JPS58140132A - Manufacture of cz high resistance wafer - Google Patents

Manufacture of cz high resistance wafer

Info

Publication number
JPS58140132A
JPS58140132A JP2201782A JP2201782A JPS58140132A JP S58140132 A JPS58140132 A JP S58140132A JP 2201782 A JP2201782 A JP 2201782A JP 2201782 A JP2201782 A JP 2201782A JP S58140132 A JPS58140132 A JP S58140132A
Authority
JP
Japan
Prior art keywords
wafer
heat treatment
resistance
high resistance
single crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2201782A
Other languages
Japanese (ja)
Inventor
Koji Ogawa
浩二 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP2201782A priority Critical patent/JPS58140132A/en
Publication of JPS58140132A publication Critical patent/JPS58140132A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/322Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections
    • H01L21/3221Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to modify their internal properties, e.g. to produce internal imperfections of silicon bodies, e.g. for gettering

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)

Abstract

PURPOSE:To manufacture a CZ high resistance wafer having high resistance and the uniform distribution of specific resistance within a wafer surface by a method wherein single crystal over the specific oxygen density is used, and a heat treatment is performed under a specific condition. CONSTITUTION:A P type single crystal pulled up by a CZ method is prepared and processed into a wafer by performing a slicing and lapping. One wherein the lattice oxygen density is 1.5X10<18>cm<-3> or more is used as the single crystal. Next, this wafer is heat-treated at the temperature range 550-900 deg.C for 30hr or more of the treatment time. Thereby, a CZ high resistance wafer having high resistance and the uniform distribution of specific resistance within a wafer surface can be manufactured.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体シリコンウェハの製造方法に関し、さ
らに詳しくは、高抵抗かつ均一な抵抗分布を目的とした
ウェハ製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor silicon wafer, and more particularly to a method for manufacturing a wafer aiming at high resistance and uniform resistance distribution.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近のデバイスでは、高抵抗でしかも均一な抵抗分布ヲ
をする単結晶基板が要求されて来ている。
Recent devices require single-crystal substrates with high resistance and uniform resistance distribution.

例えば高速RAMの場合50〜100Ω−1の基板が必
要である。シリコン単結晶の作り方にはフローティング
ゾーン法(FZ法)と引上法(C2法)とがある。FZ
法では、上記のような高抵抗単結晶の製作が容易である
が、FZウェハを高速RAMの基板として使用した場合
、次の2つの問題点がある。
For example, in the case of a high-speed RAM, a substrate of 50 to 100 Ω-1 is required. There are two ways to make silicon single crystals: the floating zone method (FZ method) and the pulling method (C2 method). FZ
With this method, it is easy to manufacture a high-resistance single crystal as described above, but when an FZ wafer is used as a substrate for a high-speed RAM, there are the following two problems.

■しきい値電圧(vth)の変動が大きい。特にエンハ
ンスメント形TrにおいてはFZウエノ・の変動(σ)
はCzウエノ・02倍近く大きい(第1A図、第1B図
参照)。
(2) Fluctuations in threshold voltage (vth) are large. Especially in the enhancement type Tr, the fluctuation (σ) of FZ
is nearly twice as large as Cz Ueno.02 (see Figures 1A and 1B).

■バルクの酸素の析出効果を利用するイントリンシック
・ゲッタリング(IG)には、1.5×1018ffi
−3以上の格子間酸素濃度を必要とするが、F袷単結晶
V?−は2×1016ff−3以下の酸素しか含まれて
おらず、ウェハ内部に酸素を析出させることができず、
従って10効果を利用することができない。
■Intrinsic gettering (IG), which utilizes the precipitation effect of bulk oxygen, requires 1.5×1018ffi.
-3 or more interstitial oxygen concentration is required, but F-lined single crystal V? - contains only less than 2 x 1016ff-3 of oxygen, and oxygen cannot be deposited inside the wafer,
Therefore, the 10 effect cannot be used.

これに対してC2法では、vthの変動が小さく、高温
熱処理を行ってIG効果を利用することができるが、5
0Ω−1以上の高抵抗のウェハを効率よく安定的に作り
出すことが非常に難かしいという問題点があった。即ち
、結晶中の酸素は高温熱処理によりIG効果をもたらす
一方、約450 ℃で長時間熱処理すると酸素ドナー(
サーマルドナーとも云われる)が発生し、高抵抗結晶で
はとくにこの影響が現われる。そしてこのサーマルドナ
ーは650℃で0.5〜1.0時間という短時間熱処理
すると消滅することがよく知られており、ウェハ加工上
行われている。しかし、抵抗値の分布は必ずしも均一に
することができず、650℃の熱処理をさらに続けても
サーマルドナーとは別のドナーと考えられるニュードナ
ーが形成され、より改善することができなかった。特に
ニュードナーによる抵抗値の変動は、P形単結晶におい
て発生しゃすい。
On the other hand, in the C2 method, the variation in vth is small and the IG effect can be utilized by performing high temperature heat treatment.
There has been a problem in that it is very difficult to efficiently and stably produce wafers with a high resistance of 0Ω-1 or more. That is, while oxygen in the crystal produces an IG effect through high-temperature heat treatment, oxygen donor (
(also called a thermal donor) is generated, and this effect is particularly noticeable in high-resistance crystals. It is well known that this thermal donor disappears when heat treatment is performed at 650° C. for a short time of 0.5 to 1.0 hours, and this is done during wafer processing. However, the distribution of resistance values could not necessarily be made uniform, and even if the heat treatment at 650° C. was continued, a new donor, which was considered to be a donor different from the thermal donor, was formed, and further improvement could not be achieved. In particular, fluctuations in resistance due to new donors are likely to occur in P-type single crystals.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、Vthの変動が小さく、■G効果をも
つ引上法(CZ法)により得られたP形単結晶から、高
抵抗でありがつウェハ面内で均一な比抵抗分布を有する
というcz高抵抗ウェハの製造方法を提供することにあ
る。
The purpose of the present invention is to obtain a high-resistance, uniform resistivity distribution within the wafer surface from a P-type single crystal obtained by the pulling method (CZ method) with small Vth fluctuations and a G effect. An object of the present invention is to provide a method for manufacturing a cz high resistance wafer.

〔発明の概要〕[Summary of the invention]

本発明は、550〜900 Cの温度範囲の熱処理にお
けるニュードナーの発生状況と、発生したニュードナー
の挙動についての知見を得、このニュードナーをP形ア
クセプタに相補させることによって有効に利用しようと
するものである。
The present invention aims to gain knowledge of the state of new donor generation during heat treatment in the temperature range of 550 to 900 C and the behavior of the generated new donors, and to utilize these new donors effectively by complementing them with P-type acceptors. It is something to do.

第2図は、550〜900Cの温度範囲の熱処理におけ
るニュードナーの発生状況を代表的に説明するために、
650℃における熱処理時間をパラメーターとしたとき
のニュードナーの発生状況を示したグラフである。そし
て試料として4種類の酸素濃度をもつウェハについて調
べた。
FIG. 2 is a diagram for representatively explaining the state of new donor generation during heat treatment in the temperature range of 550 to 900C.
It is a graph showing the state of new donor generation when heat treatment time at 650° C. is used as a parameter. Wafers with four different oxygen concentrations were examined as samples.

先ず、ニュードナーの相補作用′によって高抵抗を安定
に保つために、ニュードナーの発生量が熱処理時間に対
して安定的な範囲をもつ単結晶の酸素濃度が決められた
。第2図に明らかなように、そのような酸素濃度は1.
5x1018w−”以上である。
First, in order to keep the high resistance stable through the complementary action of new donors, the oxygen concentration of the single crystal was determined so that the amount of new donors generated was within a stable range with respect to the heat treatment time. As is evident in FIG. 2, such an oxygen concentration is 1.
5x1018w-" or more.

この酸素濃度は十分なIG効果をもっている。また第2
図にみるように、単結晶の酸素濃度が高ければニュード
ナーの発生量が大きい。従って、ニュードナーの相補作
用によりP形の比較的低抵抗の単結晶からP形高抵抗ウ
ェハを得るためには、1.5×10184−3以上の酸
素濃度の単結晶を用いるのが好適であり、また同じくN
形高抵抗ウェハを得るためには、1.7 X 1018
〜1.8XIO18程度の酸素濃度の学結晶を用いるの
がよい。
This oxygen concentration has a sufficient IG effect. Also the second
As shown in the figure, the higher the oxygen concentration in the single crystal, the greater the amount of new donors generated. Therefore, in order to obtain a P-type high-resistance wafer from a relatively low-resistance P-type single crystal through the complementary action of new donors, it is preferable to use a single crystal with an oxygen concentration of 1.5×10184-3 or more. Yes, also N
To obtain a shaped high resistance wafer, 1.7 x 1018
It is preferable to use a scientific crystal with an oxygen concentration of about 1.8XIO18.

次に、第2図にみるように、1.5 X 1018α−
3以上の酸素濃度のウェハは、650℃の熱処理を30
〜40時間受けるとニュードナーが発生し、50時間で
発生が・飽和することがわかる。同様に550〜900
℃の熱処理をした場合には、20〜40時間でニュード
ナーが発生し、40〜50時間で飽和する。従って55
0〜900℃の熱処理によってニュードナーの発生を飽
和させ安定な相補作用を行わせるためには、30時間を
超えた熱処理時間を与えればよい。
Next, as shown in Figure 2, 1.5 x 1018α-
Wafers with an oxygen concentration of 3 or higher are heat treated at 650°C for 30 minutes.
It can be seen that new donors are generated after 40 hours of exposure, and the generation is saturated after 50 hours. Similarly 550-900
In the case of heat treatment at .degree. C., new donors are generated in 20 to 40 hours and saturated in 40 to 50 hours. Therefore 55
In order to saturate the generation of new donors and perform a stable complementary action by heat treatment at 0 to 900°C, it is sufficient to give the heat treatment for more than 30 hours.

この熱処理時間は2回以上の熱処理のスケジュールによ
ることもできる。
This heat treatment time can also be based on a schedule of two or more heat treatments.

特に550〜.900 t?、の熱処理を50時間以上
行った場合は、発生したニー−ドナーが極めて安定化し
、その後の低温又は高温の熱処理工程でも消滅すること
がない。しかしながら100時間を超えるほどの長時間
熱処理をすると外部の汚染をとり込むこととなるので好
ましくない。
Especially from 550. 900 tons? When the heat treatment is carried out for 50 hours or more, the generated knee donors become extremely stable and do not disappear even in the subsequent heat treatment process at low or high temperatures. However, if the heat treatment is carried out for a long time exceeding 100 hours, external contamination will be introduced, which is not preferable.

また、ニュードナーの発生は550〜9oo℃の熱処理
の前工程に、350〜550 ℃の前熱処理を2時間以
上行うと促進されることがわかった。このような前熱処
理はニュードナーの相補作用によりN形高抵抗ウェハを
作る場合に適用すると極めて容易にP形からN形に転換
することができる。
Furthermore, it has been found that the generation of new donors is promoted by performing a preheat treatment at 350 to 550°C for 2 hours or more before the heat treatment at 550 to 90°C. When such pre-heat treatment is applied to the production of N-type high resistance wafers due to the complementary action of new donors, it is possible to convert the P-type to the N-type very easily.

以上のような知見に基づき、本発明は、引上法により得
られたP形シリフン単結晶からウェハに加工する工程に
おいて、該単結晶として格子間酸素濃度が1.5 X 
I Q18cm−3以上のものを用い、該加工工程中に
温度範囲550〜900 Cの熱処理を、少なくとも1
回かつ熱処理時間の累計が30時間を超えた時間行うこ
とを特徴とする安定した高抵抗の半導体シリコンウェハ
の製造方法を提供するものである。
Based on the above findings, the present invention provides a process for processing a P-type silicon single crystal obtained by a pulling method into a wafer, in which the single crystal has an interstitial oxygen concentration of 1.5
IQ of 18cm-3 or more is used, and heat treatment at a temperature range of 550 to 900 C is performed at least once during the processing process.
The present invention provides a method for manufacturing a semiconductor silicon wafer with stable high resistance, characterized in that the heat treatment is performed for a total of more than 30 hours.

〔発明の実施例〕[Embodiments of the invention]

P形高抵抗ウェハを得る第1実施例について説明する。 A first example of obtaining a P-type high resistance wafer will be described.

先ず、C2法で引上げたρ=420−備。First, ρ=420-bi was raised using the C2 method.

COi ] −1,54x 1018CIII−3のP
形単結晶を用意し、スライス及びラッピングを施してウ
ェハ形状に加工する。このものの拡がり抵抗法によるウ
ェハ面内の比抵抗分布を測定したところ、第6A図に示
したよう(C,その分布は大きく△Rは53チにも達し
ている。
COi] -1,54x 1018CIII-3 P
A shaped single crystal is prepared and processed into a wafer shape by slicing and wrapping. When the resistivity distribution in the wafer plane of this product was measured by the spreading resistance method, as shown in FIG. 6A (C), the distribution was large and ΔR reached as much as 53 inches.

このウニハラ650℃で50時間熱処理した。この熱処
理の過程で、サーマルドナーは通常15〜30分間でほ
ぼ消失し、25〜40時間の間でニュードナーが発生し
、40〜50時間で飽和に達し、ρ−113Ω−備とい
う元の抵抗の2.6倍の高抵抗で安定化する。そのウェ
ハ面内の比抵抗分布は、第6B図に示したように、ΔR
は4.8%と著しく改善することができた。この熱処理
をしたウェハはその後ケミカルポリッシング及び鏡面研
摩を施して半導体装置を製造したが、その過程の熱処理
によって安定した高抵抗性は変らなかった。
This sea urchin crab was heat-treated at 650° C. for 50 hours. During this heat treatment process, thermal donors usually disappear in 15 to 30 minutes, new donors are generated in 25 to 40 hours, reach saturation in 40 to 50 hours, and return to the original resistance of ρ-113Ω-beta. Stabilizes with a resistance 2.6 times higher than that of The specific resistance distribution within the wafer plane is ΔR, as shown in FIG. 6B.
was able to be significantly improved to 4.8%. The heat-treated wafer was then subjected to chemical polishing and mirror polishing to manufacture semiconductor devices, but the stable high resistance remained unchanged due to the heat treatment during this process.

次にN形高抵抗ウェハを得る第2実施例について説明す
る。C2法で引上げたρ=410−c、〔Qi)−1,
73X I Q18tM−3のP形単結晶を用意する。
Next, a second example for obtaining an N-type high resistance wafer will be described. ρ raised by C2 method = 410-c, [Qi)-1,
A P-type single crystal of 73X I Q18tM-3 is prepared.

P形つェハからN形高抵抗ウェハにするためにニュード
ナーの発生を効果的にすることがよい。このため、50
0℃で5時間前熱処理を行い、次いで650℃で70時
間ニュードナー発生の熱処理を行ったところ、ニー−ド
ナーの発生によってP形はN形に転換し、N形でρ=1
220−1という高抵抗値のウェハを得た。その面内比
抵抗分布は、第4A図のΔR=52 %のものが第4B
図のようにΔR=4.4%と著しく改善させることがで
きた。
In order to convert a P-type wafer into an N-type high-resistance wafer, it is preferable to effectively generate new donors. For this reason, 50
When pre-heat treatment was performed at 0°C for 5 hours, and then heat treatment was performed at 650°C for 70 hours to generate new donors, the P type was converted to the N type due to the generation of knee donors, and in the N type, ρ = 1.
A wafer with a high resistance value of 220-1 was obtained. The in-plane resistivity distribution of ΔR=52% in Figure 4A is the one in Figure 4B.
As shown in the figure, a significant improvement was achieved with ΔR=4.4%.

第1実施例、第2実施例のいずれのウエノ・においても
、C2法の特長である次の2点、即ちVthの変動が小
さいこととIC効果のあることが認められた。
In both the first example and the second example, the following two features of the C2 method were observed: small fluctuations in Vth and IC effect.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、酸素濃度1.5 X 1018ffi
−3以上の単結晶を用い温度範囲550〜900 Cの
熱処理全30時間以上という長時間行うことにlよって
、ニュードナーが安定的に発生し、従ってP形又はN形
高抵抗つエノ・が従来方法と異なり容易にかつ面内の分
布が均一に、しかもvthの変動が小さく、有効なIC
効果を伴って得ることができる。
According to the invention, the oxygen concentration is 1.5 x 1018ffi
By performing heat treatment for a total of 30 hours or more at a temperature range of 550 to 900 C using a single crystal of −3 or higher, new donors are stably generated, and therefore P-type or N-type high-resistance nitrogen is generated. Unlike conventional methods, it is easy to create an effective IC with uniform in-plane distribution and small vth fluctuations.
can be obtained with effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1A図及び第1B図はC2法とFz法のウェハのVt
hの分布を説明するグラフ、第2図は本発明の650℃
熱処理時間とニュードナー発生量の関係を示すグラフ、
第6A図及び第3B図は本発明のP形高抵抗つエノ・の
面内比抵抗分布の改善を示すグラフ、第4A図及び第4
B図は、本発明のN形高抵抗つエノ・の面内比抵抗分布
の改善を示すグラフである。 特許出願人 東京芝浦電気株式会社 163
Figures 1A and 1B show the Vt of the wafer for the C2 method and the Fz method.
Figure 2 is a graph explaining the distribution of h at 650°C according to the present invention.
Graph showing the relationship between heat treatment time and amount of new donors generated,
Figures 6A and 3B are graphs showing improvements in the in-plane resistivity distribution of the P-type high-resistance tube of the present invention, and Figures 4A and 4
Figure B is a graph showing improvement in the in-plane resistivity distribution of the N-type high resistance tube of the present invention. Patent applicant: Tokyo Shibaura Electric Co., Ltd. 163

Claims (1)

【特許請求の範囲】 1 引上法により得られたP形シリコン単結晶からウェ
ハに加工する工程において、該単結晶として格子間酸素
濃度が1.5X10 [以上のもの管用い、該加工工程
中に温度範囲550〜900℃の熱処理を、少なくとも
1回かつ熱処理時間の累計が30時間を超えた時間行う
ことを特徴とする半導体シリコンウェハの製造方法。 2 温度範囲550〜900Lの熱処理の前工程に、温
度範囲350〜550℃の前熱処理を、少なくとも1回
かつ前熱処理時間の累計が2時間以上の時間行う、特許
請求の範囲第1項記載の製造方法。 6 製造される半導体シリコンウェハが、N形シリコン
ウェハである、特許請求の範囲第1項記載の製造方法。
[Claims] 1. In the step of processing a P-type silicon single crystal obtained by a pulling method into a wafer, the single crystal has an interstitial oxygen concentration of 1.5×10 [or more]. A method for manufacturing a semiconductor silicon wafer, comprising performing heat treatment at a temperature range of 550 to 900° C. at least once for a total heat treatment time of more than 30 hours. 2. The method according to claim 1, wherein preheat treatment at a temperature range of 350 to 550°C is performed at least once and for a cumulative preheat treatment time of 2 hours or more before the heat treatment at a temperature range of 550 to 900 L. Production method. 6. The manufacturing method according to claim 1, wherein the semiconductor silicon wafer to be manufactured is an N-type silicon wafer.
JP2201782A 1982-02-16 1982-02-16 Manufacture of cz high resistance wafer Pending JPS58140132A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2201782A JPS58140132A (en) 1982-02-16 1982-02-16 Manufacture of cz high resistance wafer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2201782A JPS58140132A (en) 1982-02-16 1982-02-16 Manufacture of cz high resistance wafer

Publications (1)

Publication Number Publication Date
JPS58140132A true JPS58140132A (en) 1983-08-19

Family

ID=12071214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2201782A Pending JPS58140132A (en) 1982-02-16 1982-02-16 Manufacture of cz high resistance wafer

Country Status (1)

Country Link
JP (1) JPS58140132A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102167A (en) * 1991-10-07 1993-04-23 Shin Etsu Handotai Co Ltd Heat treatment of silicon
JP2016500641A (en) * 2012-10-23 2016-01-14 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Method for forming a doped silicon ingot with uniform resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05102167A (en) * 1991-10-07 1993-04-23 Shin Etsu Handotai Co Ltd Heat treatment of silicon
JP2016500641A (en) * 2012-10-23 2016-01-14 コミサリア ア レネルジー アトミック エ オ ゼネルジー アルテルナティブCommissariat Al’Energie Atomique Et Aux Energiesalternatives Method for forming a doped silicon ingot with uniform resistance

Similar Documents

Publication Publication Date Title
JPH0231493B2 (en)
JPS583375B2 (en) Manufacturing method of silicon single crystal wafer
JP2007176725A (en) Method for manufacturing neutron-irradiated silicon single crystal
Patrick et al. The effect of SiO2 precipitation in Si on generation currents in MOS capacitors
JPH0787187B2 (en) Method for manufacturing GaAs compound semiconductor substrate
JPS58140132A (en) Manufacture of cz high resistance wafer
JPH0891993A (en) Production of silicon single crystal substrate and method for quality control
JPH0523494B2 (en)
JPH04233219A (en) Manufacture of products comprising semiconductor devices
Peter et al. Prolonged and rapid thermal annealing of boron implanted silicon
Rai‐Choudhury Substrate Surface Preparation and Its Effect on Epitaxial Silicon
EP3675155A1 (en) Recombination lifetime control method
JP2001077120A (en) Manufacture of epitaxial silicon wafer
JP2742856B2 (en) Semiconductor thin film manufacturing method
KR102104074B1 (en) Method for manufacturing silicon wafer
JPH11288942A (en) Manufacture of semiconductor device
Borsch et al. Photoelectrical properties of CdxHg1-xTe epitaxial layers irradiated by nanosecond laser pulses
JPS5650520A (en) Processing method of semiconductor substrate
US3175975A (en) Heat treatment of iii-v compound semiconductors
Londos et al. Production and evolution of defects in neutron-irradiated Si subjected to thermal pre-treatments under hydrostatic pressure
Kissinger et al. Verification of a method to detect grown-in oxide precipitate nuclei in Czochralski silicon
Hardeman et al. Oxide removal from silicon wafers studied by transient mass spectrometry and X-ray photoelectron spectroscopy
JPS62139335A (en) Surface cleaning process
Kawasumi et al. Novel optical features in Cd+ ion-implanted LEC-grown GaAs
Wagner TEM Observations of Defects in Ge‐Doped LPE GaAs and Al0. 4Ga0. 6As