JPH0891993A - Production of silicon single crystal substrate and method for quality control - Google Patents

Production of silicon single crystal substrate and method for quality control

Info

Publication number
JPH0891993A
JPH0891993A JP12709195A JP12709195A JPH0891993A JP H0891993 A JPH0891993 A JP H0891993A JP 12709195 A JP12709195 A JP 12709195A JP 12709195 A JP12709195 A JP 12709195A JP H0891993 A JPH0891993 A JP H0891993A
Authority
JP
Japan
Prior art keywords
single crystal
resistivity
heat treatment
silicon single
nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12709195A
Other languages
Japanese (ja)
Other versions
JP2742247B2 (en
Inventor
Masaki Kimura
雅規 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Handotai Co Ltd
Original Assignee
Shin Etsu Handotai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Handotai Co Ltd filed Critical Shin Etsu Handotai Co Ltd
Priority to JP7127091A priority Critical patent/JP2742247B2/en
Publication of JPH0891993A publication Critical patent/JPH0891993A/en
Application granted granted Critical
Publication of JP2742247B2 publication Critical patent/JP2742247B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE: To provide methods both for producing a silicon substrate capable of manifesting stable resistivity even by any heat treatments during a production process for semiconductor elements and for quality control. CONSTITUTION: This method for producing a silicon substrate is to keep the silicon single crystal substrate containing nitrogen added thereto during the growth thereof at any temperature of 900-1250 deg.C at least before a production process for semiconductor elements, heat the substrate at the temperature for about 10min to 1hr and recover the resistivity to the value just after growing the single crystal.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、窒素を添加したシリコ
ン単結晶基板の製造方法および品質管理方法に関するも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a manufacturing method and a quality control method for a silicon single crystal substrate containing nitrogen.

【0002】[0002]

【従来の技術】シリコン単結晶基板(以下シリコン基板
という。)の製造またはこれを使用する半導体素子製造
においては、シリコン基板は600℃から1250℃の
広範囲の温度範囲で熱処理を受ける。例えば前者におけ
るものとしては、ドナー消去のための約650℃、30
分間の熱処理があり、後者におけるものとしては、酸化
工程、イントリンシックゲッタリングあるいは拡散のた
めの約1200℃の熱処理などがある。
2. Description of the Related Art In the production of a silicon single crystal substrate (hereinafter referred to as a silicon substrate) or the production of a semiconductor device using the same, a silicon substrate is subjected to a heat treatment in a wide temperature range of 600 to 1250 ° C. For example, in the former case, about 650 ° C. and 30
There is a heat treatment for a minute, and the latter includes an oxidation step, a heat treatment at about 1200 ° C. for intrinsic gettering or diffusion.

【0003】一方、特に高温領域における熱処理におい
て、その際にシリコン基板内に発生する熱応力による結
晶欠陥の発生を防止する目的で、例えば特開昭57−1
7497号に示されているように、シリコン単結晶中に
窒素を添加することが提案されている。
On the other hand, in the heat treatment especially in the high temperature region, for the purpose of preventing the generation of crystal defects due to the thermal stress generated in the silicon substrate at that time, for example, JP-A-57-11.
As shown in No. 7497, it has been proposed to add nitrogen into a silicon single crystal.

【0004】[0004]

【発明が解決しようとする課題】ところが、窒素が添加
されたシリコン基板に対し熱処理を施すと、窒素を添加
していないシリコン基板と異なり、その抵抗率が実測値
において、熱処理前後で10%以上変化してしまう場合
があり、窒素が添加されたシリコン基板の抵抗率を保証
することが困難であった。
However, when a heat treatment is applied to a silicon substrate to which nitrogen is added, the resistivity thereof is 10% or more before and after the heat treatment in the measured value, unlike the silicon substrate to which nitrogen is not added. It may change, and it has been difficult to guarantee the resistivity of the silicon substrate to which nitrogen is added.

【0005】本発明は、かかる点に鑑みなされたもので
あり、半導体素子製造工程中のいかなる熱処理によって
も安定した抵抗率を示す、窒素が添加されたシリコン基
板の製造方法および品質管理方法を提供することを目的
としている。
The present invention has been made in view of the above circumstances, and provides a method for manufacturing a silicon substrate to which nitrogen is added and a quality control method which show stable resistivity by any heat treatment during the semiconductor element manufacturing process. The purpose is to do.

【0006】[0006]

【課題を解決するための手段】請求項1記載のシリコン
単結晶基板の製造方法は、シリコン単結晶の育成中に窒
素を添加する工程と、前記シリコン単結晶を切断する工
程と、切断されたシリコン単結晶基板を、少なくとも半
導体素子製造工程前に900℃〜1250℃の間のいず
れかの温度で保持して約10分〜1時間加熱し、抵抗率
を単結晶育成直後の値に回復させる工程とを有すること
を特徴とする。
According to a first aspect of the present invention, there is provided a method of manufacturing a silicon single crystal substrate, wherein a step of adding nitrogen during the growth of the silicon single crystal, a step of cutting the silicon single crystal, and a cutting step. The silicon single crystal substrate is held at any temperature between 900 ° C. and 1250 ° C. at least before the semiconductor element manufacturing process and heated for about 10 minutes to 1 hour to recover the resistivity to the value immediately after the single crystal growth. And a process.

【0007】請求項2記載のシリコン単結晶基板の製造
方法は、請求項1記載のシリコン単結晶基板の製造方法
において、添加される前記窒素の濃度は、3×1014at
oms/cm3以上であることを特徴とする。
A method for manufacturing a silicon single crystal substrate according to a second aspect is the method for manufacturing a silicon single crystal substrate according to the first aspect, wherein the concentration of the added nitrogen is 3 × 10 14 at.
It is characterized by being oms / cm 3 or more.

【0008】請求項3記載のシリコン単結晶基板の製造
方法は、請求項1又は請求項2記載のシリコン単結晶基
板の製造方法において、前記シリコン単結晶の育成は、
FZ法で行うことを特徴とする。
A method for manufacturing a silicon single crystal substrate according to claim 3 is the method for manufacturing a silicon single crystal substrate according to claim 1 or 2, wherein the growing of the silicon single crystal comprises:
It is characterized in that it is performed by the FZ method.

【0009】請求項4記載のシリコン単結晶基板の製造
方法は、請求項1〜3いずれか記載のシリコン単結晶基
板の製造方法において、前記熱処理は、ウェット酸素雰
囲気、ドライ酸素雰囲気又は窒素雰囲気のいずれか1つ
で行われることを特徴とする。
A method for manufacturing a silicon single crystal substrate according to claim 4 is the method for manufacturing a silicon single crystal substrate according to any one of claims 1 to 3, wherein the heat treatment is performed in a wet oxygen atmosphere, a dry oxygen atmosphere or a nitrogen atmosphere. It is characterized in that any one is performed.

【0010】請求項5記載のシリコン基板の品質管理方
法は、単結晶の育成中に窒素が添加されたシリコン単結
晶基板について、少なくとも半導体素子製造工程前に9
00℃〜1250℃の間のいずれかの温度で保持して約
10分〜1時間加熱し、抵抗率を単結晶育成直後の値に
回復させることを特徴とする。
According to a fifth aspect of the quality control method for a silicon substrate, a silicon single crystal substrate to which nitrogen is added during the growth of the single crystal is at least 9 times before the semiconductor element manufacturing process.
It is characterized by holding at any temperature between 00 ° C. and 1250 ° C. and heating for about 10 minutes to 1 hour to recover the resistivity to the value just after the single crystal growth.

【0011】[0011]

【作用】本発明によれば、前記窒素が添加されたシリコ
ン基板の抵抗率を単結晶育成直後の値にほぼ一致させる
ことができ、また、その後の熱処理で抵抗率が変化しな
くなる。さらにまた、本発明に係る熱処理をウェット酸
素雰囲気中で行うと、抵抗率が容易に単結晶育成直後の
値に回復する。したがって、本発明に係る製造方法や抵
抗率の測定方法によると、窒素が添加されたシリコン基
板から高収率をもって半導体素子を製造することができ
る。特に、シリコン単結晶の育成中に添加された窒素の
濃度が3×1014atoms/cm3以上のものの場合には、そ
の効果が高い。
According to the present invention, the resistivity of the nitrogen-added silicon substrate can be made substantially equal to the value immediately after the growth of the single crystal, and the resistivity is not changed by the subsequent heat treatment. Furthermore, when the heat treatment according to the present invention is performed in a wet oxygen atmosphere, the resistivity easily recovers to the value immediately after the single crystal growth. Therefore, according to the manufacturing method and the resistivity measuring method of the present invention, a semiconductor element can be manufactured with high yield from a silicon substrate to which nitrogen is added. Particularly, when the concentration of nitrogen added during the growth of the silicon single crystal is 3 × 10 14 atoms / cm 3 or more, the effect is high.

【0012】熱処理の温度が900℃以下の場合には、
冷却後の抵抗率を単結晶育成直後の値に一致させるため
に、熱処理時間が1時間以上必要となるので、工業的と
はいえない。一方、熱処理の温度が1250℃以上の場
合には、シリコン基板中に窒素が添加されているにもか
かわらず、加熱冷却時に熱応力による結晶欠陥が発生す
る可能性が高くなる。また、昇温速度は、例えば毎分1
℃〜10℃が用いられるが、熱処理を受けるシリコン基
板が破壊されたり、あるいは結晶性が劣化したりしない
限り自由に選ぶことができる。
When the heat treatment temperature is 900 ° C. or lower,
Since the heat treatment time is 1 hour or more in order to match the resistivity after cooling to the value immediately after the growth of the single crystal, it cannot be said to be industrial. On the other hand, when the temperature of the heat treatment is 1250 ° C. or higher, there is a high possibility that crystal defects will occur due to thermal stress during heating and cooling even though nitrogen is added to the silicon substrate. Further, the rate of temperature rise is, for example, 1 per minute.
C. to 10.degree. C. is used, but it can be freely selected as long as the silicon substrate subjected to the heat treatment is not destroyed or the crystallinity is deteriorated.

【0013】[0013]

【実施例】以下、本発明に係るシリコン単結晶基板の製
造方法および品質管理方法を説明する。
EXAMPLES A method for manufacturing a silicon single crystal substrate and a quality control method according to the present invention will be described below.

【0014】先ず、シリコン基板の製造方法の一例を図
1を用いて説明する。アルゴンガス又はまれに用いられ
るアルゴンと水素の混合ガスに窒素ガス又は窒素を含む
化合物を添加した雰囲気ガス中で、単結晶中に窒素を添
加しながらシリコン単結晶を育成する。この際のシリコ
ン単結晶の育成は、例えば、浮遊帯域溶融法(FZ法)
によって行われる。次に、このシリコン単結晶を所定の
厚さにスライスしさらに機械研磨して得られたシリコン
基板を、周辺部の面取りをした後にエッチング処理して
表面の破砕層を除去する。続いて、前記シリコン基板の
裏面側にサンドブラスト処理を施して加工歪層を付与す
る。この工程の後で、本発明に係る熱処理を施して室温
まで冷却する。そして、最後に前記シリコン基板の主表
面側を鏡面研磨する。次に、本発明に係る熱処理をその
条件を変えて行い、本発明の目的に最も適した条件を探
し求めた。
First, an example of a method for manufacturing a silicon substrate will be described with reference to FIG. A silicon single crystal is grown while adding nitrogen to the single crystal in an atmosphere gas in which nitrogen gas or a compound containing nitrogen is added to argon gas or a rarely used mixed gas of argon and hydrogen. The growth of the silicon single crystal at this time is performed by, for example, the floating zone melting method (FZ method).
Done by Next, the silicon substrate obtained by slicing the silicon single crystal to a predetermined thickness and further mechanically polishing the chamfered peripheral portion is subjected to an etching treatment to remove the crushed layer on the surface. Subsequently, the back surface side of the silicon substrate is subjected to sandblasting to provide a work strain layer. After this step, the heat treatment according to the present invention is performed to cool to room temperature. Finally, the main surface side of the silicon substrate is mirror-polished. Next, the heat treatment according to the present invention was performed under different conditions to find the most suitable condition for the purpose of the present invention.

【0015】[実験1]先ず、単結晶の育成中に窒素を
添加して得られたシリコン基板に対して650℃で20
分間の熱処理を行った。また、この熱処理にあたって、
熱処理雰囲気を変えてみた。具体的な条件及び結果は下
記のとおりである。
[Experiment 1] First, a silicon substrate obtained by adding nitrogen during the growth of a single crystal was heated at 650 ° C. for 20 minutes.
Heat treatment was performed for 1 minute. Also, in this heat treatment,
I tried changing the heat treatment atmosphere. The specific conditions and results are as follows.

【0016】1.条件 サンプル基板のために、FZ法で単結晶育成中に窒素が
添加された直径76mm、n型、{111}の単結晶を
用いた。また、基板の抵抗率ならびに基板中の窒素濃度
の影響を調査するために、表3に示す8種類の基板を準
備した。また、別のサンプル基板として、p型である以
外は表1と同じ分類で準備された表2に示す基板を用い
た。
1. Conditions For the sample substrate, an n-type {111} single crystal with a diameter of 76 mm to which nitrogen was added during the single crystal growth by the FZ method was used. In addition, eight types of substrates shown in Table 3 were prepared in order to investigate the effects of the substrate resistivity and the nitrogen concentration in the substrate. Further, as another sample substrate, a substrate shown in Table 2 prepared in the same classification as in Table 1 except that it was p-type was used.

【0017】[0017]

【表1】 [Table 1]

【0018】[0018]

【表2】 [Table 2]

【0019】表1および表2に示したように種類が異な
るシリコン基板について、熱処理を行う雰囲気は、窒素
(N2)、ウェット酸素(ウェットO2)、アルゴン
(Ar)の3条件である。そして、シリコン基板を室温
まで冷却した後、熱処理前の抵抗率と熱処理後の抵抗率
とを比べてみた。
As shown in Tables 1 and 2, different kinds of silicon substrates are heat-treated in three atmospheres: nitrogen (N2), wet oxygen (wet O2) and argon (Ar). Then, after cooling the silicon substrate to room temperature, the resistivity before the heat treatment was compared with the resistivity after the heat treatment.

【0020】2.結果 その結果が図2(A),(B)及び図3(A),(B)
に示されている。ここで、図2(A)はn型シリコン基
板についての抵抗率変化を、また、図3(A)はp型シ
リコン基板についての抵抗率変化を示している。図2
(A)及び図3(A)からは、650℃の熱処理を行う
とその前後で抵抗率が著しく変化することが分かる。ま
た、650℃の熱処理では熱処理雰囲気を変えても抵抗
率の変化にはあまり影響がないことが分かる。さらに、
p型シリコン基板とn型シリコン基板とを比べた場合、
p型の方が抵抗率変化の割合が大きいことが分かる。な
お、抵抗率が500Ω・cmのp型シリコン基板をウェ
ット酸素雰囲気中で熱処理した場合、抵抗率変化は他の
熱処理雰囲気に比べて小さいことが分かる。
2. Results The results are shown in FIG. 2 (A), (B) and FIG. 3 (A), (B).
Is shown in. Here, FIG. 2A shows the change in resistivity with respect to the n-type silicon substrate, and FIG. 3A shows the change in resistivity with respect to the p-type silicon substrate. Figure 2
From (A) and FIG. 3 (A), it is understood that the resistivity changes remarkably before and after the heat treatment at 650 ° C. Further, it can be seen that in the heat treatment at 650 ° C., even if the heat treatment atmosphere is changed, there is not much influence on the change in the resistivity. further,
When comparing a p-type silicon substrate and an n-type silicon substrate,
It can be seen that the p-type has a larger rate of change in resistivity. Note that when the p-type silicon substrate having a resistivity of 500 Ω · cm is heat-treated in a wet oxygen atmosphere, the change in resistivity is smaller than that in other heat-treatment atmospheres.

【0021】また、図2(B)及び図3(B)はAST
M換算式(F723−82)を用いて、上記抵抗率変化
をキャリヤー濃度変化に直したものである。このように
キャリヤー濃度変化に換算すると、一部の例外を除い
て、窒素濃度が高い程キャリヤー濃度変化が大きいとい
って良い。なお、抵抗率変化の割合についてp型シリコ
ン基板とn型シリコン基板とを比べた場合、p型の方が
1桁大きいことが分かる。
Further, FIG. 2B and FIG. 3B show AST.
Using the M conversion formula (F723-82), the above-mentioned resistivity change is corrected to carrier concentration change. When converted into the carrier concentration change in this way, with some exceptions, it can be said that the higher the nitrogen concentration is, the larger the carrier concentration change is. When the ratio of change in resistivity is compared between the p-type silicon substrate and the n-type silicon substrate, it can be seen that the p-type is larger by one digit.

【0022】[実験2]この実験では、単結晶育成中に
窒素を添加して得られたシリコン基板を窒素雰囲気中で
熱処理し、その時に温度と時間を変化させながら変えて
実験を行った。この実験の条件及び結果は下記のとおり
である。
[Experiment 2] In this experiment, a silicon substrate obtained by adding nitrogen during single crystal growth was heat-treated in a nitrogen atmosphere, and the temperature and time were changed while changing the experiment. The conditions and results of this experiment are as follows.

【0023】1.条件 窒素雰囲気中で熱処理温度を700℃、900℃及び1
000℃に設定し、そのそれぞれについて1分、4分、
8分、20分、60分、120分熱処理し、その後に室
温まで冷却して抵抗率を調べてみた。さらに1200
℃、8分のみの熱処理実験を追加した。本実験には、直
径76mm、面方位{100}、単結晶育成直後の抵抗
率が150Ω・cmのp型シリコン基板を用いた。ま
た、クーリング時間、つまり熱処理後室温(24乃至2
5℃)まで冷却する時間を15秒とした。
1. Conditions The heat treatment temperature is 700 ° C, 900 ° C and 1 in a nitrogen atmosphere.
Set to 000 ℃, 1 minute, 4 minutes for each
Heat treatment was performed for 8, 20, 60, and 120 minutes, and then cooled to room temperature, and the resistivity was examined. Further 1200
A heat treatment experiment of only 8 ° C. for 8 minutes was added. In this experiment, a p-type silicon substrate having a diameter of 76 mm, a plane orientation of {100}, and a resistivity of 150 Ω · cm immediately after single crystal growth was used. Also, the cooling time, that is, room temperature (24 to 2
The time for cooling to (5 ° C.) was 15 seconds.

【0024】2.結果 この結果が図4に示されている。この図からは、熱処理
の初期において、一旦抵抗率が大きく上昇するが、さら
に熱処理を継続すると、単結晶育成直後の値まで徐々に
抵抗率が下がってゆく傾向が見られる。例えば、100
0℃で熱処理する場合、約10分間で単結晶育成直後の
抵抗率である150Ω・cmにほぼ回復している。ま
た、1000℃より温度を高くすると、単結晶育成直後
の状態の抵抗率までに回復する時間が少なくてすむこと
が分かる。一方、1000℃より温度を低くすると、単
結晶育成直後の抵抗率まで回復するまでの時間が長くな
ることが分かる。
2. Results The results are shown in Figure 4. From this figure, it can be seen that the resistivity increases greatly at the beginning of the heat treatment, but if the heat treatment is further continued, the resistivity gradually decreases to the value immediately after the single crystal growth. For example, 100
When the heat treatment is performed at 0 ° C., the resistivity is almost recovered to 150 Ω · cm immediately after the single crystal growth in about 10 minutes. Further, it is understood that when the temperature is higher than 1000 ° C., it takes less time to recover the resistivity in the state immediately after the single crystal growth. On the other hand, it can be seen that when the temperature is lower than 1000 ° C., it takes a long time to recover the resistivity immediately after the growth of the single crystal.

【0025】[実験3]次の実験では、単結晶育成中に
窒素を添加して得られたシリコン基板を熱処理する際
に、さまざまな雰囲気中で熱処理を行い、その熱処理前
後における抵抗率変化の割合を比較した。具体的な条件
及び結果は下記のとおりである。
[Experiment 3] In the next experiment, when a silicon substrate obtained by adding nitrogen during single crystal growth was heat-treated, the heat treatment was performed in various atmospheres and the change in resistivity before and after the heat treatment was performed. The proportions were compared. The specific conditions and results are as follows.

【0026】1.条件 サンプル基板として、FZ法で単結晶育成中に窒素が添
加された直径76mm、p型、{111}の単結晶を用
いた。また、基板の抵抗率ならびに基板中の窒素濃度の
影響を調査するために、表3に示す8種類の基板を準備
した。
1. Conditions As the sample substrate, a p-type {111} single crystal with a diameter of 76 mm to which nitrogen was added during single crystal growth by the FZ method was used. In addition, eight types of substrates shown in Table 3 were prepared in order to investigate the effects of the substrate resistivity and the nitrogen concentration in the substrate.

【0027】[0027]

【表3】 [Table 3]

【0028】上記のような各種サンプルについてその熱
処理をウェット酸素(ウェットO2)、ドライ酸素(ド
ライO2 )、窒素(N2 )の3種類の雰囲気中で行っ
た。なお、熱処理温度は1000℃、熱処理時間は20
分に設定した。ウェット酸素での熱処理はスチーム酸化
炉で行った。
The various samples as described above were heat-treated in three atmospheres of wet oxygen (wet O 2 ), dry oxygen (dry O 2 ), and nitrogen (N 2 ). The heat treatment temperature is 1000 ° C. and the heat treatment time is 20.
Set to minutes. The heat treatment with wet oxygen was performed in a steam oxidation furnace.

【0029】2.結果 その結果が図5(A),(B)に示されている。ここ
で、図5(A)は縦軸に抵抗率変化を、また、図5
(B)は図5(A)の抵抗率変化をASTM法(F72
3−82)によってキャリヤー濃度変化に換算したもの
を示している。ここで、抵抗率又はキャリヤー濃度の変
化率が小さいということは、一旦高くなった抵抗率が単
結晶育成直後の値の近傍まで回復したことを意味する。
一方、変化率が大きいということは、抵抗率がまだ回復
途上にあることを意味する。これらの図面より、ウェッ
ト酸素雰囲気中においては、誤差(±0.3〜±0.5
%)も考慮すれば、ほぼ単結晶育成直後の値に抵抗率が
回復していることが分かる。なおドライ酸素雰囲気は、
ウェット酸素雰囲気よりも抵抗率の変化が大きいが、熱
処理時間をウェット酸素雰囲気よりも少し長くとれば、
単結晶育成直後の値に抵抗率が回復することがその後の
実験で確認された。
2. Results The results are shown in FIGS. 5 (A) and 5 (B). Here, in FIG. 5A, the vertical axis represents the resistivity change, and FIG.
FIG. 5B shows the change in resistivity shown in FIG.
3-82) shows that converted into carrier concentration change. Here, the small change rate of the resistivity or the carrier concentration means that the once-increased resistivity has recovered to the vicinity of the value immediately after the single crystal growth.
On the other hand, a large rate of change means that the resistivity is still recovering. From these drawings, in the wet oxygen atmosphere, the error (± 0.3 to ± 0.5
%, It is understood that the resistivity has recovered to a value almost immediately after the single crystal growth. The dry oxygen atmosphere is
Although the change in resistivity is larger than in a wet oxygen atmosphere, if the heat treatment time is set slightly longer than in a wet oxygen atmosphere,
It was confirmed in subsequent experiments that the resistivity was restored to the value immediately after the single crystal growth.

【0030】次に、上記実験結果に対する原理的考察を
加える。図6に抵抗率の回復過程を概説した。単結晶育
成中に窒素を添加して得られたシリコン単結晶内には、
空孔と窒素分子との複合体が形成されている。前記複合
体を有する結晶に熱処理を施すと、深い準位が形成され
るので、キャリヤーがトラップされやすくなり、その結
果、抵抗率が上昇する。ところが、さらに熱処理を加え
ると、空孔の外方拡散及び/又は格子間のSiの内方拡
散により、一旦形成された深い準位は消滅し、抵抗率が
単結晶育成直後の値まで回復するのである。
Next, a theoretical consideration will be added to the above experimental results. FIG. 6 outlines the recovery process of the resistivity. In the silicon single crystal obtained by adding nitrogen during single crystal growth,
A complex of vacancies and nitrogen molecules is formed. When the crystal having the composite is subjected to heat treatment, a deep level is formed and carriers are easily trapped, and as a result, the resistivity is increased. However, when heat treatment is further applied, the deep level once formed disappears due to the outward diffusion of vacancies and / or the inward diffusion of Si between the lattices, and the resistivity is restored to the value just after the single crystal growth. Of.

【0031】酸素雰囲気中で熱処理すると、シリコン基
板の表面にSiO2 膜が形成されて余分なSiが内方拡
散されるので、空孔が消滅すると同時に深い準位が消滅
する。
When heat-treated in an oxygen atmosphere, a SiO 2 film is formed on the surface of the silicon substrate and excess Si is diffused inward, so that the vacancies disappear and the deep levels disappear at the same time.

【0032】ウェット酸素とドライ酸素とを比較した場
合にウェット酸素雰囲気の抵抗率変化が小さいのは、ウ
ェットO2 雰囲気の方がSiO2 膜の形成速度が速いの
でSiの内方拡散も早く行われるようになり、その結
果、同じ熱処理温度及び熱処理時間での抵抗率の回復の
割合が大きくなるからである。
When the wet oxygen atmosphere is compared with the dry oxygen, the resistivity change in the wet oxygen atmosphere is small. The reason why the SiO 2 film formation rate is faster in the wet O 2 atmosphere is that the inward diffusion of Si is faster. This is because the rate of recovery of the resistivity increases at the same heat treatment temperature and heat treatment time.

【0033】また、N2 雰囲気の場合には、格子間のS
iの内方拡散のみならず、空孔の外方拡散の影響も大き
いものと推測される。
In the case of N 2 atmosphere, the interstitial S
It is presumed that not only the inward diffusion of i but also the outward diffusion of vacancies has a great influence.

【0034】なお、実験3において、窒素雰囲気の場合
に、酸素雰囲気に比べて抵抗率変化が大きかったのは、
クーリング時間が長かったことに起因していると思われ
る。つまり、実験3では、クーリング時間を15分程度
としたので、一旦深い準位が消滅したにも拘らず、冷却
中にN2 が内方拡散され、それによって抵抗率変化が再
び生じたのである。したがって、窒素雰囲気の場合には
深い準位の消滅後直ちに冷却することが必要となる。
In Experiment 3, the resistivity change in the nitrogen atmosphere was larger than that in the oxygen atmosphere.
This is probably due to the long cooling time. In other words, in Experiment 3, since the cooling time was set to about 15 minutes, N 2 was diffused inward during cooling, although the deep level once disappeared, thereby causing a change in resistivity again. . Therefore, in the case of a nitrogen atmosphere, it is necessary to cool immediately after the deep level disappears.

【0035】[実験4]次の実験では、本発明に係る条
件で第1の熱処理をしたシリコン基板を更に種々の条件
で第2の熱処理を行い、熱処理前後の抵抗率変化の程度
を調べた。
[Experiment 4] In the next experiment, the silicon substrate that had been subjected to the first heat treatment under the conditions according to the present invention was further subjected to the second heat treatment under various conditions to examine the degree of change in resistivity before and after the heat treatment. .

【0036】1.条件 サンプル基板としては、FZ法で育成中に表4に示す濃
度の窒素が添加された面方位{100}、単結晶育成直
後の抵抗率が150Ω・cmのn型およびp型シリコン
基板を準備し、サンプル1とサンプル2の熱処理を行っ
た。
1. Conditions As the sample substrate, n-type and p-type silicon substrates having a surface orientation {100} to which the concentration of nitrogen shown in Table 4 was added during the growth by the FZ method and having a resistivity of 150 Ω · cm immediately after the single crystal growth were prepared. Then, heat treatment of Sample 1 and Sample 2 was performed.

【0037】[0037]

【表4】 [Table 4]

【0038】第1の熱処理は、ウェット酸素中でサンプ
ル1を1200℃60分、サンプル2を1000℃60
分行った。続いて、700℃20分、800℃60分お
よび1100℃60分の3条件で第2の熱処理を行い、
その前後での抵抗率を比較した。
The first heat treatment was carried out in wet oxygen for sample 1 at 1200 ° C. for 60 minutes and for sample 2 at 1000 ° C. 60
I went for a minute. Subsequently, a second heat treatment is performed under three conditions of 700 ° C. for 20 minutes, 800 ° C. for 60 minutes, and 1100 ° C. for 60 minutes,
The resistivities before and after that were compared.

【0039】2.結果 その結果、第2の熱処理による抵抗率の変化はいずれも
1%以下で無視できる範囲に収まった。つまり、本発明
に係る第1の熱処理は、窒素の添加されたシリコン基板
に施すと、該シリコン基板の抵抗率を単結晶育成直後の
値に回復させ、さらにその値を実質的に一定にするの
で、前記シリコン基板の抵抗率を測定する際に有効であ
る。
2. As a result, the change in resistivity due to the second heat treatment was 1% or less, which was within a negligible range. That is, the first heat treatment according to the present invention, when applied to a silicon substrate to which nitrogen is added, restores the resistivity of the silicon substrate to the value immediately after single crystal growth, and further makes the value substantially constant. Therefore, it is effective when measuring the resistivity of the silicon substrate.

【0040】以上本発明者によってなされた発明を実施
例に基づき具体的に説明したが、本発明は上記実施例に
限定されるものではなく、その要旨を逸脱しない範囲で
種々変更可能であることはいうまでもない。
Although the invention made by the present inventor has been specifically described based on the embodiments, the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say.

【0041】上記実施例では、実験2,3で抵抗率変化
の大きいp型シリコン基板について評価を行なったが、
抵抗率変化の小さいn型シリコン基板にも効果があるこ
とは勿論である。
In the above examples, the p-type silicon substrate having a large change in resistivity was evaluated in Experiments 2 and 3.
The n-type silicon substrate having a small change in resistivity is of course effective.

【0042】また、上記実施例では、FZ法によって得
られたシリコン基板について説明したが、チョクラルス
キー法(CZ法)によって得られるシリコン基板にも適
応できることは勿論である。
In the above embodiment, the silicon substrate obtained by the FZ method has been described, but it goes without saying that the silicon substrate obtained by the Czochralski method (CZ method) is also applicable.

【0043】さらに、上記実施例では、サンドブラスト
処理されたシリコン基板について説明してきたが、抵抗
率の安定化は前記した原理に基づくものと考えられるか
ら、サンドブラスト処理の施されないシリコン基板にも
本発明は適用できることは勿論である。
Further, in the above-mentioned embodiment, the silicon substrate which has been subjected to the sandblast treatment has been described. However, since it is considered that the stabilization of the resistivity is based on the above-mentioned principle, the present invention can be applied to the silicon substrate which is not subjected to the sandblast treatment. Of course, can be applied.

【0044】[0044]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば下記
のとおりである。単結晶育成中に窒素が添加されたシリ
コン基板に熱処理を施すと、深い準位の発生原因となる
空孔がなくなるので、単結晶育成直後の抵抗率に回復す
ることができ、その結果、品質管理が容易となる。
The effects obtained by the representative one of the inventions disclosed in the present application will be briefly described as follows. When heat treatment is applied to a silicon substrate to which nitrogen is added during single crystal growth, the holes that cause the generation of deep levels are eliminated, and the resistivity immediately after single crystal growth can be recovered. Easy to manage.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るシリコン単結晶基板の製造方法を
示す工程図である。
FIG. 1 is a process drawing showing a method for manufacturing a silicon single crystal substrate according to the present invention.

【図2】(A),(B)は従来の熱処理条件(温度及び
時間)で熱処理を行なった場合のn型シリコン基板の抵
抗率変化及びキャリヤー濃度変化をそれぞれ示す図表で
ある。
2A and 2B are charts showing a change in resistivity and a change in carrier concentration of an n-type silicon substrate when heat treatment is performed under conventional heat treatment conditions (temperature and time).

【図3】(A),(B)は従来の熱処理条件(温度及び
時間)で熱処理を行なった場合のp型シリコン基板の抵
抗率変化及びキャリヤー濃度変化をそれぞれ示す図表で
ある。
3 (A) and 3 (B) are charts respectively showing a change in resistivity and a change in carrier concentration of a p-type silicon substrate when heat treatment is performed under conventional heat treatment conditions (temperature and time).

【図4】熱処理条件(温度及び時間)を変えた場合の抵
抗率変化を示す図表である。
FIG. 4 is a chart showing changes in resistivity when heat treatment conditions (temperature and time) are changed.

【図5】(A),(B)は本実施例の熱処理条件(温度
及び時間)で熱処理を行なった場合のp型シリコン基板
の抵抗率変化及びキャリヤー濃度変化をそれぞれ示す図
表である。
5A and 5B are tables showing a change in resistivity and a change in carrier concentration of a p-type silicon substrate when heat treatment is performed under the heat treatment conditions (temperature and time) of this example.

【図6】抵抗率変化の機構を説明するための図である。FIG. 6 is a diagram for explaining the mechanism of the change in resistivity.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 シリコン単結晶の育成中に窒素を添加す
る工程と、前記シリコン単結晶を切断する工程と、切断
されたシリコン単結晶基板を、少なくとも半導体素子製
造工程前に900℃〜1250℃の間のいずれかの温度
で保持して約10分〜1時間加熱し、抵抗率を単結晶育
成直後の値に回復させる工程とを有することを特徴とす
るシリコン単結晶基板の製造方法。
1. A step of adding nitrogen during the growth of a silicon single crystal, a step of cutting the silicon single crystal, and a cut silicon single crystal substrate at least 900 ° C. to 1250 ° C. before a semiconductor element manufacturing step. And a temperature of about 10 minutes to 1 hour to recover the resistivity to a value immediately after the single crystal growth, the method for producing a silicon single crystal substrate.
【請求項2】 添加される前記窒素の濃度は、3×10
14atoms/cm3以上であることを特徴とする請求項1記載
のシリコン単結晶基板の製造方法。
2. The concentration of the added nitrogen is 3 × 10 5.
14. The method for manufacturing a silicon single crystal substrate according to claim 1, wherein the concentration is 14 atoms / cm 3 or more.
【請求項3】 前記シリコン単結晶の育成は、FZ法で
行うことを特徴とする請求項1又は請求項2記載のシリ
コン単結晶基板の製造方法。
3. The method for manufacturing a silicon single crystal substrate according to claim 1, wherein the growth of the silicon single crystal is performed by an FZ method.
【請求項4】 前記熱処理は、ウェット酸素雰囲気、ド
ライ酸素雰囲気又は窒素雰囲気のいずれか1つで行われ
ることを特徴とする請求項1〜3いずれか記載のシリコ
ン単結晶基板の製造方法。
4. The method for manufacturing a silicon single crystal substrate according to claim 1, wherein the heat treatment is performed in any one of a wet oxygen atmosphere, a dry oxygen atmosphere and a nitrogen atmosphere.
【請求項5】 単結晶の育成中に窒素が添加されたシリ
コン単結晶基板について、少なくとも半導体素子製造工
程前に900℃〜1250℃の間のいずれかの温度で保
持して約10分〜1時間加熱し、抵抗率を単結晶育成直
後の値に回復させることを特徴とするシリコン基板の品
質管理方法。
5. A silicon single crystal substrate to which nitrogen is added during the growth of a single crystal is held at any temperature between 900 ° C. and 1250 ° C. at least before the semiconductor element manufacturing process, and the silicon single crystal substrate is maintained for about 10 minutes to 1 minute. A method for quality control of a silicon substrate, which comprises heating for a period of time to recover the resistivity to a value immediately after growing a single crystal.
JP7127091A 1995-04-27 1995-04-27 Manufacturing method and quality control method for silicon single crystal substrate Expired - Lifetime JP2742247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7127091A JP2742247B2 (en) 1995-04-27 1995-04-27 Manufacturing method and quality control method for silicon single crystal substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7127091A JP2742247B2 (en) 1995-04-27 1995-04-27 Manufacturing method and quality control method for silicon single crystal substrate

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP13835489A Division JPH033244A (en) 1989-05-30 1989-05-30 Heat treatment method for semiconductor silicon substrate

Publications (2)

Publication Number Publication Date
JPH0891993A true JPH0891993A (en) 1996-04-09
JP2742247B2 JP2742247B2 (en) 1998-04-22

Family

ID=14951364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7127091A Expired - Lifetime JP2742247B2 (en) 1995-04-27 1995-04-27 Manufacturing method and quality control method for silicon single crystal substrate

Country Status (1)

Country Link
JP (1) JP2742247B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146498A (en) * 1999-11-12 2001-05-29 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, method for producing the same and soi wafer
US6365461B1 (en) 1999-10-07 2002-04-02 Sumitomo Metal Industries, Ltd. Method of manufacturing epitaxial wafer
US6468881B1 (en) 1997-12-26 2002-10-22 Sumitomo Metal Industries, Ltd. Method for producing a single crystal silicon
US6548886B1 (en) 1998-05-01 2003-04-15 Wacker Nsce Corporation Silicon semiconductor wafer and method for producing the same
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
WO2005010243A1 (en) * 2003-07-29 2005-02-03 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal substrate, method of measuring resistance characteristics and method of warranting resistance characteristics
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
JP2005523584A (en) * 2002-04-17 2005-08-04 ラム リサーチ コーポレーション Silicon parts for plasma reaction chamber
JP2007176725A (en) * 2005-12-27 2007-07-12 Shin Etsu Handotai Co Ltd Method for manufacturing neutron-irradiated silicon single crystal
US7517803B2 (en) 2002-04-17 2009-04-14 Lam Research Corporation Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
JP2012004439A (en) * 2010-06-18 2012-01-05 Shin Etsu Handotai Co Ltd Pn determining method of silicon wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717497A (en) * 1980-06-30 1982-01-29 Shin Etsu Handotai Co Ltd Manufacture of silicon single crystal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5717497A (en) * 1980-06-30 1982-01-29 Shin Etsu Handotai Co Ltd Manufacture of silicon single crystal

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6468881B1 (en) 1997-12-26 2002-10-22 Sumitomo Metal Industries, Ltd. Method for producing a single crystal silicon
US6548886B1 (en) 1998-05-01 2003-04-15 Wacker Nsce Corporation Silicon semiconductor wafer and method for producing the same
US6641888B2 (en) 1999-03-26 2003-11-04 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer.
US6878451B2 (en) 1999-07-28 2005-04-12 Sumitomo Mitsubishi Silicon Corporation Silicon single crystal, silicon wafer, and epitaxial wafer
US6365461B1 (en) 1999-10-07 2002-04-02 Sumitomo Metal Industries, Ltd. Method of manufacturing epitaxial wafer
JP2001146498A (en) * 1999-11-12 2001-05-29 Shin Etsu Handotai Co Ltd Silicon single crystal wafer, method for producing the same and soi wafer
JP2005523584A (en) * 2002-04-17 2005-08-04 ラム リサーチ コーポレーション Silicon parts for plasma reaction chamber
US7517803B2 (en) 2002-04-17 2009-04-14 Lam Research Corporation Silicon parts having reduced metallic impurity concentration for plasma reaction chambers
KR100954711B1 (en) * 2002-04-17 2010-04-23 램 리써치 코포레이션 Silicon parts for plasma reaction chambers
JP2010157754A (en) * 2002-04-17 2010-07-15 Lam Res Corp Silicon part for plasma reaction chamber
JP4837894B2 (en) * 2002-04-17 2011-12-14 ラム リサーチ コーポレーション Method for forming silicon parts
WO2005010243A1 (en) * 2003-07-29 2005-02-03 Shin-Etsu Handotai Co., Ltd. Process for producing silicon single crystal substrate, method of measuring resistance characteristics and method of warranting resistance characteristics
JP2007176725A (en) * 2005-12-27 2007-07-12 Shin Etsu Handotai Co Ltd Method for manufacturing neutron-irradiated silicon single crystal
JP2012004439A (en) * 2010-06-18 2012-01-05 Shin Etsu Handotai Co Ltd Pn determining method of silicon wafer

Also Published As

Publication number Publication date
JP2742247B2 (en) 1998-04-22

Similar Documents

Publication Publication Date Title
JP3626364B2 (en) Epitaxial silicon single crystal wafer manufacturing method and epitaxial silicon single crystal wafer
KR20040099416A (en) Process for controlling denuded zone depth in an ideal oxygen precipitating silicon wafer
KR100920862B1 (en) Process for making ideal oxygen precipitating silicon wafers with nitrogen/carbon stabilized oxygen precipitate nucleation centers
JP2742247B2 (en) Manufacturing method and quality control method for silicon single crystal substrate
JP3381816B2 (en) Semiconductor substrate manufacturing method
JP3454033B2 (en) Silicon wafer and manufacturing method thereof
JP2004503086A (en) Method and apparatus for manufacturing a silicon wafer having a denuded area
JPWO2003009365A1 (en) Method for manufacturing silicon wafer, method for manufacturing silicon epitaxial wafer, and silicon epitaxial wafer
JP2010034330A (en) Epitaxial wafer and method of manufacturing the same
JP3312553B2 (en) Method for producing silicon single crystal and silicon single crystal thin film
KR100625822B1 (en) Silicon wafer and process for producing it
JPS59202640A (en) Treatment for semiconductor wafer
JP2916580B2 (en) Epitaxially coated semiconductor wafer and method of manufacturing the same
JP4270713B2 (en) Manufacturing method of silicon epitaxial wafer
JPH10223641A (en) Manufacture of semiconductor silicon epitaxial wafer and semiconductor device
JP2006186312A (en) Hetero-epitaxial semiconductor subjected to internal gettering and manufacturing method thereof
JPH05326467A (en) Semiconductor substrate and its manufacturing method
JP2003318114A (en) Epitaxial wafer manufacturing method and epitaxial wafer
JPH033244A (en) Heat treatment method for semiconductor silicon substrate
JP2003068744A (en) Silicon wafer manufacturing method, silicon wafer, and soi wafer
JPH0555233A (en) Manufacture of semiconductor device
JPS6326541B2 (en)
JPH06295913A (en) Manufacture of silicon wafer and silicon wafer
JP3238957B2 (en) Silicon wafer
KR100745312B1 (en) Control of thermal donor formation in high resistivity cz silicon

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 10

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080130

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20090130

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090130

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100130

Year of fee payment: 12