2を900℃以下、かつ昇温速度Rを0.5℃/分以上にするのは、上記置換炭素濃度範囲のサブストレートを使用して、ΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすようにするためである。 Here, the reason why the substitutional carbon concentration Cs of the substrate is set to 2.0 × 10 16 atoms / cm 3 or more is to set ΔCs to 1.0 × 10 16 atoms / cm 3 or more. The reason why the holding temperature T1 is set to 700 ° C. or more and 800 ° C. or less is to use the substrate having the above substitutional carbon concentration range so that the BMD density is 5 × 10 11 / cm 3 or more. The maximum temperature T2 is set to 900 ° C. or less and the temperature rising rate R is set to 0.5 ° C./min or more by using a substrate having the above substitutional carbon concentration range, and ΔCs ≧ 2.0 × 10 13 × This is to satisfy the relationship exp (ΔOi × 1.5 × 10 −17 ).

この熱処理により、ΔCs、ΔOiが上記の値の範囲で且つ上記の関係を満たすウエハを製造することができる。
このようにして製造されたシリコンウエハによれば、デバイス製造プロセスにおけるスリップ転位及び反りの発生を共に抑制することができる。
By this heat treatment, it is possible to manufacture a wafer in which ΔCs and ΔOi are within the above values and satisfy the above relationship.
According to the silicon wafer manufactured in this manner, both slip dislocation and warpage in the device manufacturing process can be suppressed.

本発明により製造されるシリコンウエハの大きさ(直径、厚さ)、種々の元素のドープの有無に関しての制限は特になく、これらの特徴は要求される半導体シリコンウエハの種類に応じて適宜選択することができる。   There are no particular restrictions on the size (diameter, thickness) of the silicon wafer produced according to the present invention and the presence or absence of doping of various elements, and these features are appropriately selected according to the type of semiconductor silicon wafer required. be able to.

また、得られたシリコンウエハを使用して製造される半導体デバイスに関しての制限も特になく、種々の半導体デバイス製造に応用することができる。具体的には、本発明のシリコンウエハは、表面にエピタキシャル層を形成したエピタキシャルウエハ、貼り合わせSOIウエハ、SIMOX(Separation By Implanted Oxygen)処理をしたSIMOXウエハ、あるいは表面にSiGe層を形成したSiGeウエハの製造などに広く適用できるものである。   Moreover, there is no restriction | limiting regarding the semiconductor device manufactured using the obtained silicon wafer, It can apply to various semiconductor device manufacture. Specifically, the silicon wafer of the present invention is an epitaxial wafer having an epitaxial layer formed on the surface, a bonded SOI wafer, a SIMOX wafer subjected to SIMOX (Separation By Implanted Oxygen) treatment, or a SiGe wafer having a SiGe layer formed on the surface. It can be widely applied to the manufacture of

以下、実施例について説明する。
[サブストレート、及びアニールウエハの作製方法]
単結晶インゴットを種々の条件(ウエハ径、伝導型、格子間酸素濃度、炭素濃度)で作製し、それぞれの単結晶インゴットの直胴部の同一部位を、ワイヤソーを用いて切り出し、ミラー加工して作成した厚さ725〜750μmの基板をサブストレートとした。サブストレートの格子間酸素濃度Oi(atoms/cm)、炭素濃度Cs(atoms/cm)は赤外吸収法により測定し、換算係数としてJEITA(電子情報技術産業協会)の値を使用した。すなわち、格子間酸素濃度の換算係数は3.03×1017/cm、炭素濃度の換算係数は8.1×1016/cmである。
Examples will be described below.
[Production method of substrate and annealed wafer]
Single crystal ingots are manufactured under various conditions (wafer diameter, conductivity type, interstitial oxygen concentration, carbon concentration), and the same part of the straight body of each single crystal ingot is cut out using a wire saw and mirror processed. The produced substrate having a thickness of 725 to 750 μm was used as a substrate. Interstitial oxygen concentration Oi of the substrate (atoms / cm 3), the carbon concentration Cs (atoms / cm 3) was measured by an infrared absorption method, was used a value of JEITA (Japan Electronics and Information Technology Industries Association) as a conversion factor. That is, the conversion factor of interstitial oxygen concentration is 3.03 × 10 17 / cm 2 , and the conversion factor of carbon concentration is 8.1 × 10 16 / cm 2 .

得られたサブストレートをバッチ式の縦型熱処理炉内に投入し、アルゴン雰囲気中にて熱処理を行った。サブストレートと熱処理の条件を実施例・比較例を含めて表1に示す。   The obtained substrate was put into a batch type vertical heat treatment furnace and heat-treated in an argon atmosphere. The conditions of the substrate and the heat treatment are shown in Table 1 including examples and comparative examples.

[アニールウエハの測定及び評価]
上記作製条件で得られたそれぞれのアニールウエハについて以下の(1)、(2)、(3)に関する測定及び評価を行った。
[Measurement and evaluation of annealed wafers]
Measurement and evaluation on the following (1), (2), and (3) were performed for each annealed wafer obtained under the above-described production conditions.

(1)アニールウエハのΔOi、ΔCs
アニールウエハの格子間酸素濃度、炭素濃度を赤外吸収法により測定し、ΔOi,ΔCsを下記の方法で求めた。
ΔOi=サブストレートの格子間酸素濃度−アニールウエハの格子間酸素濃度
ΔCs=サブストレートの炭素濃度−アニールウエハの炭素濃度
(1) ΔOi and ΔCs of annealed wafer
The interstitial oxygen concentration and carbon concentration of the annealed wafer were measured by an infrared absorption method, and ΔOi and ΔCs were determined by the following methods.
ΔOi = interstitial oxygen concentration of substrate−interstitial oxygen concentration of annealed wafer ΔCs = carbon concentration of substrate−carbon concentration of annealed wafer

(2)アニールウエハのスリップ長さ
アニールウエハに対して、下記の熱処理を行った。
RTAを使った熱処理(RTA試験)
挿入 室温
昇温 50℃/分
保持 1100℃1分
降温 30℃/分
引出 室温
雰囲気 アルゴン
上記熱処理を10回繰り返す
そして、熱処理後のアニールウエハをX線トポグラフで観察し、観察されたスリップの長さのうち最大の長さをスリップ長さとした。
(2) Slip length of annealed wafer The annealed wafer was subjected to the following heat treatment.
Heat treatment using RTA (RTA test)
Insert Room temperature Temperature rise 50 ° C./min Hold 1100 ° C. 1 minute Temperature drop 30 ° C./min Draw Room temperature Atmosphere Argon The above heat treatment is repeated 10 times and the annealed wafer after heat treatment is observed with X-ray topograph and the length of the observed slip The maximum length was taken as the slip length.

(3)アニールウエハの反り増加量
アニールウエハに対して、下記の熱処理を行った。
バッチ式熱処理炉を使った熱処理(バッチ炉試験)
炉温を900℃に保持してウエハを挿入
ウエハの挿入速度:50mm/分
酸素雰囲気で900℃30分保持した後、900℃でウエハを引出
ウエハの引出速度:50mm/分
そして、熱処理前および熱処理後のアニールウエハの反りをNIDEK社製FT−90Aで測定し、反り増加量=(熱処理後の反り−熱処理前の反り)の絶対値、を求めた。
(3) Increase in warpage of annealed wafer The annealed wafer was subjected to the following heat treatment.
Heat treatment using a batch heat treatment furnace (batch furnace test)
Insert the wafer while maintaining the furnace temperature at 900 ° C. Wafer insertion speed: 50 mm / min Hold the wafer at 900 ° C. for 30 minutes in an oxygen atmosphere and then pull out the wafer at 900 ° C. Wafer extraction speed: 50 mm / min The warpage of the annealed wafer after the heat treatment was measured with FT-90A manufactured by NIDEK, and the amount of warpage increase = (the warp after the heat treatment−the warp before the heat treatment) was determined.

[アニールウエハの各測定結果並びに評価結果]
表2に、各種アニールウエハのΔOi、ΔCsの測定結果を示す。
[Each annealing wafer measurement result and evaluation result]
Table 2 shows the measurement results of ΔOi and ΔCs of various annealed wafers.

表3に、各種アニールウエハのスリップ長さ、および反り増加量の結果を示す。
Table 3 shows the results of the slip length and the amount of warpage increase of various annealed wafers.

図4は、縦軸をΔCs、横軸をΔOiにとって、以上の結果を座標上にプロットした図である。
以上の結果から、サブストレートに対し、熱処理前と熱処理後の格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が、1.0×1017atoms/cm以上になるように熱処理を行うことにより、スリップの長さが15mm以下である良好なシリコンウエハが得られることがわかる。
また、熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)の範囲が、ΔCs(atoms/cm)が1.0×1015atoms/cm以上になるように熱処理を行うことにより、反り増加量が50μm以下である良好なシリコンウエハが得られることがわかる。
また、ΔCsの範囲が、ΔCs(atoms/cm)が1.0×1015atoms/cm以上、かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすように熱処理を行うことにより、反り量増加が10μm以下である良好なシリコンウエハが得られることがわかる。
また、ΔCsの範囲が、ΔCs(atoms/cm)が1.0×1016atoms/cm以上、かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たすように熱処理を行うことにより、反り量増加が5μm以下である良好なシリコンウエハが得られることがわかる。
FIG. 4 is a diagram in which the above results are plotted on the coordinates with ΔCs on the vertical axis and ΔOi on the horizontal axis.
From the above results, the range of the change amount ΔOi (atoms / cm 3 ) of the interstitial oxygen concentration (atoms / cm 3 ) before and after the heat treatment is 1.0 × 10 17 atoms / cm 3 with respect to the substrate. It can be seen that a good silicon wafer having a slip length of 15 mm or less can be obtained by performing the heat treatment as described above.
Further, the range of the change amount ΔCs (atoms / cm 3 ) of the substitutional carbon concentration (atoms / cm 3 ) before and after the heat treatment is such that ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3. It can be seen that by performing the heat treatment as described above, a good silicon wafer having an increase in warpage of 50 μm or less can be obtained.
The range of ΔCs is such that ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3 or more and ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 ). It can be seen that by performing heat treatment so as to satisfy the relationship, a good silicon wafer having an increase in warpage of 10 μm or less can be obtained.
The range of ΔCs is such that ΔCs (atoms / cm 3 ) is 1.0 × 10 16 atoms / cm 3 or more and ΔCs ≧ 2.0 × 10 13 × exp (ΔOi × 1.5 × 10 −17 ). It can be seen that by performing heat treatment so as to satisfy the relationship, a good silicon wafer having an increase in warpage of 5 μm or less can be obtained.

熱処理で導入されるスリップと反りを説明する図Diagram explaining slip and warpage introduced by heat treatment 本発明の製造方法における一連の熱処理工程を示す流れ図Flow chart showing a series of heat treatment steps in the production method of the present invention 本発明の製造方法における熱処理温度の経時的な変化の仕方を曲線で示した図The figure which showed the way of the time-dependent change of the heat processing temperature in the manufacturing method of this invention with the curve 縦軸をΔCs、横軸をΔOiにとって、測定結果を座標上にプロットした図A plot of measurement results on coordinates with the vertical axis being ΔCs and the horizontal axis being ΔOi.

Claims (5)

シリコン単結晶サブストレートに熱処理を施す工程を含み、
熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)を1.0×1015atoms/cm以上1.0×1017atoms/cm以下の範囲で調整し、かつ格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)を1.0×1017atoms/cm以上6.0×1017atoms/cm以下の範囲で調整する、シリコンウエハの製造方法であって、
格子間酸素濃度Oiが7.5×1017atoms/cm以上9.5×1017atoms/cm以下
かつ置換型炭素濃度Csが2.0×1015atoms/cm以上2.0×1017atoms/cm以下のサブストレートを用い、
前記熱処理を施す工程が、
A:保持温度T1を650℃以上800℃以下、保持時間Hを10分以上4時間以下にして熱処理する低温熱処理工程、
B:低温熱処理の後、最高温度T2をT1+50℃以上1000℃以下にして、最高温度T2までの昇温速度Rを0.1℃/分以上2℃/分以下にして昇温する昇温工程、
C:昇温工程の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する降温・取出工程、及び
D:降温・取出工程の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する高温熱処理工程
を含むことを特徴とする、シリコンウエハの製造方法。
Including a step of heat-treating the silicon single crystal substrate,
The change amount ΔCs (atoms / cm 3 ) of the substitutional carbon concentration (atoms / cm 3 ) before and after the heat treatment is 1.0 × 10 15 atoms / cm 3 or more and 1.0 × 10 17 atoms / cm 3 or less. was adjusted in the range, and the interstitial oxygen concentration (atoms / cm 3) of the variation ΔOi (atoms / cm 3) to 1.0 × 10 17 atoms / cm 3 or more 6.0 × 10 17 atoms / cm 3 or less of A silicon wafer manufacturing method that adjusts in a range,
The interstitial oxygen concentration Oi is 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less, and the substitutional carbon concentration Cs is 2.0 × 10 15 atoms / cm 3 or more and 2.0 ×. Using a substrate of 10 17 atoms / cm 3 or less,
The step of performing the heat treatment includes
A: a low-temperature heat treatment step for heat treatment with a holding temperature T1 of 650 ° C. to 800 ° C. and a holding time H of 10 minutes to 4 hours,
B: Temperature raising step in which the maximum temperature T2 is set to T1 + 50 ° C. or more and 1000 ° C. or less after the low-temperature heat treatment, and the temperature rising rate R to the maximum temperature T2 is set to 0.1 ° C./min or more and 2 ° C./min or less. ,
C: After the temperature raising step, the take-out temperature T3 when taking out the substrate is set to 600 ° C. or higher and 800 ° C. or lower, and when T3 is lower than T2, the temperature lowering rate is 1 ° C./min or higher and 10 ° C./min or lower. A temperature lowering / removing step in which the temperature of the furnace is lowered and the substrate is taken out from the furnace at the take-off temperature T3 and cooled to room temperature. Is inserted into the furnace, and the temperature range from the temperature at the time of wafer insertion to less than 1100 ° C. is to raise the temperature of the furnace at a temperature increase rate of 5 ° C./min to 10 ° C./min and 1100 ° C. to 1250 ° C. Is a high temperature heat treatment process in which the temperature of the furnace is raised at a rate of temperature rise of 1 ° C./min to 2 ° C./min and the furnace temperature is kept at a constant temperature of 1000 ° C. to 1250 ° C. Including, Silicon wafer manufacturing method.
シリコン単結晶サブストレートに熱処理を施す工程を含むシリコンウエハの製造方法であって、
熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)と格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が
ΔCs(atoms/cm)が1.0×1015atoms/cm以上、
かつΔOi(atoms/cm)が1.0×1017atoms/cm以上、
かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たす
ことを特徴とするシリコンウエハの製造方法。
A method for producing a silicon wafer comprising a step of heat-treating a silicon single crystal substrate,
The range of variation ΔOi variation ΔCs (atoms / cm 3) interstitial oxygen concentration of substitutional carbon concentration after heat treatment before heat treatment (atoms / cm 3) (atoms / cm 3) (atoms / cm 3) ΔCs (atoms / cm 3 ) is 1.0 × 10 15 atoms / cm 3 or more,
And ΔOi (atoms / cm 3 ) is 1.0 × 10 17 atoms / cm 3 or more,
And the manufacturing method of the silicon wafer characterized by satisfy | filling the relationship of (DELTA) Cs> = 2.0 * 10 < 13 > * exp ((DELTA) Oi * 1.5 * 10 < -17 >).
請求項2の製造方法において、
格子間酸素濃度Oiが7.5×1017atoms/cm以上9.5×1017atoms/cm以下
かつ置換型炭素濃度Csが2.0×1015atoms/cm以上2.0×1016atoms/cm未満
のサブストレートを用い、
前記熱処理を施す工程が、
A:保持温度T1を650℃以上750℃以下、保持時間Hを10分以上4時間以下にして熱処理する低温熱処理工程、
B:低温熱処理の後、最高温度T2をT1+50℃以上850℃以下にして、最高温度T2までの昇温速度Rを0.5℃/分以上2℃/分以下にして昇温する昇温工程、
C:昇温工程の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する降温・取出工程、及び
D:降温・取出工程の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する高温熱処理工程
を含むことを特徴とする、シリコンウエハの製造方法。
In the manufacturing method of Claim 2,
The interstitial oxygen concentration Oi is 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less, and the substitutional carbon concentration Cs is 2.0 × 10 15 atoms / cm 3 or more and 2.0 ×. Using a substrate of less than 10 16 atoms / cm 3
The step of performing the heat treatment includes
A: a low temperature heat treatment step in which heat treatment is performed at a holding temperature T1 of 650 ° C. to 750 ° C. and a holding time H of 10 minutes to 4 hours,
B: Temperature raising step in which the maximum temperature T2 is set to T1 + 50 ° C. or more and 850 ° C. or less after the low-temperature heat treatment, and the temperature rising rate R to the maximum temperature T2 is set to 0.5 ° C./min or more and 2 ° C./min or less. ,
C: After the temperature raising step, the take-out temperature T3 when taking out the substrate is set to 600 ° C. or higher and 800 ° C. or lower, and when T3 is lower than T2, the temperature lowering rate is 1 ° C./min or higher and 10 ° C./min or lower. A temperature lowering / removing step in which the temperature of the furnace is lowered and the substrate is taken out from the furnace at the take-off temperature T3 and cooled to room temperature. Is inserted into the furnace, and the temperature range from the temperature at the time of wafer insertion to less than 1100 ° C. is to raise the temperature of the furnace at a temperature increase rate of 5 ° C./min to 10 ° C./min and 1100 ° C. to 1250 ° C. Is a high temperature heat treatment process in which the temperature of the furnace is raised at a rate of temperature rise of 1 ° C./min to 2 ° C./min and the furnace temperature is kept at a constant temperature of 1000 ° C. to 1250 ° C. Including, Silicon wafer manufacturing method.
シリコン単結晶サブストレートに熱処理を施す工程を含むシリコンウエハの製造方法であって、
熱処理前と熱処理後の置換型炭素濃度(atoms/cm)の変化量ΔCs(atoms/cm)と格子間酸素濃度(atoms/cm)の変化量ΔOi(atoms/cm)の範囲が
ΔCs(atoms/cm)が1.0×1016atoms/cm以上、
かつΔOi(atoms/cm)が1.0×1017atoms/cm以上、
かつΔCs≧2.0×1013×exp(ΔOi×1.5×10−17)の関係を満たす
ことを特徴とするシリコンウエハの製造方法。
A method for producing a silicon wafer comprising a step of heat-treating a silicon single crystal substrate,
The range of variation ΔOi variation ΔCs (atoms / cm 3) interstitial oxygen concentration of substitutional carbon concentration after heat treatment before heat treatment (atoms / cm 3) (atoms / cm 3) (atoms / cm 3) ΔCs (atoms / cm 3 ) is 1.0 × 10 16 atoms / cm 3 or more,
And ΔOi (atoms / cm 3 ) is 1.0 × 10 17 atoms / cm 3 or more,
And the manufacturing method of the silicon wafer characterized by satisfy | filling the relationship of (DELTA) Cs> = 2.0 * 10 < 13 > * exp ((DELTA) Oi * 1.5 * 10 < -17 >).
請求項4の製造方法において、
格子間酸素濃度Oiが7.5×1017atoms/cm以上9.5×1017atoms/cm以下
かつ置換型炭素濃度Csが2.0×1016atoms/cm以上2.0×1017atoms/cm以下
のサブストレートを用い、
前記熱処理を施す工程が、
A:保持温度T1を700℃以上800℃以下、保持時間Hを10分以上4時間以下にして熱処理する低温熱処理工程、
B:低温熱処理の後、最高温度T2をT1+50℃以上900℃以下にして、最高温度T2までの昇温速度Rを0.5℃/分以上2℃/分以下にして昇温する昇温工程、
C:昇温工程の後、サブストレートを取り出すときの取り出し温度T3を600℃以上800℃以下に設定して、T3がT2より低い場合は1℃/分以上10℃/分以下の降温速度で炉の温度を下げ、取り出し温度T3でサブストレートを炉内から取り出して室温まで冷却する降温・取出工程、及び
D:降温・取出工程の後、炉の温度を600℃以上800℃以下にしてウエハを炉内に挿入し、ウエハ挿入時の温度から1100℃未満の温度範囲は5℃/分以上10℃/分以下の昇温速度で炉の温度を昇温し、かつ1100℃以上1250℃以下の温度範囲は1℃/分以上2℃/分以下の昇温速度で炉の温度を昇温し、かつ1000℃以上1250℃以下の温度で炉の温度を一定温度のまま保持する高温熱処理工程
を含むことを特徴とする、シリコンウエハの製造方法。
In the manufacturing method of Claim 4,
Interstitial oxygen concentration Oi is 7.5 × 10 17 atoms / cm 3 or more and 9.5 × 10 17 atoms / cm 3 or less, and substitutional carbon concentration Cs is 2.0 × 10 16 atoms / cm 3 or more and 2.0 ×. Using a substrate of 10 17 atoms / cm 3 or less,
The step of performing the heat treatment includes
A: a low temperature heat treatment step in which heat treatment is performed with a holding temperature T1 of 700 ° C. to 800 ° C. and a holding time H of 10 minutes to 4 hours,
B: The temperature raising step of raising the temperature by setting the maximum temperature T2 to T1 + 50 ° C. or more and 900 ° C. or less after the low-temperature heat treatment, and the temperature rising rate R to the maximum temperature T2 to 0.5 ° C./min or more and 2 ° C./min or less. ,
C: After the temperature raising step, the take-out temperature T3 when taking out the substrate is set to 600 ° C. or higher and 800 ° C. or lower, and when T3 is lower than T2, the temperature lowering rate is 1 ° C./min or higher and 10 ° C./min or lower. A temperature lowering / removing step in which the temperature of the furnace is lowered and the substrate is taken out from the furnace at the take-off temperature T3 and cooled to room temperature. Is inserted into the furnace, and the temperature range from the temperature at the time of wafer insertion to less than 1100 ° C. is to raise the temperature of the furnace at a temperature increase rate of 5 ° C./min to 10 ° C./min and 1100 ° C. to 1250 ° C. Is a high temperature heat treatment process in which the temperature of the furnace is raised at a rate of temperature rise of 1 ° C./min to 2 ° C./min and the furnace temperature is kept at a constant temperature of 1000 ° C. to 1250 ° C. Including, Silicon wafer manufacturing method.
JP2007339041A 2007-12-28 2007-12-28 Method of manufacturing silicon wafer Ceased JP2009164155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007339041A JP2009164155A (en) 2007-12-28 2007-12-28 Method of manufacturing silicon wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007339041A JP2009164155A (en) 2007-12-28 2007-12-28 Method of manufacturing silicon wafer

Publications (1)

Publication Number Publication Date
JP2009164155A true JP2009164155A (en) 2009-07-23

Family

ID=40966492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007339041A Ceased JP2009164155A (en) 2007-12-28 2007-12-28 Method of manufacturing silicon wafer

Country Status (1)

Country Link
JP (1) JP2009164155A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345753A1 (en) 2009-12-29 2011-07-20 Siltronic AG Silicon wafer and production method therefor
JP2013147407A (en) * 2012-01-23 2013-08-01 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, method for evaluating in-plane uniformity of oxygen deposit amount thereof, and method for manufacturing silicon single crystal
JP6436255B1 (en) * 2018-02-27 2018-12-12 株式会社Sumco Method for predicting warpage of silicon wafer and method for manufacturing silicon wafer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006615A (en) * 2002-04-26 2004-01-08 Sumitomo Mitsubishi Silicon Corp High resistance silicon wafer and its manufacturing method
WO2005038899A1 (en) * 2003-10-21 2005-04-28 Sumco Corporation Process for producing high resistance silicon wafer, and process for producing epitaxial wafer and soi wafer
JP2007207875A (en) * 2006-01-31 2007-08-16 Sumco Corp Silicon wafer and manufacturing method thereof
JP2007207876A (en) * 2006-01-31 2007-08-16 Sumco Corp High-frequency diode and manufacturing method thereof
JP2007235153A (en) * 2002-04-26 2007-09-13 Sumco Corp High-resistance silicon wafer, and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006615A (en) * 2002-04-26 2004-01-08 Sumitomo Mitsubishi Silicon Corp High resistance silicon wafer and its manufacturing method
JP2007235153A (en) * 2002-04-26 2007-09-13 Sumco Corp High-resistance silicon wafer, and manufacturing method thereof
WO2005038899A1 (en) * 2003-10-21 2005-04-28 Sumco Corporation Process for producing high resistance silicon wafer, and process for producing epitaxial wafer and soi wafer
JP2007207875A (en) * 2006-01-31 2007-08-16 Sumco Corp Silicon wafer and manufacturing method thereof
JP2007207876A (en) * 2006-01-31 2007-08-16 Sumco Corp High-frequency diode and manufacturing method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2345753A1 (en) 2009-12-29 2011-07-20 Siltronic AG Silicon wafer and production method therefor
US8357939B2 (en) 2009-12-29 2013-01-22 Siltronic Ag Silicon wafer and production method therefor
JP2013147407A (en) * 2012-01-23 2013-08-01 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, method for evaluating in-plane uniformity of oxygen deposit amount thereof, and method for manufacturing silicon single crystal
JP6436255B1 (en) * 2018-02-27 2018-12-12 株式会社Sumco Method for predicting warpage of silicon wafer and method for manufacturing silicon wafer
JP2019149463A (en) * 2018-02-27 2019-09-05 株式会社Sumco Silicon wafer warpage measurement method and silicon wafer manufacturing method
WO2019167294A1 (en) * 2018-02-27 2019-09-06 株式会社Sumco Method for predicting warpage amount of silicon wafer and method for manufacturing silicon wafer
US11094600B2 (en) 2018-02-27 2021-08-17 Sumco Corporation Method of predicting warpage of silicon wafer and method of producing silicon wafer

Similar Documents

Publication Publication Date Title
JP5256195B2 (en) Silicon wafer and manufacturing method thereof
JP5072460B2 (en) Silicon wafer for semiconductor and manufacturing method thereof
JP5537802B2 (en) Silicon wafer manufacturing method
JP6044660B2 (en) Silicon wafer manufacturing method
JP2006261632A (en) Method of thermally treating silicon wafer
JP5217245B2 (en) Silicon single crystal wafer and manufacturing method thereof
JP5207706B2 (en) Silicon wafer and manufacturing method thereof
WO2003003441A1 (en) Production method for anneal wafer and anneal wafer
JP2007235153A (en) High-resistance silicon wafer, and manufacturing method thereof
JP3022044B2 (en) Method for manufacturing silicon wafer and silicon wafer
KR100847925B1 (en) Anneal wafer manufacturing method and anneal wafer
JP5597378B2 (en) Heat treatment method for silicon wafer
JP2009164155A (en) Method of manufacturing silicon wafer
JP2006040980A (en) Silicon wafer and its manufacturing method
JP2005060168A (en) Method for producing wafer
JP2007242920A (en) Nitrogen-doped and annealed wafer and method of manufacturing the same
JP5207705B2 (en) Silicon wafer and manufacturing method thereof
JP2009049256A (en) Silicon wafer and production method thereof
JP3022045B2 (en) Method of manufacturing silicon wafer and silicon wafer
JP3294723B2 (en) Silicon wafer manufacturing method and silicon wafer
JP2010073782A (en) Method of heat-treating semiconductor wafer
JP3294722B2 (en) Method for manufacturing silicon wafer and silicon wafer
JP2005064254A (en) Method of manufacturing annealed wafer
JP2004172564A (en) Annealed wafer and its manufacturing method
JP3171308B2 (en) Silicon wafer and method for manufacturing the same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20100823

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101001

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20101228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111024

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20111116

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130520

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130611

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20131029