JP5217245B2 - Silicon single crystal wafer and manufacturing method thereof - Google Patents

Silicon single crystal wafer and manufacturing method thereof Download PDF

Info

Publication number
JP5217245B2
JP5217245B2 JP2007136287A JP2007136287A JP5217245B2 JP 5217245 B2 JP5217245 B2 JP 5217245B2 JP 2007136287 A JP2007136287 A JP 2007136287A JP 2007136287 A JP2007136287 A JP 2007136287A JP 5217245 B2 JP5217245 B2 JP 5217245B2
Authority
JP
Japan
Prior art keywords
single crystal
heat treatment
wafer
silicon single
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007136287A
Other languages
Japanese (ja)
Other versions
JP2008294112A (en
Inventor
敏昭 小野
誉之 木原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2007136287A priority Critical patent/JP5217245B2/en
Priority to US12/113,576 priority patent/US20080292523A1/en
Priority to KR1020080042402A priority patent/KR101020436B1/en
Priority to DE102008022747.1A priority patent/DE102008022747B4/en
Priority to TW097117827A priority patent/TWI390091B/en
Publication of JP2008294112A publication Critical patent/JP2008294112A/en
Application granted granted Critical
Publication of JP5217245B2 publication Critical patent/JP5217245B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、シリコン単結晶ウェーハ及びその製造方法に関し、特に薄膜デバイスにも適したシリコン単結晶ウェーハ及びその製造方法に関するものである。   The present invention relates to a silicon single crystal wafer and a manufacturing method thereof, and more particularly to a silicon single crystal wafer suitable for a thin film device and a manufacturing method thereof.

従来、ゲッタリング能力が優れたシリコン単結晶ウェーハの製造方法として、非酸化性雰囲気にて1100℃以上の温度で熱処理することにより、アニールウェーハ表層近くのCOP(Crystal Originated Particle)を消滅させることが提案されている(特許文献1参照)。 Conventionally, as a method for producing a silicon single crystal wafer having excellent gettering ability, COP (Crystal Originated Particles) near the surface of the annealed wafer can be eliminated by performing heat treatment at a temperature of 1100 ° C. or higher in a non-oxidizing atmosphere. It has been proposed (see Patent Document 1).

ただしこの方法によると、酸素の外方拡散も同時に起こるため、この方法により得られるウェーハにおいては、酸素析出物(BMD)が存在しない領域がウェーハ表面から10μm以上形成されることになる。 However, according to this method, oxygen out-diffusion also occurs at the same time. Therefore, in the wafer obtained by this method, a region where oxygen precipitates (BMD) are not present is formed by 10 μm or more from the wafer surface.

ところで、半導体デバイスは、近年益々デバイス自体の薄膜化が進み、これにともない上述したゲッタリング層がよりデバイス活性層に近い領域に存在するウェーハが求められている。 By the way, in recent years, semiconductor devices have been increasingly thinned, and accordingly, a wafer in which the above-described gettering layer exists in a region closer to the device active layer is required.

しかしながら、上記従来の製造方法では、ゲッタリング能力を向上させるための熱処理によって、酸素析出物が存在しない領域がウェーハ表面から10μm以上も形成されてしまうので、薄膜デバイスにおいてもゲッタリング効果を有効に発揮するウェーハの製造方法の開発が希求されていた。 However, in the above-described conventional manufacturing method, the heat treatment for improving the gettering capability results in the formation of an area where oxygen precipitates do not exist more than 10 μm from the wafer surface. There has been a demand for the development of a method for producing a wafer to be demonstrated.

特開平10−144698号公報JP-A-10-144698

本発明が解決しようとする課題は、薄膜デバイスに対してもゲッタリング効果が有効に発揮されるシリコン単結晶ウェーハ及びその製造方法を提供することである。 The problem to be solved by the present invention is to provide a silicon single crystal wafer that effectively exhibits a gettering effect even for a thin film device and a method for manufacturing the same.

本発明は、チョクラルスキー法によって育成された単結晶から加工されたシリコンウェーハであって、初期格子間酸素濃度が1.4×1018atoms/cc(ASTM F−121,1979)以上のシリコンウェーハに、アルゴンガスのガス雰囲気中において、1150℃以上、シリコン融点以下の熱処理温度で、5秒以下の急速昇降温熱処理を施し、前記シリコンウェーハの表面から0.6μm〜2.6μmの深さに無欠陥層を形成することを特徴とする。 The present invention provides a silicon wafer which has been processed from a single crystal grown by the Czochralski method, the initial interstitial oxygen concentration of 1.4 × 10 18 atoms / cc ( ASTM F-121,1979) or more silicon the wafer, in a gas atmosphere of argon gas, 1150 ° C. or more, a silicon melting point below the heat treatment temperature, and facilities the rapid lifting thermal treatment of 5 seconds or less, the depth of 0.6μm~2.6μm from the surface of the silicon wafer In addition, a defect-free layer is formed .

本発明は、アルゴンガスのガス雰囲気中において、1150℃以上、シリコン融点以下の熱処理温度で、5秒以下の急速昇降温熱処理を施すので、シリコンウェーハの表面から0.6μm〜2.6μmの表層領域ではあるがCOP及び酸素析出核が消滅し、この領域において高い酸化膜耐圧を示すことになる。また、初期格子間酸素濃度が1.4×1018atoms/cc以上という高酸素濃度のウェーハを用いるので、ウェーハは表面から10μm程度の領域では酸素安定析出核が存在することになる。 The present invention, in the gas atmosphere of argon gas, 1150 ° C. or more, a silicon melting point below the heat treatment temperature, so subjected to rapid lifting thermal treatment of 5 seconds or less, the surface layer of 0.6μm~2.6μm from the surface of the silicon wafer Although it is a region, COP and oxygen precipitation nuclei disappear, and a high oxide film breakdown voltage is exhibited in this region. In addition, since a wafer having a high oxygen concentration with an initial interstitial oxygen concentration of 1.4 × 10 18 atoms / cc or more is used, oxygen stable precipitation nuclei are present in the region of about 10 μm from the surface.

したがって、ウェーハ表層は結晶欠陥が消滅する一方で、デバイス活性領域の直下にゲッタリング源となる安定な酸素析出核が存在するシリコン単結晶ウェーハを得ることができる。   Accordingly, a silicon single crystal wafer in which stable oxygen precipitation nuclei serving as a gettering source exist immediately below the device active region can be obtained while crystal defects disappear on the wafer surface layer.

図1は、本発明の実施形態に係るシリコン単結晶ウェーハの製造方法を示す工程図である。本実施形態に係るシリコン単結晶ウェーハの製造方法では、初期格子間酸素濃度が高酸素濃度、すなわち1.4×1018atoms/cc(ASTM F−121,1979)以上となるCZ法条件でシリコンインゴッドを育成する。シリコン育成時の酸素濃度が1.4×1018atoms/ccに満たないと薄膜デバイス活性層の直下に、ゲッタリング源となる安定な酸素析出物が有効数存在しないからである。 FIG. 1 is a process diagram showing a method for producing a silicon single crystal wafer according to an embodiment of the present invention. In the method for producing a silicon single crystal wafer according to the present embodiment, silicon is formed under the CZ method conditions in which the initial interstitial oxygen concentration is high oxygen concentration, that is, 1.4 × 10 18 atoms / cc (ASTM F-121, 1979) or more. Nurturing ingots. This is because if the oxygen concentration at the time of silicon growth is less than 1.4 × 10 18 atoms / cc, an effective number of stable oxygen precipitates serving as a gettering source does not exist directly under the thin film device active layer.

このシリコン育成時において、窒素をシリコン単結晶中に1×1013〜1×1015atoms/ccドープすると、無欠陥領域がさらに拡大するので好ましいといえる。 At the time of growing the silicon, it is preferable to dope nitrogen into the silicon single crystal at 1 × 10 13 to 1 × 10 15 atoms / cc because the defect-free region is further expanded.

次にシリコンインゴッドをウェーハに加工する。このウェーハ加工は特に限定されず、一般的な加工法を採用することができる。   Next, the silicon ingot is processed into a wafer. This wafer processing is not particularly limited, and a general processing method can be adopted.

ウェーハ加工したのち、1150℃以上、シリコンの融点(1410℃)以下の温度で、10秒以下の急速昇降温熱処理を施す。この急速昇降温熱処理は、非酸化性雰囲気、たとえばアルゴンガス,窒素ガス,水素ガスまたはこれらの混合ガス雰囲気中にて行う。   After the wafer processing, a rapid temperature raising and lowering heat treatment is performed for 10 seconds or less at a temperature not lower than 1150 ° C. and not higher than the melting point of silicon (1410 ° C.). This rapid heating / cooling heat treatment is performed in a non-oxidizing atmosphere such as argon gas, nitrogen gas, hydrogen gas, or a mixed gas atmosphere thereof.

本実施形態の急速昇降温熱処理は、ハロゲンランプを熱源としたハロゲンランプ熱処理炉、キセノンランプを熱源としたフラッシュランプ熱処理炉またはレーザを熱源としたレーザ熱処理炉などを用いることができ、ハロゲンランプ熱処理炉を用いる場合は0.1〜10秒、フラッシュランプ熱処理炉を用いる場合は0.1秒以下、レーザ熱処理炉を用いる場合は0.1秒以下とすることが好ましい。   The rapid heating / cooling heat treatment of this embodiment can use a halogen lamp heat treatment furnace using a halogen lamp as a heat source, a flash lamp heat treatment furnace using a xenon lamp as a heat source, a laser heat treatment furnace using a laser as a heat source, or the like. When a furnace is used, it is preferably 0.1 to 10 seconds, when a flash lamp heat treatment furnace is used, 0.1 seconds or less, and when a laser heat treatment furnace is used, it is preferably 0.1 seconds or less.

以上の急速昇降温熱処理を施すことで、ウェーハ表面に無欠陥層が形成されると同時にデバイス活性層の直下(ウェーハ表面から10〜20μm)にゲッタリング源となる酸素析出物が存在するウェーハを得ることができる。   By performing the above rapid heating and cooling heat treatment, a defect-free layer is formed on the wafer surface, and at the same time, a wafer in which oxygen precipitates serving as a gettering source are present immediately below the device active layer (10 to 20 μm from the wafer surface). Can be obtained.

これに加え、急速昇降温熱処理を施したウェーハの表面にシリコンエピタキシャル層を成長させることもできる。急速昇降温熱処理を施したウェーハ表面は無欠陥層が形成されているので、ここにエピタキシャル層を形成することで無欠陥層をさらに拡大または無欠陥層の厚さを調整することができる。   In addition to this, a silicon epitaxial layer can be grown on the surface of the wafer that has been subjected to rapid heating and cooling heat treatment. Since the defect-free layer is formed on the wafer surface that has been subjected to the rapid heating / cooling heat treatment, the defect-free layer can be further expanded or the thickness of the defect-free layer can be adjusted by forming an epitaxial layer here.

さらに、急速昇降温熱処理を施したのち、非酸化性雰囲気にて1000℃〜1300℃×30〜60分程度の追加熱処理を施すこともできる。この追加熱処理を施すことで、デバイス活性層の直下に存在する酸素析出物のサイズを増大させることができ、また無欠陥層の厚さも調整することができる。   Further, after the rapid temperature raising and lowering heat treatment, an additional heat treatment of about 1000 ° C. to 1300 ° C. × 30 to 60 minutes can be performed in a non-oxidizing atmosphere. By performing this additional heat treatment, the size of oxygen precipitates existing directly under the device active layer can be increased, and the thickness of the defect-free layer can be adjusted.

以下の実施例において、初期格子間酸素濃度が1.4×1018atoms/cc(ASTM F−121,1979)以上の条件で育成したウェーハに、10秒以下の急速昇降温熱処理を施すと、デバイス活性領域である表層において高い酸化膜耐圧を示すとともに、デバイス活性領域の直下にゲッタリング源となり得る酸素析出核が存在することを、比較例とともに確認した。 In the following examples, when a wafer grown under conditions of an initial interstitial oxygen concentration of 1.4 × 10 18 atoms / cc (ASTM F-121, 1979) or higher is subjected to rapid heating / cooling heat treatment for 10 seconds or less, It was confirmed together with a comparative example that a high oxide film breakdown voltage was exhibited in the surface layer, which was the device active region, and oxygen precipitation nuclei that could serve as a gettering source were present directly under the device active region.

《実施例1》
直径200mmのシリコン単結晶インゴット(初期格子間酸素濃度が14.5×1017atoms/cc(ASTM F−121,1979),比抵抗が10〜20Ωcm,窒素ドープなし)からスライスして鏡面加工を施した複数のシリコンウェーハに、ハロゲンランプを熱源とする熱処理炉を用いて1150℃×3秒の熱処理を施した。
Example 1
Slicing from 200 mm diameter silicon single crystal ingot (initial interstitial oxygen concentration is 14.5 × 10 17 atoms / cc (ASTM F-121, 1979), specific resistance is 10-20 Ωcm, no nitrogen doping) and mirror finish A plurality of silicon wafers were subjected to heat treatment at 1150 ° C. for 3 seconds using a heat treatment furnace using a halogen lamp as a heat source.

この熱処理が施された複数のシリコンウェーハのそれぞれに対し、0.2μm程度ずつ再研磨し、表面からの再研磨量が異なるウェーハを複数枚準備した。これら表面からの再研磨量が異なるウェーハに膜厚が25nmの酸化膜と、面積が8mmの測定電極(リンをドープしたポリシリコン電極)としたMOSキャパシタを形成し、11MV/cmの判定電界の条件(電流値が10−3Aを超えるとブレイクダウンとみなす。)で酸化膜耐圧特性TZDBを測定し、判定電界をクリアしたMOSキャパシタを良品とした。良品率が90%以上となった最大の再研磨量(以下、無欠陥深さとも言う。)は、1.7μmであった。 Each of the plurality of silicon wafers subjected to the heat treatment was repolished by about 0.2 μm, and a plurality of wafers having different amounts of repolishing from the surface were prepared. A MOS capacitor having an oxide film having a film thickness of 25 nm and a measurement electrode having an area of 8 mm 2 (polysilicon electrode doped with phosphorus) is formed on these wafers having different amounts of regrinding from the surface, and a judgment electric field of 11 MV / cm is formed. The oxide film withstand voltage characteristic TZDB was measured under the following conditions (when the current value exceeded 10 −3 A, it was regarded as a breakdown), and a MOS capacitor that cleared the judgment electric field was determined as a good product. The maximum re-polishing amount (hereinafter also referred to as defect-free depth) at which the yield rate was 90% or more was 1.7 μm.

一方、上記の急速昇降温熱処理を施したシリコンウェーハに、さらに1000℃×16時間の熱処理を施したのち、このウェーハを劈開し、2μmのライトエッチング(wright etching)を実施した。このウェーハ表面から10〜20μmの位置に存在するエッチングピットを光学顕微鏡で測定し、BMD密度を算出したところ、2.1×10個/cmであった。 On the other hand, the silicon wafer subjected to the above rapid heating / cooling heat treatment was further subjected to a heat treatment of 1000 ° C. × 16 hours, and then the wafer was cleaved and 2 μm light etching was performed. The etching pits present at a position of 10 to 20 μm from the wafer surface were measured with an optical microscope, and the BMD density was calculated to be 2.1 × 10 5 pieces / cm 2 .

これら無欠陥深さとBMD密度の結果を、酸素濃度、窒素濃度及び急速昇降温熱処理条件とともに表1に示す。 The results of these defect-free depth and BMD density are shown in Table 1 together with the oxygen concentration, nitrogen concentration, and rapid heating / cooling heat treatment conditions.

《実施例2》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を22.1×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×3秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは1.8μm、BMD密度は4.9×10個/cmであった。
Example 2
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 22.1 × 10 17 atoms / cc (ASTM F-121, 1979), and the rapid heating / cooling heat treatment conditions using a halogen lamp were 1200 ° C. × 3 A wafer was produced under the same conditions as in Example 1 except that the second was set, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 1.8 μm, and the BMD density was 4.9 × 10 5 pieces / cm 2 .

《実施例3》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.6×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにキセノンランプを用いたフラッシュランプ熱処理炉、急速昇降温熱処理条件を1250℃×0.001秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは0.6μm、BMD密度は38.0×10個/cmであった。
Example 3
In contrast to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.6 × 10 17 atoms / cc (ASTM F-121, 1979), and a flash lamp heat treatment furnace using a xenon lamp instead of a halogen lamp, A wafer was produced under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment conditions were 1250 ° C. × 0.001 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 0.6 μm, and the BMD density was 38.0 × 10 5 pieces / cm 2 .

《実施例4》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を21.8×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにキセノンランプを用いたフラッシュランプ熱処理炉、急速昇降温熱処理条件を1300℃×0.001秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは0.8μm、BMD密度は52.0×10個/cmであった。
Example 4
In contrast to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 21.8 × 10 17 atoms / cc (ASTM F-121, 1979), a flash lamp heat treatment furnace using a xenon lamp instead of a halogen lamp, A wafer was produced under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment conditions were 1300 ° C. × 0.001 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 0.8 μm, and the BMD density was 52.0 × 10 5 pieces / cm 2 .

《実施例5》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.4×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにレーザを用いたレーザ熱処理炉、急速昇降温熱処理条件を1300℃×0.001秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは0.8μm、BMD密度は29.0×10個/cmであった。
Example 5
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.4 × 10 17 atoms / cc (ASTM F-121, 1979), a laser heat treatment furnace using a laser instead of a halogen lamp, and rapid raising and lowering A wafer was fabricated under the same conditions as in Example 1 except that the thermal heat treatment conditions were 1300 ° C. × 0.001 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 0.8 μm, and the BMD density was 29.0 × 10 5 pieces / cm 2 .

《実施例6》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を22.3×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにレーザを用いたレーザ熱処理炉、急速昇降温熱処理条件を1350℃×0.001秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは1.0μm、BMD密度は62.0×10個/cmであった。
Example 6
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 22.3 × 10 17 atoms / cc (ASTM F-121, 1979), a laser heat treatment furnace using a laser instead of a halogen lamp, rapid raising and lowering A wafer was fabricated under the same conditions as in Example 1 except that the thermal heat treatment conditions were 1350 ° C. × 0.001 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 1.0 μm, and the BMD density was 62.0 × 10 5 pieces / cm 2 .

《実施例7》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.3×1017atoms/cc(ASTM F−121,1979)、窒素濃度を1.5×1013atoms/cc、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×5秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは2.6μm、BMD密度は58.0×10個/cmであった。
Example 7
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.3 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 1.5 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment conditions using the substrate were 1200 ° C. × 5 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 2.6 μm, and the BMD density was 58.0 × 10 5 pieces / cm 2 .

《実施例8》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.7×1017atoms/cc(ASTM F−121,1979)、窒素濃度を85.8×1013atoms/cc、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×5秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは2.3μm、BMD密度は51.0×10個/cmであった。
Example 8
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.7 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 85.8 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment conditions using the substrate were 1200 ° C. × 5 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 2.3 μm, and the BMD density was 51.0 × 10 5 pieces / cm 2 .

《実施例9》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を21.1×1017atoms/cc(ASTM F−121,1979)、窒素濃度を2.5×1013atoms/cc、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×3秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは2.1μm、BMD密度は67.0×10個/cmであった。
Example 9
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 21.1 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 2.5 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment condition using was 1200 ° C. × 3 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 2.1 μm, and the BMD density was 67.0 × 10 5 pieces / cm 2 .

《実施例10》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を21.9×1017atoms/cc(ASTM F−121,1979)、窒素濃度を75.8×1013atoms/cc、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×3秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは1.7μm、BMD密度は61.0×10個/cmであった。
Example 10
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 21.9 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 75.8 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment condition using was 1200 ° C. × 3 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 1.7 μm, and the BMD density was 61.0 × 10 5 pieces / cm 2 .

《実施例11》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を20.4×1017atoms/cc(ASTM F−121,1979)、窒素濃度を34.6×1013atoms/cc、ハロゲンランプの代わりにキセノンランプを用いたフラッシュランプ熱処理炉、急速昇降温熱処理条件を1300℃×0.001秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは0.8μm、BMD密度は49.0×10個/cmであった。
Example 11
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 20.4 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 34.6 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that a flash lamp heat treatment furnace using a xenon lamp instead of 1 and the rapid heating / cooling heat treatment conditions were set to 1300 ° C. × 0.001 seconds, defect-free depth and BMD density Was measured. As a result, the defect-free depth was 0.8 μm, and the BMD density was 49.0 × 10 5 pieces / cm 2 .

《実施例12》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を21.0×1017atoms/cc(ASTM F−121,1979)、窒素濃度を81.5×1013atoms/cc、ハロゲンランプの代わりにレーザを用いたレーザ熱処理炉、急速昇降温熱処理条件を1300℃×0.001秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは0.8μm、BMD密度は52.0×10個/cmであった。
Example 12
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 21.0 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 81.5 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that the laser heat treatment furnace using a laser instead of 1 and the rapid heating / cooling heat treatment conditions were 1300 ° C. × 0.001 seconds, and the defect-free depth and BMD density were measured. did. As a result, the defect-free depth was 0.8 μm, and the BMD density was 52.0 × 10 5 pieces / cm 2 .

《比較例1》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を13.1×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×3秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは2.1μmであったが、BMD密度は1.0×10個/cmに満たなかった。
<< Comparative Example 1 >>
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 13.1 × 10 17 atoms / cc (ASTM F-121, 1979), and the rapid heating / cooling heat treatment conditions using a halogen lamp were 1200 ° C. × 3 A wafer was produced under the same conditions as in Example 1 except that the second was set, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 2.1 μm, but the BMD density was less than 1.0 × 10 4 pieces / cm 2 .

《比較例2》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を13.2×1017atoms/cc(ASTM F−121,1979)、窒素濃度を35.0×1013atoms/cc、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×5秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは2.6μmであったが、BMD密度は1.0×10個/cmに満たなかった。
<< Comparative Example 2 >>
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 13.2 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 35.0 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 1 except that the rapid heating / cooling heat treatment conditions using the substrate were 1200 ° C. × 5 seconds, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 2.6 μm, but the BMD density was less than 1.0 × 10 4 pieces / cm 2 .

《比較例3》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.8×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプを用いた急速昇降温熱処理条件を1100℃×3秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、BMD密度は6.4×10個/cmであったが、無欠陥深さは0μmであった。
<< Comparative Example 3 >>
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.8 × 10 17 atoms / cc (ASTM F-121, 1979), and the rapid heating / cooling heat treatment conditions using a halogen lamp were 1100 ° C. × 3 A wafer was produced under the same conditions as in Example 1 except that the second was set, and the defect-free depth and BMD density were measured. As a result, the BMD density was 6.4 × 10 5 pieces / cm 2 , but the defect-free depth was 0 μm.

《比較例4》
実施例1に対し、シリコン単結晶インゴットの初期格子間酸素濃度を15.2×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプを用いた急速昇降温熱処理条件を1125℃×3秒としたこと以外は、実施例1と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、BMD密度は5.3×10個/cmであったが、無欠陥深さは0μmであった。
<< Comparative Example 4 >>
Compared to Example 1, the initial interstitial oxygen concentration of the silicon single crystal ingot was 15.2 × 10 17 atoms / cc (ASTM F-121, 1979), and the rapid heating / cooling heat treatment condition using a halogen lamp was 1125 ° C. × 3 A wafer was produced under the same conditions as in Example 1 except that the second was set, and the defect-free depth and BMD density were measured. As a result, the BMD density was 5.3 × 10 5 pieces / cm 2 , but the defect-free depth was 0 μm.

Figure 0005217245
《考 察》
実施例1〜12の結果から、初期格子間酸素濃度が1.4×1018atoms/cc(ASTM F−121,1979)以上のウェーハに、1150℃以上、1350℃以下の温度で3秒以下の熱処理を施せば、得られたウェーハには約3μm以下の無欠陥層が形成されることが確認された。
Figure 0005217245
《Discussion》
From the results of Examples 1 to 12, a wafer having an initial interstitial oxygen concentration of 1.4 × 10 18 atoms / cc (ASTM F-121, 1979) or more is 3 seconds or less at a temperature of 1150 ° C. or more and 1350 ° C. or less. It was confirmed that a defect-free layer of about 3 μm or less was formed on the obtained wafer by performing the heat treatment.

すなわち、急速昇降温熱処理によって、極めて表層領域のみではあるがCZ法による引き上げ時に形成されたGrown-in(Void)欠陥COPと酸素析出核が消滅し、この領域では高い酸化膜耐圧を示すことが確認された。 That is, the rapid temperature increase / decrease heat treatment eliminates the Grown-in (Void) defect COP and the oxygen precipitation nucleus formed at the time of pulling by the CZ method, although it is only in the surface layer region, and shows a high oxide film breakdown voltage in this region. confirmed.

一方、ウェーハ表面から10〜20μmの位置では、結晶育成時に高酸素であったために、成長した酸素安定析出核が存在しており、これが1000℃×16時間の熱処理で顕在化することが確認された。 On the other hand, at the position of 10 to 20 μm from the wafer surface, since oxygen was high at the time of crystal growth, the grown oxygen stable precipitation nuclei existed, and it was confirmed that this was manifested by heat treatment at 1000 ° C. × 16 hours. It was.

このように、実施例1〜12のウェーハ最表層では欠陥が消滅する一方で、デバイス活性領域の直下に安定な酸素析出核(ゲッタリング源)が存在する極めて好ましいウェーハを得ることができた。また、フラッシュランプ熱処理炉やレーザ熱処理炉を用いた場合、より浅い無欠陥層幅を得ることが可能であることも確認できた。 As described above, while the defects disappeared in the outermost surface layers of Examples 1 to 12, it was possible to obtain a highly preferable wafer in which stable oxygen precipitation nuclei (gettering sources) existed immediately below the device active region. It was also confirmed that a shallower defect-free layer width can be obtained when a flash lamp heat treatment furnace or a laser heat treatment furnace is used.

これに対し、比較例1及び2では、結晶に存在する初期酸素濃度が低く、結晶育成時に十分安定な析出核サイズとなっていないため、急速昇降温処理や1000℃×16時間の熱処理を施しても安定な酸素析出核が存在しないことが確認された。 On the other hand, in Comparative Examples 1 and 2, since the initial oxygen concentration present in the crystal is low and the precipitation nucleus size is not sufficiently stable at the time of crystal growth, rapid heating and cooling treatment or heat treatment at 1000 ° C. × 16 hours is performed. However, it was confirmed that there are no stable oxygen precipitation nuclei.

さらに、比較例3及び4では、急速昇降温熱処理の温度が低いため、急速昇降温熱処理にて欠陥の消滅が十分ではなく、ウェーハ最表面から酸化膜耐圧の歩留まりが劣化することが確認された。 Furthermore, in Comparative Examples 3 and 4, since the temperature of the rapid heating / cooling heat treatment was low, it was confirmed that defects were not sufficiently eliminated by the rapid heating / cooling heat treatment, and the yield of oxide breakdown voltage deteriorated from the outermost surface of the wafer. .

《実施例13》
直径200mmのシリコン単結晶インゴット(初期格子間酸素濃度が16.1×1017atoms/cc(ASTM F−121,1979),比抵抗が10〜20Ωcm,窒素ドープなし)からスライスして鏡面加工を施した複数のシリコンウェーハに、ハロゲンランプを熱源とする熱処理炉を用いて1150℃×3秒の熱処理を施した。
Example 13
Slicing from a silicon single crystal ingot with a diameter of 200 mm (initial interstitial oxygen concentration of 16.1 × 10 17 atoms / cc (ASTM F-121, 1979), specific resistance of 10-20 Ωcm, non-nitrogen doped) A plurality of silicon wafers were subjected to heat treatment at 1150 ° C. for 3 seconds using a heat treatment furnace using a halogen lamp as a heat source.

さらに、この熱処理が施された複数のシリコンウェーハに、堆積温度が1150℃の条件でシリコンエピタキシャル層を4.0μm成長させ、得られたシリコンエピタキシャルウェーハの無欠陥深さとBMD密度とを実施例1と同じ条件で測定したところ、無欠陥深さは5.1μm、BMD密度は0.87×10個/cmであった。 Further, a silicon epitaxial layer was grown to 4.0 μm on the plurality of silicon wafers subjected to the heat treatment under the condition of a deposition temperature of 1150 ° C., and the defect-free depth and BMD density of the obtained silicon epitaxial wafer were measured in Example 1. The defect-free depth was 5.1 μm, and the BMD density was 0.87 × 10 5 pieces / cm 2 .

《実施例14》
実施例13に対し、シリコン単結晶インゴットの初期格子間酸素濃度を16.6×1017atoms/cc(ASTM F−121,1979)、窒素濃度を34.0×1013atoms/ccとしたこと以外は、実施例13と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは5.6μm、BMD密度は3.5×10個/cmであった。
Example 14
Compared to Example 13, the initial interstitial oxygen concentration of the silicon single crystal ingot was 16.6 × 10 17 atoms / cc (ASTM F-121, 1979), and the nitrogen concentration was 34.0 × 10 13 atoms / cc. Except for the above, a wafer was produced under the same conditions as in Example 13, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 5.6 μm, and the BMD density was 3.5 × 10 5 pieces / cm 2 .

《実施例15》
実施例13に対し、シリコン単結晶インゴットの初期格子間酸素濃度を15.1×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプ熱処理炉に代えてキセノンランプを用いたフラッシュランプ熱処理炉、このフラッシュランプ熱処理炉を用いた熱処理を1250℃×0.001秒、エピタキシャル層の膜厚を3.5μmとしたこと以外は、実施例13と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは4.3μm、BMD密度は7.7×10個/cmであった。
Example 15
Compared to Example 13, the initial interstitial oxygen concentration of the silicon single crystal ingot was 15.1 × 10 17 atoms / cc (ASTM F-121, 1979), and flash lamp heat treatment using a xenon lamp instead of the halogen lamp heat treatment furnace A wafer was fabricated under the same conditions as in Example 13 except that the heat treatment using the furnace and the flash lamp heat treatment furnace was 1250 ° C. × 0.001 second and the film thickness of the epitaxial layer was 3.5 μm. And BMD density were measured. As a result, the defect-free depth was 4.3 μm, and the BMD density was 7.7 × 10 5 pieces / cm 2 .

《実施例16》
実施例13に対し、シリコン単結晶インゴットの初期格子間酸素濃度を17.8×1017atoms/cc(ASTM F−121,1979)、窒素濃度を27.0×1013atoms/cc、ハロゲンランプ熱処理炉に代えてキセノンランプを用いたフラッシュランプ熱処理炉、このフラッシュランプ熱処理炉を用いた熱処理を1250℃×0.001秒、エピタキシャル層の膜厚を3.5μmとしたこと以外は、実施例13と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは4.6μm、BMD密度は12.0×10個/cmであった。
Example 16
Compared to Example 13, the initial interstitial oxygen concentration of the silicon single crystal ingot was 17.8 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 27.0 × 10 13 atoms / cc, a halogen lamp A flash lamp heat treatment furnace using a xenon lamp instead of a heat treatment furnace, except that the heat treatment using this flash lamp heat treatment furnace is 1250 ° C. × 0.001 second and the thickness of the epitaxial layer is 3.5 μm. A wafer was produced under the same conditions as in No. 13, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 4.6 μm, and the BMD density was 12.0 × 10 5 pieces / cm 2 .

《実施例17》
実施例13に対し、シリコン単結晶インゴットの初期格子間酸素濃度を16.4×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプ熱処理炉に代えてレーザを用いたレーザ熱処理炉、このレーザ熱処理炉を用いた熱処理を1350℃×0.001秒、エピタキシャル層の膜厚を3.5μmとしたこと以外は、実施例13と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは4.7μm、BMD密度は8.7×10個/cmであった。
Example 17
In contrast to Example 13, the initial interstitial oxygen concentration of the silicon single crystal ingot was 16.4 × 10 17 atoms / cc (ASTM F-121, 1979), a laser heat treatment furnace using a laser instead of the halogen lamp heat treatment furnace, A wafer was produced under the same conditions as in Example 13 except that the heat treatment using this laser heat treatment furnace was 1350 ° C. × 0.001 second and the film thickness of the epitaxial layer was 3.5 μm. Defect-free depth and BMD density Was measured. As a result, the defect-free depth was 4.7 μm, and the BMD density was 8.7 × 10 5 pieces / cm 2 .

《実施例18》
実施例13に対し、シリコン単結晶インゴットの初期格子間酸素濃度を17.3×1017atoms/cc(ASTM F−121,1979)、窒素濃度を24.0×1013atoms/cc、ハロゲンランプ熱処理炉に代えてレーザを用いたレーザ熱処理炉、このレーザ熱処理炉を用いた熱処理を1350℃×0.001秒、エピタキシャル層の膜厚を3.5μmとしたこと以外は、実施例13と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは4.3μm、BMD密度は32.0×10個/cmであった。
Example 18
Compared to Example 13, the initial interstitial oxygen concentration of the silicon single crystal ingot was 17.3 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 24.0 × 10 13 atoms / cc, a halogen lamp Laser heat treatment furnace using laser instead of heat treatment furnace, heat treatment using this laser heat treatment furnace was the same as Example 13 except that 1350 ° C. × 0.001 second and the thickness of the epitaxial layer was 3.5 μm. A wafer was produced under the conditions, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 4.3 μm, and the BMD density was 32.0 × 10 5 pieces / cm 2 .

《比較例5》
実施例13に対し、シリコン単結晶インゴットの初期格子間酸素濃度を15.8×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプ熱処理炉を用いた熱処理を1125℃×3秒としたこと以外は、実施例13と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、BMD密度は0.96×10個/cmであったが、無欠陥深さは0μmであった。
<< Comparative Example 5 >>
In contrast to Example 13, the initial interstitial oxygen concentration of the silicon single crystal ingot was 15.8 × 10 17 atoms / cc (ASTM F-121, 1979), and heat treatment using a halogen lamp heat treatment furnace was 1125 ° C. × 3 seconds. Except for this, a wafer was produced under the same conditions as in Example 13, and the defect-free depth and BMD density were measured. As a result, the BMD density was 0.96 × 10 5 pieces / cm 2 , but the defect-free depth was 0 μm.

Figure 0005217245
《考 察》
実施例13〜18の結果から、初期格子間酸素濃度が1.4×1018atoms/cc(ASTM F−121,1979)以上のウェーハに、1150℃以上、1350℃以下の温度で3秒以下の熱処理を施し、この上にシリコンエピタキシャル層を形成しても、得られたウェーハには約6μm以下の無欠陥層が形成されることが確認された。一方、ウェーハ表面から10〜20μmの領域に高いBMD密度が観察された。
Figure 0005217245
《Discussion》
From the results of Examples 13 to 18, a wafer having an initial interstitial oxygen concentration of 1.4 × 10 18 atoms / cc (ASTM F-121, 1979) or more is 3 seconds or less at a temperature of 1150 ° C. or more and 1350 ° C. or less. It was confirmed that a defect-free layer of about 6 μm or less was formed on the obtained wafer even when the silicon epitaxial layer was formed on this heat treatment. On the other hand, a high BMD density was observed in a region of 10 to 20 μm from the wafer surface.

これに対して、急速昇降温処理が1125℃であった比較例5では、この熱処理におけるウェーハ表層の酸素析出核の消滅が十分ではなく、エピタキシャル成長の際に、酸素析出核を起点にエピタキシャル欠陥の発生があり、酸化膜耐圧が劣化することが確認された。 On the other hand, in Comparative Example 5 in which the rapid temperature increase / decrease process was 1125 ° C., the disappearance of oxygen precipitation nuclei on the wafer surface layer during this heat treatment was not sufficient, and during the epitaxial growth, It was confirmed that the breakdown voltage of the oxide film deteriorated.

《実施例19》
直径200mmのシリコン単結晶インゴット(初期格子間酸素濃度が14.5×1017atoms/cc(ASTM F−121,1979),比抵抗が10〜20Ωcm,窒素ドープなし)からスライスして鏡面加工を施した複数のシリコンウェーハに、ハロゲンランプを熱源とする熱処理炉を用いて1150℃×3秒の熱処理を施した。
Example 19
Slicing from 200 mm diameter silicon single crystal ingot (initial interstitial oxygen concentration is 14.5 × 10 17 atoms / cc (ASTM F-121, 1979), specific resistance is 10-20 Ωcm, no nitrogen doping) and mirror finish A plurality of silicon wafers were subjected to heat treatment at 1150 ° C. for 3 seconds using a heat treatment furnace using a halogen lamp as a heat source.

この熱処理が施された複数のシリコンウェーハに対し、さらに1000℃×30分の追加熱処理をアルゴンガス雰囲気で施した。 An additional heat treatment at 1000 ° C. for 30 minutes was further performed in an argon gas atmosphere on the plurality of silicon wafers subjected to the heat treatment.

得られたシリコンウェーハの無欠陥深さとBMD密度とを実施例1と同じ条件で測定したところ、無欠陥深さは2.3μm、BMD密度は2.3×10個/cmであった。 When the defect-free depth and BMD density of the obtained silicon wafer were measured under the same conditions as in Example 1, the defect-free depth was 2.3 μm and the BMD density was 2.3 × 10 5 pieces / cm 2 . .

《実施例20》
実施例19に対し、追加熱処理条件を1200℃×60分としたこと以外は、実施例19と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは5.6μm、BMD密度は1.1×10個/cmであった。
Example 20
For Example 19, a wafer was produced under the same conditions as Example 19 except that the additional heat treatment condition was 1200 ° C. × 60 minutes, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 5.6 μm, and the BMD density was 1.1 × 10 5 pieces / cm 2 .

また、追加熱処理を行う前後におけるBMDサイズを透過電子顕微鏡にて観察したところ、追加熱処理を行う前の状態では透過電子顕微鏡で検出可能な最小サイズ以下(<10nm)であったのに対し、追加熱処理を行った後の状態では平均サイズが63.4nmの多面体形状の析出物が観察された。   In addition, when the BMD size before and after the additional heat treatment was observed with a transmission electron microscope, it was less than the minimum size (<10 nm) detectable with the transmission electron microscope before the additional heat treatment. In the state after the heat treatment, polyhedral precipitates having an average size of 63.4 nm were observed.

《実施例21》
実施例19に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.6×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにキセノンランプを用いたフラッシュランプ熱処理炉、急速昇降温熱処理条件を1250℃×0.001秒、追加熱処理条件を1150℃×30分としたこと以外は、実施例19と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは2.1μm、BMD密度は19.0×10個/cmであった。
<< Example 21 >>
In contrast to Example 19, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.6 × 10 17 atoms / cc (ASTM F-121, 1979), a flash lamp heat treatment furnace using a xenon lamp instead of a halogen lamp, A wafer was fabricated under the same conditions as in Example 19 except that the rapid heating / cooling heat treatment conditions were 1250 ° C. × 0.001 seconds and the additional heat treatment conditions were 1150 ° C. × 30 minutes, and the defect-free depth and BMD density were measured. . As a result, the defect-free depth was 2.1 μm, and the BMD density was 19.0 × 10 5 pieces / cm 2 .

《実施例22》
実施例19に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.6×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにキセノンランプを用いたフラッシュランプ熱処理炉、急速昇降温熱処理条件を1250℃×0.001秒、追加熱処理条件を1150℃×60分としたこと以外は、実施例19と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは3.5μm、BMD密度は12.0×10個/cmであった。
<< Example 22 >>
In contrast to Example 19, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.6 × 10 17 atoms / cc (ASTM F-121, 1979), a flash lamp heat treatment furnace using a xenon lamp instead of a halogen lamp, A wafer was fabricated under the same conditions as in Example 19 except that the rapid heating / cooling heat treatment conditions were 1250 ° C. × 0.001 seconds and the additional heat treatment conditions were 1150 ° C. × 60 minutes, and the defect-free depth and BMD density were measured. . As a result, the defect-free depth was 3.5 μm, and the BMD density was 12.0 × 10 5 pieces / cm 2 .

《実施例23》
実施例19に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.4×1017atoms/cc(ASTM F−121,1979)、ハロゲンランプの代わりにレーザを用いたレーザ熱処理炉、急速昇降温熱処理条件を1300℃×0.001秒、追加熱処理条件を1150℃×30分としたこと以外は、実施例19と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは3.7μm、BMD密度は10.0×10個/cmであった。
<< Example 23 >>
In contrast to Example 19, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.4 × 10 17 atoms / cc (ASTM F-121, 1979), a laser heat treatment furnace using a laser instead of a halogen lamp, rapid raising and lowering A wafer was fabricated under the same conditions as in Example 19 except that the thermal heat treatment conditions were 1300 ° C. × 0.001 seconds and the additional heat treatment conditions were 1150 ° C. × 30 minutes, and the defect-free depth and BMD density were measured. As a result, the defect-free depth was 3.7 μm, and the BMD density was 10.0 × 10 5 pieces / cm 2 .

《実施例24》
実施例19に対し、シリコン単結晶インゴットの初期格子間酸素濃度を14.7×1017atoms/cc(ASTM F−121,1979)、窒素濃度を85.8×1013atoms/cc、ハロゲンランプを用いた急速昇降温熱処理条件を1200℃×5秒、追加熱処理条件を1150℃×60分としたこと以外は、実施例19と同じ条件でウェーハを作製し、無欠陥深さとBMD密度を測定した。その結果、無欠陥深さは4.9μm、BMD密度は24.0×10個/cmであった。
Example 24
Compared to Example 19, the initial interstitial oxygen concentration of the silicon single crystal ingot was 14.7 × 10 17 atoms / cc (ASTM F-121, 1979), the nitrogen concentration was 85.8 × 10 13 atoms / cc, a halogen lamp A wafer was fabricated under the same conditions as in Example 19 except that the rapid heating / cooling heat treatment conditions using 1200 were 1200 ° C. × 5 seconds and the additional heat treatment conditions were 1150 ° C. × 60 minutes, and the defect-free depth and BMD density were measured. did. As a result, the defect-free depth was 4.9 μm, and the BMD density was 24.0 × 10 5 pieces / cm 2 .

Figure 0005217245
《考 察》
実施例19〜24の結果から、急速昇降温処理を施したウェーハに追加熱処理(非酸化性雰囲気)をすることで、ウェーハ表面から10〜20μmの位置における酸素析出物のサイズが増大することが確認された(実施例20)。したがって、10〜20μmの位置における熱安定性が向上するとともに、さらに表層付近では酸素の外方拡散によって表層のBMDが消滅することで無欠陥深さの調整も可能となる。
Figure 0005217245
《Discussion》
From the results of Examples 19 to 24, the size of the oxygen precipitate at the position of 10 to 20 μm from the wafer surface can be increased by performing an additional heat treatment (non-oxidizing atmosphere) on the wafer that has been subjected to the rapid heating and cooling process. It was confirmed (Example 20). Accordingly, the thermal stability at a position of 10 to 20 μm is improved, and further, the defect-free depth can be adjusted by the disappearance of the BMD in the surface layer due to the outward diffusion of oxygen near the surface layer.

本発明の実施形態に係るシリコン単結晶ウェーハの製造方法を示す工程図である。It is process drawing which shows the manufacturing method of the silicon single crystal wafer which concerns on embodiment of this invention.

Claims (11)

チョクラルスキー法によって育成された単結晶から加工されたシリコンウェーハであって、初期格子間酸素濃度が1.4×1018atoms/cc(ASTM F−121,1979)以上のシリコンウェーハに、
アルゴンガスのガス雰囲気中において、1150℃以上、シリコン融点以下の熱処理温度で、5秒以下の急速昇降温熱処理を施し、前記シリコンウェーハの表面から0.6μm〜2.6μmの深さに無欠陥層を形成する工程を有することを特徴とするシリコン単結晶ウェーハの製造方法。
A silicon wafer is processed from a single crystal grown by the Czochralski method, the initial interstitial oxygen concentration of 1.4 × 10 18 atoms / cc ( ASTM F-121,1979) over the silicon wafer,
In gas atmosphere of argon gas, 1150 ° C. or more, a silicon melting point below the heat treatment temperature, and facilities the rapid lifting thermal treatment of 5 seconds or less, free from the surface of the silicon wafer to a depth of 0.6μm~2.6μm A method for producing a silicon single crystal wafer, comprising a step of forming a defect layer .
前記単結晶から加工されたシリコンウェーハの初期格子間酸素濃度が17.3×10The silicon wafer processed from the single crystal has an initial interstitial oxygen concentration of 17.3 × 10 1717 atoms/cc(ASTM F−121,1979)以上であることを特徴とする請求項1に記載のシリコン単結晶ウェーハの製造方法。The method for producing a silicon single crystal wafer according to claim 1, wherein the atom is at least atoms / cc (ASTM F-121, 1979). 前記急速昇降温熱処理は、熱源としてのハロゲンランプを用いて0.1〜秒の熱処理を施すことを特徴とする請求項1または2記載のシリコン単結晶ウェーハの製造方法。 3. The method for producing a silicon single crystal wafer according to claim 1, wherein the rapid temperature raising and lowering heat treatment is performed for 0.1 to 5 seconds using a halogen lamp as a heat source. 前記急速昇降温熱処理は、熱源としてのキセノンランプを用いて0.1秒以下の熱処理を施すことを特徴とする請求項1または2記載のシリコン単結晶ウェーハの製造方法。   3. The method for manufacturing a silicon single crystal wafer according to claim 1, wherein the rapid temperature raising and lowering heat treatment is performed by using a xenon lamp as a heat source for 0.1 seconds or less. 前記急速昇降温熱処理は、熱源としてのレーザを用いて0.1秒以下の熱処理を施すことを特徴とする請求項1または2記載のシリコン単結晶ウェーハの製造方法。   3. The method of manufacturing a silicon single crystal wafer according to claim 1, wherein the rapid temperature raising and lowering heat treatment is performed by using a laser as a heat source for 0.1 seconds or less. 前記チョクラルスキー法によりシリコン単結晶を育成する際に、窒素がシリコン単結晶中に1×1013〜1×1015atoms/ccドープされることを特徴とする請求項1〜5の何れかに記載のシリコン単結晶ウェーハの製造方法。 6. The silicon single crystal is doped with 1 × 10 13 to 1 × 10 15 atoms / cc when the silicon single crystal is grown by the Czochralski method. A method for producing a silicon single crystal wafer according to 1. 前記急速昇降温熱処理されたシリコンウェーハに、シリコン単結晶をエピタキシャル成長させる工程を有することを特徴とする請求項1〜6の何れかに記載のシリコン単結晶ウェーハの製造方法。 The rapidly heating and cooling the heat-treated silicon wafer, the method for manufacturing a silicon single crystal wafer according to claim 1, characterized in that it comprises a step of epitaxially growing a silicon single crystal. 前記急速昇降温熱処理されたシリコンウェーハに、非酸化性雰囲気にて、1000℃以上、1300℃以下の追加熱処理を施す追加熱処理工程をさらに有することを特徴とする請求項1〜7の何れかに記載のシリコン単結晶ウェーハの製造方法。 The rapid lifting heat treated silicon wafer, in a non-oxidizing atmosphere, 1000 ° C. or more, in any one of claims 1 to 7, further comprising an additional heat treatment step of applying additional heat treatment at 1300 ° C. or less The manufacturing method of the silicon single crystal wafer of description. 前記急速昇降温熱処理は、当該急速昇降温熱処理されたシリコンウェーハに、1000℃×16時間のBMD密度測定用熱処理を施した場合に、ウェーハ表面から10μm〜20μmの範囲に5×10個/cm以上の酸素析出物が形成されるように、熱処理を施すことを特徴とする請求項1〜8の何れかに記載のシリコン単結晶ウェーハの製造方法。 The rapid heating / cooling heat treatment is performed when a silicon wafer subjected to the rapid heating / cooling heat treatment is subjected to a heat treatment for BMD density measurement at 1000 ° C. for 16 hours, and 5 × 10 4 / The method for producing a silicon single crystal wafer according to any one of claims 1 to 8 , wherein heat treatment is performed so that oxygen precipitates of cm 2 or more are formed. 請求項1〜の何れかに記載された方法により製造されたことを特徴とするシリコン単結晶ウェーハ。 A silicon single crystal wafer, characterized in that it is manufactured by the method according to any one of claims 1-9. 請求項10記載のシリコン単結晶ウェーハであって、ウェーハ表面から10μm〜20μmの範囲に5×10個/cm以上の酸素析出物を有することを特徴とするシリコン単結晶ウェーハ。 11. The silicon single crystal wafer according to claim 10, wherein the silicon single crystal wafer has oxygen precipitates of 5 × 10 4 pieces / cm 2 or more in a range of 10 μm to 20 μm from the wafer surface.
JP2007136287A 2007-05-23 2007-05-23 Silicon single crystal wafer and manufacturing method thereof Active JP5217245B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007136287A JP5217245B2 (en) 2007-05-23 2007-05-23 Silicon single crystal wafer and manufacturing method thereof
US12/113,576 US20080292523A1 (en) 2007-05-23 2008-05-01 Silicon single crystal wafer and the production method
KR1020080042402A KR101020436B1 (en) 2007-05-23 2008-05-07 Silicon single crystal wafer and manufacturing method thereof
DE102008022747.1A DE102008022747B4 (en) 2007-05-23 2008-05-08 Silicon single crystal wafers and method of manufacture
TW097117827A TWI390091B (en) 2007-05-23 2008-05-15 Silicon single crystal wafer and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007136287A JP5217245B2 (en) 2007-05-23 2007-05-23 Silicon single crystal wafer and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2008294112A JP2008294112A (en) 2008-12-04
JP5217245B2 true JP5217245B2 (en) 2013-06-19

Family

ID=40168550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007136287A Active JP5217245B2 (en) 2007-05-23 2007-05-23 Silicon single crystal wafer and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5217245B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2412849B1 (en) 2009-03-25 2016-03-23 SUMCO Corporation Silicon wafer and method for manufacturing same
JP2011086706A (en) * 2009-10-14 2011-04-28 Sumco Corp Epitaxial substrate for backside illumination type solid-state image pickup element and method of manufacturing the same
JP2011086702A (en) * 2009-10-14 2011-04-28 Sumco Corp Epitaxial substrate for backside illumination type solid-state image pickup element and method of manufacturing the same
JP6044277B2 (en) * 2012-11-08 2016-12-14 信越半導体株式会社 Manufacturing method of silicon single crystal wafer
JP6260100B2 (en) * 2013-04-03 2018-01-17 株式会社Sumco Epitaxial silicon wafer manufacturing method
JP5811218B2 (en) * 2014-03-18 2015-11-11 株式会社Sumco Manufacturing method of silicon epitaxial wafer
US11695048B2 (en) * 2020-04-09 2023-07-04 Sumco Corporation Silicon wafer and manufacturing method of the same
JP7545347B2 (en) * 2021-02-25 2024-09-04 グローバルウェーハズ・ジャパン株式会社 Silicon wafer manufacturing method and silicon wafer
JP2024008390A (en) * 2022-07-08 2024-01-19 株式会社Sumco Silicon wafer and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4055343B2 (en) * 2000-09-26 2008-03-05 株式会社Sumco Heat treatment method for silicon semiconductor substrate
JP4529416B2 (en) * 2003-11-07 2010-08-25 信越半導体株式会社 Manufacturing method of silicon single crystal wafer and silicon single crystal wafer
JP4794137B2 (en) * 2004-04-23 2011-10-19 Sumco Techxiv株式会社 Heat treatment method for silicon semiconductor substrate
WO2007013189A1 (en) * 2005-07-27 2007-02-01 Sumco Corporation Silicon wafer and process for producing the same
JP5239155B2 (en) * 2006-06-20 2013-07-17 信越半導体株式会社 Method for manufacturing silicon wafer
JP2008166517A (en) * 2006-12-28 2008-07-17 Covalent Materials Corp Manufacturing method of semiconductor substrate

Also Published As

Publication number Publication date
JP2008294112A (en) 2008-12-04

Similar Documents

Publication Publication Date Title
JP5217245B2 (en) Silicon single crystal wafer and manufacturing method thereof
JP5188673B2 (en) Silicon wafer for IGBT and method for manufacturing the same
JP6044660B2 (en) Silicon wafer manufacturing method
EP1501122A1 (en) High resistance silicon wafer and method for production thereof
WO2010119614A1 (en) Anneal wafer, method for manufacturing anneal wafer, and method for manufacturing device
TWI390091B (en) Silicon single crystal wafer and its manufacturing method
JP2006261632A (en) Method of thermally treating silicon wafer
JP5251137B2 (en) Single crystal silicon wafer and manufacturing method thereof
JP2010147248A (en) Annealed wafer and method of manufacturing the same
JP6448805B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing epitaxially coated semiconductor wafer
JP5567259B2 (en) Silicon wafer and manufacturing method thereof
KR20140021543A (en) Method of manufacturing silicon substrate and silicon substrate
JP4615161B2 (en) Epitaxial wafer manufacturing method
JP2009231429A (en) Method of manufacturing silicon wafer
WO2002049091A1 (en) Anneal wafer manufacturing method and anneal wafer
JP4131077B2 (en) Silicon wafer manufacturing method
JP2010287885A (en) Silicon wafer and method of manufacturing the same
JP5262021B2 (en) Silicon wafer and manufacturing method thereof
JP5207705B2 (en) Silicon wafer and manufacturing method thereof
JP5211550B2 (en) Manufacturing method of silicon single crystal wafer
JP2013030723A (en) Method of manufacturing silicon wafer
JP5965607B2 (en) Silicon wafer manufacturing method
JP3735002B2 (en) Silicon semiconductor substrate and manufacturing method thereof
JP2009164155A (en) Method of manufacturing silicon wafer
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100409

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130218

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160315

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5217245

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250